Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Agrobacterium tumefaciens-mediated transformation (ATMT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4041 KiB  
Article
Histone Methyltransferases AcDot1 and AcRmtA Are Involved in Growth Regulation, Secondary Metabolism, and Stress Response in Aspergillus carbonarius
by Angelo Agnusdei, Adrián González-García, Donato Gerin, Stefania Pollastro, Francesco Faretra, Luis González-Candelas and Ana-Rosa Ballester
Toxins 2025, 17(4), 196; https://doi.org/10.3390/toxins17040196 - 12 Apr 2025
Viewed by 651
Abstract
Histone post-translational modifications (HPTMs) can affect gene expression by rearranging chromatin structure. Between these, histone methylation is one of the most studied in filamentous fungi, and different conserved domains coding for methyltransferase were found in Aspergillus spp. genomes. In this work, the role [...] Read more.
Histone post-translational modifications (HPTMs) can affect gene expression by rearranging chromatin structure. Between these, histone methylation is one of the most studied in filamentous fungi, and different conserved domains coding for methyltransferase were found in Aspergillus spp. genomes. In this work, the role of the histone methyltransferases AcDot1 and AcRmtA in the mycotoxigenic fungus Aspergillus carbonarius was investigated, obtaining knockout or overexpression mutants through Agrobacterium tumefaciens-mediated transformation (ATMT). A. carbonarius is responsible for grape-bunch rot, representing the major source of ochratoxin A (OTA) contamination on grapes. In vivo conditions, the deletion of Acdot1 or AcrmtA resulted in upregulation of growth when the isolates were cultivated on a minimal medium. The influence of Acdot1 on the OTA biosynthesis was differently affected by culture conditions. On rich media, an increase in OTA accumulation was observed, while on minimal medium, lower OTA concentrations were reported. The deletion of AcrmtA always resulted in lower OTA accumulation. However, the expression of OTA biosynthesis genes was regulated by both histone methyltransferases. Of the six analyzed OTA genes, three of them showed altered expression in the knockout mutants, and otaB and otaR1 were common between both mutants. Furthermore, both AcDot1 and AcRmtA play a role in oxidative stress response, induced by 1 mM hydrogen peroxide, by modulating growth, conidiation and OTA biosynthesis. Neither the deletion nor the overexpression of the Acdot1 or AcrmtA affected virulence, while both the sporulation and OTA production were negatively affected in vivo by the deletion of AcrmtA. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

15 pages, 9174 KiB  
Article
Establishment of an Agrobacterium tumefaciens-Mediated Transformation System for Hirsutella sinensis
by Lijuan Wu, Xinkun Hu, Shen Yan, Zenglin Wu, Xuzhong Tang, Lei Xie, Yujie Qiu, Rui Li, Ji Chen and Mengliang Tian
Curr. Issues Mol. Biol. 2024, 46(9), 10618-10632; https://doi.org/10.3390/cimb46090629 - 22 Sep 2024
Viewed by 1738
Abstract
Ophiocordyceps sinensis (Berk.) is a complex is formed by Hepialidae larvae and Hirsutella sinensis. Infestation by H. sinensis, interaction with host larvae, and fruiting body development are three crucial processes affecting the formation of O. sinensis. However, research on the [...] Read more.
Ophiocordyceps sinensis (Berk.) is a complex is formed by Hepialidae larvae and Hirsutella sinensis. Infestation by H. sinensis, interaction with host larvae, and fruiting body development are three crucial processes affecting the formation of O. sinensis. However, research on the molecular mechanism of O. sinensis formation has been hindered by the lack of effective genetic transformation protocols. Therefore, Agrobacterium tumefaciens-mediated transformation (ATMT) was adopted to genetically transform two H. sinensis strains and optimize the transformation conditions. The results revealed that the most suitable Agrobacterium strain for H. sinensis transformation was AGL1, and that the surfactant Triton X-100 could also induce ATMT, although less effectively than acetosyringone (AS). In addition, the endogenous promoters of H. sinensis genes had a stronger ability to drive the expression of the target gene than did the exogenous promoter. The optimal transformation conditions were as follows: AS and hygromycin B concentrations of 100 μM and 50 μg/mL, respectively; A. tumefaciens OD600 of 0.4; cocultivation at 18 °C for 24 h; and H. sinensis used within three passages. The results lay a foundation for the functional study of key regulatory genes involved in the formation of O. sinensis. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 5078 KiB  
Review
Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies
by Yan Hu, Yijian Wu, Jiayi Song, Maomao Ma, Yunzhu Xiao and Bin Zeng
Bioengineering 2024, 11(8), 783; https://doi.org/10.3390/bioengineering11080783 - 2 Aug 2024
Cited by 1 | Viewed by 4660
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps [...] Read more.
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

