Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (152)

Search Parameters:
Keywords = Ag-TiO2NPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2302 KiB  
Article
Investigation of TiO2 Nanoparticles Added to Extended Filamentous Aerobic Granular Sludge System: Performance and Mechanism
by Jun Liu, Songbo Li, Shunchang Yin, Zhongquan Chang, Xiao Ma and Baoshan Xing
Water 2025, 17(14), 2052; https://doi.org/10.3390/w17142052 - 9 Jul 2025
Viewed by 289
Abstract
The widely utilized TiO2 nanoparticles (NPs) tend to accumulate in wastewater and affect microbial growth. This work investigated the impacts of prolonged TiO2 NP addition to filamentous aerobic granular sludge (AGS) using two identical sequencing batch reactors (SBRs, R1 and R2). [...] Read more.
The widely utilized TiO2 nanoparticles (NPs) tend to accumulate in wastewater and affect microbial growth. This work investigated the impacts of prolonged TiO2 NP addition to filamentous aerobic granular sludge (AGS) using two identical sequencing batch reactors (SBRs, R1 and R2). R1 (the control) had no TiO2 NP addition. In this reactor, filamentous bacteria from large AGS grew rapidly and extended outward, the sludge volume index (SVI30) quickly increased from 41.2 to 236.8 mL/g, mixed liquid suspended solids (MLSS) decreased from 4.72 to 0.9 g/L, and AGS disintegrated on day 40. Meanwhile, the removal rates of COD and NH4+-N both exhibited significant declines. In contrast, 5–30 mg/L TiO2 NPs was added to R2 from day 21 to 100, and the extended filamentous bacteria were effectively controlled on day 90 under a 30 mg/L NP dosage, leading to significant reductions in COD and NH4+-N capabilities, particularly the latter. Therefore, NP addition was stopped on day 101, and AGS became dominant in R2, with an SVI30 and MLSS of 48.5 mL/g and 5.67 g/L on day 130. COD and NH4+-N capabilities both increased to 100%. Microbial analysis suggested that the dominant filamentous bacteria—Proteobacteria, Bacteroidetes, and Acidobacteria—were effectively controlled by adding 30 mg/L TiO2 NPs. XRF analysis indicated that 11.7% TiO2 NP accumulation made the filamentous bacteria a framework for AGS recovery and operation without NPs. Functional analysis revealed that TiO2 NPs had stronger inhibitory effects on nitrogen metabolism compared to carbon metabolism, and both metabolic pathways recovered when NP addition was discontinued in a timely manner. These findings offer critical operational guidance for maintaining the stable performance of filamentous AGS systems treating TiO2 NP wastewater in the future. Full article
Show Figures

Figure 1

15 pages, 1853 KiB  
Article
Degradation of Micropollutants in Wastewater Using Photocatalytic TiO2@Ag-NPs Coatings Under Visible Irradiation
by Cristian Yoel Quintero-Castañeda, Claire Tendero, Thibaut Triquet, Arturo I. Villegas-Andrade, María Margarita Sierra-Carrillo and Caroline Andriantsiferana
Water 2025, 17(11), 1632; https://doi.org/10.3390/w17111632 - 27 May 2025
Viewed by 588
Abstract
The contamination of aquatic ecosystems by the micropollutants in wastewater discharges is currently a critical issue. Therefore, the development of novel treatment processes and materials is essential to ensure the availability of safe water. The present study aims to develop a photocatalytic material [...] Read more.
The contamination of aquatic ecosystems by the micropollutants in wastewater discharges is currently a critical issue. Therefore, the development of novel treatment processes and materials is essential to ensure the availability of safe water. The present study aims to develop a photocatalytic material composed of silver nanoparticles (Ag-NPs)-doped TiO2 supported on a Pyrex® plate (TiO2@Ag-NPs) exhibiting catalytic activity under visible irradiation (λ > 400 nm). The effects of Ag-NPs doping on the TiO2 matrix, the resistance of the coating at the catalyst/substrate interface, and the photocatalytic degradation efficiency of the photocatalyst for a micropollutant (diuron) of the pesticide family were studied. The photocatalyst was characterised using X-ray diffraction, scanning electron microscopy, ultraviolet–visible spectrophotometry, and scratch tests. The solution concentrations were monitored using high-performance liquid chromatography and total organic carbon analyses. A 32% diuron removal was achieved using photocatalytic TiO2@Ag-NPs under visible irradiation, whereas undoped TiO2 showed no activity. Furthermore, the effects of the nanoparticle growth mode on the photocatalytic activity of TiO2@Ag-NPs were explored. The presence of a TiO2 sublayer ensured the adhesion of the coating and promoted the dispersion of nanoparticles within the matrix. It ensured chemical continuity (TiO2@Ag-NPs/Pyrex®), reduced the bandgap, and decreased electron–hole pair recombination. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis in Water and Wastewater Treatment)
Show Figures