13 pages, 2919 KiB  
Technical Note
Establishment of an Efficient Genetic Transformation System in Sanghuangporus baumii
by Xutong Wang, Mandi Wang, Jian Sun, Xiaolei Qu, Shixin Wang and Tingting Sun
J. Fungi 2024, 10(2), 137; https://doi.org/10.3390/jof10020137 - 8 Feb 2024
Viewed by 2087
Abstract
(1) Background: Sanghuangporus baumii, a valuable medicinal fungus, has limited studies on its gene function due to the lack of a genetic transformation system. (2) Methods: This study aimed to establish an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for S. baumii. [...] Read more.
(1) Background: Sanghuangporus baumii, a valuable medicinal fungus, has limited studies on its gene function due to the lack of a genetic transformation system. (2) Methods: This study aimed to establish an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for S. baumii. This study involved cloning the promoter (glyceraldehyde-3-phosphate dehydrogenase, gpd) of S. baumii, reconstructing the transformation vector, optimizing the treatment of receptor tissues, and inventing a new method for screening positive transformants. (3) Results: The established ATMT system involved replacing the CaMV35S promoter of pCAMBIA-1301 with the gpd promoter of S. baumii to construct the pCAMBIA-SH-gpd transformation vector. The vectors were then transferred to A. tumefaciens (EHA105) for infection. This study found that the transformation efficiency was higher in the infection using pCAMBIA-SH-gpd vectors than using pCAMBIA-1301 vectors. The mycelia of S. baumii were homogenized for 20 s and collected as the genetic transformation receptor. After 20 min of co-culture and 48 h of incubation in 15 mL PDL medium at 25 °C, new colonies grew. (4) Conclusions: These colonies were transferred to PDA medium (hygromycin 4 μg/mL, cefotaxime 300 μg/mL), and the transformation efficiency was determined to be 33.7% using PCR. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

14 pages, 5285 KiB  
Article
An Efficient Homologous Recombination-Based In Situ Protein-Labeling Method in Verticillium dahliae
by Jie Yang, Mengran Liu, Yue Jiao, Hui-Shan Guo, Chun-Min Shan and Haiting Wang
Biology 2024, 13(2), 81; https://doi.org/10.3390/biology13020081 - 28 Jan 2024
Cited by 1 | Viewed by 2494
Abstract
Accurate determination of protein localization, levels, or protein−protein interactions is pivotal for the study of their function, and in situ protein labeling via homologous recombination has emerged as a critical tool in many organisms. While this approach has been refined in various model [...] Read more.
Accurate determination of protein localization, levels, or protein−protein interactions is pivotal for the study of their function, and in situ protein labeling via homologous recombination has emerged as a critical tool in many organisms. While this approach has been refined in various model fungi, the study of protein function in most plant pathogens has predominantly relied on ex situ or overexpression manipulations. To dissect the molecular mechanisms of development and infection for Verticillium dahliae, a formidable plant pathogen responsible for vascular wilt diseases, we have established a robust, homologous recombination-based in situ protein labeling strategy in this organism. Utilizing Agrobacterium tumefaciens-mediated transformation (ATMT), this methodology facilitates the precise tagging of specific proteins at their C-termini with epitopes, such as GFP and Flag, within the native context of V. dahliae. We demonstrate the efficacy of our approach through the in situ labeling of VdCf2 and VdDMM2, followed by subsequent confirmation via subcellular localization and protein-level analyses. Our findings confirm the applicability of homologous recombination for in situ protein labeling in V. dahliae and suggest its potential utility across a broad spectrum of filamentous fungi. This labeling method stands to significantly advance the field of functional genomics in plant pathogenic fungi, offering a versatile and powerful tool for the elucidation of protein function. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 5750 KiB  
Article
The Metacaspase Gene PoMCA1 Enhances the Mycelial Heat Stress Tolerance and Regulates the Fruiting Body Development of Pleurotus ostreatus
by Jingqi Pei, Mengran Zhao, Lijiao Zhang and Xiangli Wu
Horticulturae 2024, 10(2), 116; https://doi.org/10.3390/horticulturae10020116 - 24 Jan 2024
Cited by 6 | Viewed by 2012
Abstract
Pleurotus ostreatus is one of the most cultivated edible mushrooms worldwide, of which the fruiting body development is a highly complex process involving the precise genetic regulatory network and suitable environmental factors. Metacaspases play important roles in developmental processes and programmed cell death [...] Read more.
Pleurotus ostreatus is one of the most cultivated edible mushrooms worldwide, of which the fruiting body development is a highly complex process involving the precise genetic regulatory network and suitable environmental factors. Metacaspases play important roles in developmental processes and programmed cell death (PCD) induced by some environmental stress in many organisms. In this study, a type I metacaspase, PoMCA1, was identified via the analysis of the enzyme domain and alignment with homologous metacaspases. PoMCA1 overexpression and RNAi mutants were generated via Agrobacterium tumefaciens-mediated transformation (ATMT) into the P. ostreatus mycelium. The roles of the PoMCA1 gene in heat stress and fruiting body development were examined. The results show that both of the overexpression transformants were more tolerant to heat stress than the wild-type strain, while the opposite phenomenons were found for the two RNAi strains. Compared with the wild-type strain, the overexpression strain OE-7 had faster formation of the fruiting body, while the two RNAi strains produced significantly more primordia and young fruiting bodies, and presented morphological deformities and slower fruiting body development. All of the results suggest that the PoMCA1 gene is involved in the positive regulation of heat stress tolerance and fruiting body development in P. ostreatus. Full article
Show Figures

Figure 1

12 pages, 1465 KiB  
Article
Agrobacterium tumefaciens-Mediated Transformation of the Aquatic Fungus Phialemonium inflatum FBCC-F1546
by Jonghan Yoon, Youngjun Kim, Seoyeon Kim, Haejun Jeong, Jiyoon Park, Min-Hye Jeong, Sangkyu Park, Miju Jo, Sunmin An, Jiwon Park, Seol-Hwa Jang, Jaeduk Goh and Sook-Young Park
J. Fungi 2023, 9(12), 1158; https://doi.org/10.3390/jof9121158 - 1 Dec 2023
Cited by 2 | Viewed by 2462
Abstract
Phialemonium inflatum is a useful fungus known for its ability to mineralise lignin during primary metabolism and decompose polycyclic aromatic hydrocarbons (PAHs). However, no functional genetic analysis techniques have been developed yet for this fungus, specifically in terms of transformation. In this study, [...] Read more.
Phialemonium inflatum is a useful fungus known for its ability to mineralise lignin during primary metabolism and decompose polycyclic aromatic hydrocarbons (PAHs). However, no functional genetic analysis techniques have been developed yet for this fungus, specifically in terms of transformation. In this study, we applied an Agrobacterium tumefaciens-mediated transformation (ATMT) system to P. inflatum for a functional gene analysis. We generated 3689 transformants using the binary vector pSK1044, which carried either the hygromycin B phosphotransferase (hph) gene or the enhanced green fluorescent protein (eGFP) gene to label the transformants. A Southern blot analysis showed that the probability of a single copy of T-DNA insertion was approximately 50% when the co-cultivation of fungal spores and Agrobacterium tumefaciens cells was performed at 24–36 h, whereas at 48 h, it was approximately 35.5%. Therefore, when performing gene knockout using the ATMT system, the co-cultivation time was reduced to ≤36 h. The resulting transformants were mitotically stable, and a PCR analysis confirmed the genes’ integration into the transformant genome. Additionally, hph and eGFP gene expressions were confirmed via PCR amplification and fluorescence microscopy. This optimised transformation system will enable functional gene analyses to study genes of interest in P. inflatum. Full article
Show Figures