Figure 1

17 pages, 8542 KiB  
Article
Plasmonic Rutile TiO2/Ag Nanocomposites Tailored via Nonthermal-Plasma-Assisted Synthesis: Enhanced Spectroscopic and Optical Properties with Tuned Electrical Behavior
by Essam M. Abdel-Fattah and Ali A. Azab
J. Compos. Sci. 2025, 9(4), 156; https://doi.org/10.3390/jcs9040156 - 25 Mar 2025
Viewed by 525
Abstract
In this study, silver nanoparticles (Ag NPs) were synthesized on the surface of rutile-phase titanium dioxide (R-TiO2) using a plasma-assisted technique. Comprehensive analyses were conducted to investigate the structural, morphological, optical, and electrical properties of the synthesized nanocomposites. Transmission electron microscopy [...] Read more.
In this study, silver nanoparticles (Ag NPs) were synthesized on the surface of rutile-phase titanium dioxide (R-TiO2) using a plasma-assisted technique. Comprehensive analyses were conducted to investigate the structural, morphological, optical, and electrical properties of the synthesized nanocomposites. Transmission electron microscopy (TEM) images revealed the uniform decoration of Ag NPs (average size: 29.8 nm) on the R-TiO2 surface. X-ray diffraction (XRD) confirmed the polycrystalline nature of the samples, with decreased diffraction peak intensity indicating reduced crystallinity due to Ag decoration. The Williamson–Hall analysis showed increased crystallite size and reduced tensile strain, suggesting grain growth and stress relief. Raman spectroscopy revealed quenching and broadening of R-TiO2 vibrational modes, likely due to increased oxygen vacancies. X-ray photoelectron spectroscopy (XPS) confirmed successful plasma-assisted deposition and the coexistence of Ag0 and Ag+ states, enhancing surface reactivity. UV-Vis spectroscopy demonstrated enhanced light absorption across the spectral range, attributed to localized surface plasmon resonance (LSPR), and a reduced optical bandgap. Dielectric properties, including dielectric constants, loss factor, and AC conductivity, were evaluated across frequencies (4–8 MHz) and temperatures (20–240 °C). The AC conductivity results indicated correlated barrier hopping (CBH) and overlapping large polaron tunneling (OLPT) as the primary conduction mechanisms. Composition-dependent dielectric behavior was interpreted through the Coulomb blockade effect. These findings suggest the potential of plasma assisted Ag NP-decorated R-TiO2 nanostructures for photocatalysis, sensor and specific electro electrochemical systems applications. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