Figure 1

14 pages, 5572 KiB  
Article
Fluorescent Labeling of Peroxisome and Nuclear in Colletotrichum aenigma
by Shendan Yu, Jing Wang, Rongyao Chai, Haiping Qiu, Ziqi Lu, Zhen Zhang, Lin Li, Jiaoyu Wang and Guochang Sun
J. Fungi 2023, 9(4), 493; https://doi.org/10.3390/jof9040493 - 21 Apr 2023
Cited by 1 | Viewed by 2088
Abstract
Anthracnose is one of the most widespread and destructive diseases in grapes. Grape anthracnose can be caused by various Colletotrichum species, such as Colletotrichum gloeosporioides and Colletotrichum cuspidosporium. In recent years, Colletotrichum aenigma was reported as a causal agent of Grape anthracnose [...] Read more.
Anthracnose is one of the most widespread and destructive diseases in grapes. Grape anthracnose can be caused by various Colletotrichum species, such as Colletotrichum gloeosporioides and Colletotrichum cuspidosporium. In recent years, Colletotrichum aenigma was reported as a causal agent of Grape anthracnose in China and South Korea. Peroxisome is an important organelle in eukaryotes, which plays a very important role in the growth, development, and pathogenicity of several plant-pathogenic fungal species i, but it has not been reported in C. aenigma. In this work, the peroxisome of C. aenigma was labeled with a fluorescent protein, using green fluorescent protein (GFP) and red fluorescent protein (DsRED and mCherry) as reporter genes. Via Agrobacterium tumefaciens-mediated transformation (AtMT), two fluorescent fusion vectors to mark the peroxisomes, with GFP and DsRED, respectively, were introduced into a wild-type strain of C. aenigma. In the transformants, bright dots of green or red fluorescence in hyphae and spores could be seen in the strains labeled peroxisome. The nuclei labeled by the same method showed bright round fluorescent spots. In addition, we also combined fluorescent protein labeling with chemical staining to show the localization more clearly. The ideal peroxisome and nuclear fluorescence-labeled C. aenigma strain was obtained, which provided a reference for the study of its growth, development, and pathogenicity. Full article
(This article belongs to the Special Issue Monitoring, Detection and Surveillance of Fungal Plant Pathogens)
Show Figures

Figure 1

16 pages, 1965 KiB  
Article
Paracoccidioides lutzii Formamidase Contributes to Fungal Survival in Macrophages
by Lana O’Hara Souza Silva, Thalison Rodrigues Moreira, Relber Aguiar Gonçales, Mariana Vieira Tomazett, Juliana Alves Parente-Rocha, Karine Mattos, Juliano Domiraci Paccez, Orville Hernandez Ruiz, Maristela Pereira, Célia Maria de Almeida Soares, Simone Schneider Weber, Vanessa Rafaela Milhomem Cruz-Leite and Clayton Luiz Borges
Microorganisms 2022, 10(10), 2011; https://doi.org/10.3390/microorganisms10102011 - 12 Oct 2022
Cited by 3 | Viewed by 2433
Abstract
Nitrogen is a crucial nutrient for microorganisms that compose essential biomolecules. However, hosts limit this nutrient as a strategy to counter infections, therefore, pathogens use adaptive mechanisms to uptake nitrogen from alternative sources. In fungi, nitrogen catabolite repression (NCR) activates transcription factors to [...] Read more.
Nitrogen is a crucial nutrient for microorganisms that compose essential biomolecules. However, hosts limit this nutrient as a strategy to counter infections, therefore, pathogens use adaptive mechanisms to uptake nitrogen from alternative sources. In fungi, nitrogen catabolite repression (NCR) activates transcription factors to acquire nitrogen from alternative sources when preferential sources are absent. Formamidase has been related to nitrogen depletion in Aspergillus nidulans through formamide degradation to use the released ammonia as a nitrogen source. In Paracoccidioides spp., formamidase is highly expressed in transcriptomic and proteomic analyses. Here, we aim to investigate the importance of formamidase to Paracoccidioides lutzii. Thereby, we developed a P. lutzii silenced strain of fmd gene (AsFmd) by antisense RNA technology using Agrobacterium tumefaciens-mediated transformation (ATMT). The AsFmd strain led to increased urease expression, an enzyme related to nitrogen assimilation in other fungi, suggesting that P. lutzii might explore urease as an alternative route for ammonia metabolism as a nitrogen source. Moreover, formamidase was important for fungal survival inside macrophages, as fungal recovery after macrophage infection was lower in AsFmd compared to wild-type (WT) strain. Our findings suggest potential alternatives of nitrogen acquisition regulation in P. lutzii, evidencing formamidase influence in fungal virulence. Full article
(This article belongs to the Special Issue Paracoccidioidomycosis)
Show Figures