18 pages, 3305 KiB  
Article
Controllable Synthesis of Ultrafine Ag NPs/Functionalized Graphene-Introduced TiO2 Mesoporous Hollow Nanofibers by Coaxial Electrospinning for Photocatalytic Oxidation of CO
by Tianwei Dou, Yangyang Zhu, Zhanyu Chu, Zhijun Li, Lei Sun and Liqiang Jing
Catalysts 2025, 15(3), 231; https://doi.org/10.3390/catal15030231 - 27 Feb 2025
Cited by 1 | Viewed by 685
Abstract
Solar-driven catalytic oxidation processes for the removal of toxic gaseous pollutants have attracted considerable scientific attention, and there is a strong desire to improve the mass transfer, photogenerated charge separation, and O2 activation by regulating the structure of the photocatalyst. Initially, functionalized [...] Read more.
Solar-driven catalytic oxidation processes for the removal of toxic gaseous pollutants have attracted considerable scientific attention, and there is a strong desire to improve the mass transfer, photogenerated charge separation, and O2 activation by regulating the structure of the photocatalyst. Initially, functionalized graphene–TiO2 mesoporous hollow nanofibers have been controllably fabricated by a coaxial electrospinning technique, in which functionalized graphene is controllably prepared through a sequential diazonium functionalization and silane modification and ensures its uniform distribution among TiO2 nanoparticles (NPs). Subsequently, the ultrafine Ag NPs are primarily anchored onto the surface of graphene by an in situ frozen photodeposition strategy, producing Ag/functionalized graphene–TiO2 mesoporous hollow nanofibers (Ag/SiG-TO MPHNFs). The optimal Ag/SiG-TO MPHNFs exhibit 3.9-fold and 4.6-fold enhancements in CO photooxidation compared with TO MPHNFs and P25 TiO2, respectively. The enhanced photoactivity can be attributed to three factors: the creation of the mesoporous hollow structure accelerates mass transfer, the incorporation of graphene facilitates the transfer of photogenerated electrons from TiO2 to graphene, and the anchoring of Ag NPs improves O2 activation. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts: Design, Optimization and Application)
Show Figures

Graphical abstract

17 pages, 38259 KiB  
Article
Bi4Ti3O12-V/Ag Composite with Oxygen Vacancies and Schottky Barrier with Photothermal Effect for Boosting Nizatidine Degradation
by Sheng Liu, Chen Hu, Ying Gong, Yujuan Guo, Zhenping Cheng, Mengyi Yuan, Zixiang Liao, Xuewen Xiao, Zushun Xu, Jun Du, Ping Shen and Qing Li
Catalysts 2025, 15(2), 117; https://doi.org/10.3390/catal15020117 - 24 Jan 2025
Viewed by 889
Abstract
Piezo-photocatalysis is a promising solution to address both water pollution and the energy crisis. However, the recombination of electron–hole pairs often leads to poor performance, rendering current piezoelectric photocatalysts unsuitable for industrial water treatment. To overcome this issue, oxygen vacancies (V) and Ag [...] Read more.
Piezo-photocatalysis is a promising solution to address both water pollution and the energy crisis. However, the recombination of electron–hole pairs often leads to poor performance, rendering current piezoelectric photocatalysts unsuitable for industrial water treatment. To overcome this issue, oxygen vacancies (V) and Ag nanoparticles (NPs) are introduced into Bi4Ti3O12 (BTO) nanosheets, forming Schottky junctions (BTO-V/Ag). These 2D/3D structures offer more exposed active sites, shorter carrier separation distances, and improved piezo-photocatalytic performance. Additionally, the photothermal effect of Ag NPs supplies additional energy to counteract adsorption changes caused by active species, promoting the generation of more active species. The rate constant of the optimized BTO-V/Ag-2 in the piezo-photocatalytic degradation of nizatidine (NZTD) was 4.62 × 10−2 min−1 (with a removal rate of 98.34%), which was 4.32 times that of the initial BTO. Moreover, the composite catalyst also showed good temperature and pH response. This study offers new insights into the regulatory mechanisms of piezo-photocatalysis at the Schottky junction. Full article
Show Figures