Figure 1

16 pages, 4373 KiB  
Article
FFGA1 Protein Is Essential for Regulating Vegetative Growth, Cell Wall Integrity, and Protection against Stress in Flammunina filiformis
by Muyun Du, Yongbo Xie, Meng Wang, Huan Yang, Banghui Hu, Irum Mukhtar, Yuanyuan Liu, Yongxin Tao, Fang Liu and Baogui Xie
J. Fungi 2022, 8(4), 401; https://doi.org/10.3390/jof8040401 - 14 Apr 2022
Cited by 11 | Viewed by 3179
Abstract
Flammulina filiformis is a popular mushroom which has been regarded as a potential model fungus for mycelium growth, fruiting body development, and stress response studies. Based on a genome-wide search, four genes encoding heterotrimeric G protein α subunits were identified in F. filiformis [...] Read more.
Flammulina filiformis is a popular mushroom which has been regarded as a potential model fungus for mycelium growth, fruiting body development, and stress response studies. Based on a genome-wide search, four genes encoding heterotrimeric G protein α subunits were identified in F. filiformis. The data of conserved domain analysis showed that these genes contain only one subgroup I of Gα subunit (Gαi), similar to many other fungi. To explore the function of Gαi, FfGa1 over-expression (OE) and RNA interference (RNAi) strains were generated using the Agrobacterium tumefaciens-mediated transformation (ATMT) approach. RNAi transformant strains showed remarkably reduced growth on PDA medium and added sensitivity to cell wall-enforcing agents with maximum growth inhibition, but showed better growth in response to hypertonic stress-causing agents, while OE strains exhibited more resistance to thermal stress and mycoparasite Trichoderma as compared to the wild-type and RNAi strains. Taken together, our results indicated that FfGa1 positively regulates hyphal extension, and is crucial for the maintenance of cell wall integrity and protection against biotic and abiotic (hypertonic and thermal) stress. Full article
(This article belongs to the Special Issue Genetics and Breeding of Basidiomycetes for Biotechnology)
Show Figures