Figure 1

17 pages, 4031 KiB  
Article
The Effect of the Metal Oxide as the Support for Silver Nanoparticles on the Catalytic Activity for Ammonia Ozonation
by Razvan-Nicolae State, Maria-Alexandra Morosan, Liubovi Cretu, Alexandru-Ioan Straca, Anca Vasile, Veronica Bratan, Daniela Culita, Irina Atkinson, Ioan Balint and Florica Papa
Catalysts 2025, 15(2), 104; https://doi.org/10.3390/catal15020104 - 22 Jan 2025
Cited by 1 | Viewed by 1402
Abstract
Ammonia is one of the common inorganic pollutants in surface waters. It can come from a wide range of sources through the discharge of wastewater (industry, agriculture, and municipal waters). Catalytic ozonation reaction can efficiently remove ammonia nitrogen without introducing other pollutants and [...] Read more.
Ammonia is one of the common inorganic pollutants in surface waters. It can come from a wide range of sources through the discharge of wastewater (industry, agriculture, and municipal waters). Catalytic ozonation reaction can efficiently remove ammonia nitrogen without introducing other pollutants and improve the nitrogen selectivity of reaction products by controlling the reaction conditions. Catalysts based on silver nanoparticles (Ag NPs) have shown excellent O3 decomposition performance; therefore, they are promising catalysts for catalytic ammonia ozonation due to their high reactivity, stability, and selectivity to N2. In this study, we synthesized well-defined silver nanoparticles (Ag NPs) using a modified alkaline polyol method and then dispersed them on solid oxide supports (Fe3O4, TiO2, and WO3). Before being deposited on the oxide support, the silver nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-VIS spectroscopy. The obtained catalysts, Ag_Fe3O4, Ag_TiO2, and Ag_WO3 were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area analysis, UV-VIS spectroscopy, temperature-programmed reduction (H2-TPR), and temperature-programmed desorption (TPD) of CO2 and NH3. It has been demonstrated that the nature of the support significantly influences the physicochemical properties of the catalysts, as well as their catalytic performance in ammonia ozonation reaction. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

24 pages, 3624 KiB  
Review
Recent Advances in the Adsorption of Different Pollutants from Wastewater Using Carbon-Based and Metal-Oxide Nanoparticles
by Shahabaldin Rezania, Negisa Darajeh, Parveen Fatemeh Rupani, Amin Mojiri, Hesam Kamyab and Mohsen Taghavijeloudar
Appl. Sci. 2024, 14(24), 11492; https://doi.org/10.3390/app142411492 - 10 Dec 2024
Cited by 11 | Viewed by 3556
Abstract
In recent years, nanomaterials have gained special attention for removing contaminants from wastewater. Nanoparticles (NPs), such as carbon-based materials and metal oxides, exhibit exceptional adsorption capacity and antimicrobial properties for wastewater treatment. Their unique properties, including reactivity, high surface area, and tunable surface [...] Read more.
In recent years, nanomaterials have gained special attention for removing contaminants from wastewater. Nanoparticles (NPs), such as carbon-based materials and metal oxides, exhibit exceptional adsorption capacity and antimicrobial properties for wastewater treatment. Their unique properties, including reactivity, high surface area, and tunable surface functionalities, make them highly effective adsorbents. They can remove contaminants such as organics, inorganics, pharmaceuticals, medicine, and dyes by adsorption mechanisms. In this review, the effectiveness of different types of carbon-based NPs, including carbon nanotubes (CNTs), graphene-based nanoparticles (GNPs), carbon quantum dots (CQDs), carbon nanofibers (CNFs), and carbon nanospheres (CNSs), and metal oxides, including copper oxide (CuO), zinc oxide (ZnO), iron oxide (Fe2O3), titanium oxide (TiO2), and silver oxide (Ag2O), in the removal of different contaminants from wastewater has been comprehensively evaluated. In addition, their synthesis methods, such as physical, chemical, and biological, have been described. Based on the findings, CNPs can remove 75 to 90% of pollutants within two hours, while MONPs can remove 60% to 99% of dye in 150 min, except iron oxide NPs. For future studies, the integration of NPs into existing treatment systems and the development of novel nanomaterials are recommended. Hence, the potential of NPs is promising, but challenges related to their environmental impact and their toxicity must be considered. Full article
(This article belongs to the Special Issue Water Treatment: From Membrane Processes to Renewable Energies)
Show Figures