Figure 1

15 pages, 2852 KiB  
Protocol
Agrobacterium tumefaciens-Mediated Transformation of NHEJ Mutant Aspergillus nidulans Conidia: An Efficient Tool for Targeted Gene Recombination Using Selectable Nutritional Markers
by Virginia Casado-del Castillo, Andrew P. MacCabe and Margarita Orejas
J. Fungi 2021, 7(11), 961; https://doi.org/10.3390/jof7110961 - 12 Nov 2021
Cited by 5 | Viewed by 3580
Abstract
Protoplast transformation for the introduction of recombinant DNA into Aspergillus nidulans is technically demanding and dependant on the availability and batch variability of commercial enzyme preparations. Given the success of Agrobacterium tumefaciens-mediated transformation (ATMT) in diverse pathogenic fungi, we have adapted this [...] Read more.
Protoplast transformation for the introduction of recombinant DNA into Aspergillus nidulans is technically demanding and dependant on the availability and batch variability of commercial enzyme preparations. Given the success of Agrobacterium tumefaciens-mediated transformation (ATMT) in diverse pathogenic fungi, we have adapted this method to facilitate transformation of A. nidulans. Using suitably engineered binary vectors, gene-targeted ATMT of A. nidulans non-homologous end-joining (NHEJ) mutant conidia has been carried out for the first time by complementation of a nutritional requirement (uridine/uracil auxotrophy). Site-specific integration in the ΔnkuA host genome occurred at high efficiency. Unlike other transformation techniques, however, cross-feeding of certain nutritional requirements from the bacterium to the fungus was found to occur, thus limiting the choice of auxotrophies available for ATMT. In complementation tests and also for comparative purposes, integration of recombinant cassettes at a specific locus could provide a means to reduce the influence of position effects (chromatin structure) on transgene expression. In this regard, targeted disruption of the wA locus permitted visual identification of transformants carrying site-specific integration events by conidial colour (white), even when auxotrophy selection was compromised due to cross-feeding. The protocol described offers an attractive alternative to the protoplast procedure for obtaining locus-targeted A. nidulans transformants. Full article
(This article belongs to the Special Issue Genetic Manipulation of Fungal Model Organisms)
Show Figures

Figure 1

11 pages, 1411 KiB  
Article
An Optimized and Efficient CRISPR/Cas9 System for the Endophytic Fungus Pestalotiopsis fici
by Xinran Xu, Runye Huang and Wen-Bing Yin
J. Fungi 2021, 7(10), 809; https://doi.org/10.3390/jof7100809 - 28 Sep 2021
Cited by 22 | Viewed by 3941
Abstract
Endophytic fungi are emerging as attractive producers of natural products with diverse bioactivities and novel structures. However, difficulties in the genetic manipulation of endophytic fungi limit the search of novel secondary metabolites. In this study, we improved the polyethylene glycol (PEG)-mediated protoplast transformation [...] Read more.
Endophytic fungi are emerging as attractive producers of natural products with diverse bioactivities and novel structures. However, difficulties in the genetic manipulation of endophytic fungi limit the search of novel secondary metabolites. In this study, we improved the polyethylene glycol (PEG)-mediated protoplast transformation method by introducing the CRISPR/Cas9 system into endophytic fungus Pestalotiopsis fici. Using this approach, we performed genome editing such as site-specific gene insertion, dual-locus mutations, and long DNA fragment deletions in P. fici efficiently. The average efficiency for site-specific gene insertion and two-site gene editing was up to 48.0% and 44.4%, respectively. In addition, the genetic manipulation time with long DNA fragment (5–10 kb) deletion was greatly shortened to one week in comparison with traditional methods such as Agrobacterium tumefaciens-mediated transformation (ATMT). Taken together, the development of the CRISPR/Cas9 system in the endophytic fungus will accelerate the discovery of novel natural products and further biological study. Full article
Show Figures

Figure 1

19 pages, 15320 KiB  
Article
Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga—Euglena gracilis
by Ina Becker, Binod Prasad, Maria Ntefidou, Viktor Daiker, Peter Richter and Michael Lebert
Int. J. Mol. Sci. 2021, 22(12), 6299; https://doi.org/10.3390/ijms22126299 - 11 Jun 2021
Cited by 16 | Viewed by 5608
Abstract
Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium [...] Read more.
Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding β-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A–gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies. Full article
(This article belongs to the Special Issue Microgravity and Space Medicine 2.0)
Show Figures

Figure 1

12 pages, 2195 KiB  
Article
Establishment of Agrobacterium tumefaciens-Mediated Transformation of Cladonia macilenta, a Model Lichen-Forming Fungus
by Rundong Liu, Wonyong Kim, Jaycee Augusto Paguirigan, Min-Hye Jeong and Jae-Seoun Hur
J. Fungi 2021, 7(4), 252; https://doi.org/10.3390/jof7040252 - 26 Mar 2021
Cited by 9 | Viewed by 3495
Abstract
Despite the fascinating biology of lichens, such as the symbiotic association of lichen-forming fungi (mycobiont) with their photosynthetic partners and their ability to grow in harsh habitats, lack of genetic tools manipulating mycobiont has hindered studies on genetic mechanisms underpinning lichen biology. Thus, [...] Read more.
Despite the fascinating biology of lichens, such as the symbiotic association of lichen-forming fungi (mycobiont) with their photosynthetic partners and their ability to grow in harsh habitats, lack of genetic tools manipulating mycobiont has hindered studies on genetic mechanisms underpinning lichen biology. Thus, we established an Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic transformation of a mycobiont isolated from Cladonia macilenta. A set of combinations of ATMT conditions, such as input biomass of mycobiont, co-cultivation period with Agrobacterium cells, and incubation temperature, were tested to identify an optimized ATMT condition for the C. macilenta mycobiont. As a result, more than 10 days of co-cultivation period and at least 2 mg of input biomass of the mycobiont were recommended for an efficient ATMT, owing to extremely slow growth rate of mycobionts in general. Moreover, we examined T-DNA copy number variation in a total of 180 transformants and found that 88% of the transformants had a single copy T-DNA insertion. To identify precise T-DNA insertion sites that interrupt gene function in C. macilenta, we performed TAIL-PCR analyses for selected transformants. A hypothetical gene encoding ankyrin repeats at its C-terminus was interrupted by T-DNA insertion in a transformant producing dark-brown colored pigment. Although the identification of the pigment awaits further investigation, this proof-of-concept study demonstrated the feasibility of use of ATMT in construction of a random T-DNA insertion mutant library in mycobionts for studying genetic mechanisms behind the lichen symbiosis, stress tolerance, and secondary metabolite biosynthesis. Full article
(This article belongs to the Special Issue Application of Lichen-Forming Fungi for Industrial Use)
Show Figures

Figure 1

16 pages, 2385 KiB  
Article
Targeted Disruption of Scytalone Dehydratase Gene Using Agrobacterium tumefaciens-Mediated Transformation Leads to Altered Melanin Production in Ascochyta lentis
by Johannes W. Debler and Bernadette M. Henares
J. Fungi 2020, 6(4), 314; https://doi.org/10.3390/jof6040314 - 26 Nov 2020
Cited by 5 | Viewed by 3552
Abstract
Sustainable crop production is constantly challenged by the rapid evolution of fungal pathogens equipped with an array of host infection strategies and survival mechanisms. One of the devastating fungal pathogens that infect lentil is the ascomycete Ascochyta lentis which causes black spot or [...] Read more.
Sustainable crop production is constantly challenged by the rapid evolution of fungal pathogens equipped with an array of host infection strategies and survival mechanisms. One of the devastating fungal pathogens that infect lentil is the ascomycete Ascochyta lentis which causes black spot or ascochyta blight (AB) on all above ground parts of the plant. In order to explore the mechanisms involved in the pathogenicity of A. lentis, we developed a targeted gene replacement method using Agrobacterium tumefaciens mediated transformation (ATMT) to study and characterize gene function. In this study, we investigated the role of scytalone dehydratase (SCD) in the synthesis of 1,8-dihydroxynaphthalene (DHN)-melanin in AlKewell. Two SCD genes have been identified in AlKewell, AlSCD1 and AlSCD2. Phylogenetic analysis revealed that AlSCD1 clustered with the previously characterized fungal SCDs; thus, AlSCD1 was disrupted using the targeted gene replacement vector, pTAR-hyg-SCD1. The vector was constructed in a single step process using Gibson Assembly, which facilitated an easy and seamless assembly of multiple inserts. The resulting AlKewell scd1::hyg transformants appeared light brown/brownish-pink in contrast to the dark brown pycnidia of the WT strain and ectopic transformant, indicating an altered DHN-melanin production. Disruption of AlSCD1 gene did not result in a change in the virulence profile of AlKewell towards susceptible and resistant lentil varieties. This is the first report of a targeted gene manipulation in A. lentis which serves as a foundation for the functional gene characterization to provide a better understanding of molecular mechanisms involved in pathogen diversity and host specificity. Full article
Show Figures

Figure 1

Back to TopTop