Figure 1

11 pages, 2963 KiB  
Article
Microstructural and Surface Texture Evaluation of Orthodontic Microimplants Covered with Bioactive Layers Enriched with Silver Nanoparticles
by Magdalena Sycińska-Dziarnowska, Magdalena Ziąbka, Katarzyna Cholewa-Kowalska, Gianrico Spagnuolo, Hyo-Sang Park, Steven J. Lindauer and Krzysztof Woźniak
J. Funct. Biomater. 2024, 15(12), 371; https://doi.org/10.3390/jfb15120371 - 9 Dec 2024
Cited by 4 | Viewed by 1189
Abstract
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve [...] Read more.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated. The present study aimed to assess the microstructure of commercially available microimplants composed of a medical TiAlV (Ti6Al4V) alloy covered with organic–inorganic layers obtained by the sol–gel method using the dip-coating technique. The microstructures and elemental surface compositions of the sterile, etched, and layer-modified microimplants were characterized by scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM-EDS). Elements such as silver (Ag), calcium (Ca), phosphorus (P), silicon (Si), oxygen (O), and carbon (C) were detected on the microimplant’s surface layer. The SEM observations revealed that control microimplants (unetched) had smooth surfaces with only manufacturing-related embossing, while etching in hydrofluoric acid increased the surface roughness and introduced fluoride onto the microimplants. Layers with only silver nanoparticles reduced the roughness of the implant surface, and no extrusion was observed, while increased roughness and emerging porosity were observed when the layers were enriched with calcium and phosphorus. The highest roughness was observed in the microimplants etched with AgNPs and CaP, while the AgNPs-only layer showed a reduction in the roughness average parameter due to lower porosity. Enhancing the effectiveness of microimplants can be achieved by applying selective surface treatments to different parts. By keeping the outer tissue contact area smooth while making the bone contact area rough to promote stronger integration with bone tissue, the overall performance of the implants can be significantly improved. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials (2nd Edition))
Show Figures

Figure 1

22 pages, 7801 KiB  
Article
Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films
by Tatyana Ivanova, Antoaneta Harizanova, Tatyana Koutzarova and Raphael Closset
Molecules 2024, 29(21), 5156; https://doi.org/10.3390/molecules29215156 - 31 Oct 2024
Cited by 4 | Viewed by 1943
Abstract
Sol-gel spin coating method was employed for depositing TiO2 and Ag-doped TiO2 films. The effects of Ag doping and the annealing temperatures (300–600 °C) were studied with respect to their structural, morphological, vibrational, and optical properties. Field Emission Scanning Electron microscopy [...] Read more.
Sol-gel spin coating method was employed for depositing TiO2 and Ag-doped TiO2 films. The effects of Ag doping and the annealing temperatures (300–600 °C) were studied with respect to their structural, morphological, vibrational, and optical properties. Field Emission Scanning Electron microscopy (FESEM) investigation exhibited the grained, compact structures of TiO2-based films. Ag incorporation resulted in a rougher film surface. X-ray diffraction (XRD) results confirmed the formation of Ag nanoparticles and AgO phase, along with anatase and rutile TiO2, strongly depending on Ag concentration and technological conditions. AgO fraction diminished after high temperature annealing above 500 °C. The vibrational properties were characterized by Fourier Transform Infrared (FTIR) spectroscopy. It was found that silver presence induced changes in IR bands of TiO2 films. UV–VIS spectroscopy revealed that the embedment of Ag NPs in titania matrix resulted in higher absorbance across the visible spectral range due to local surface plasmon resonance (LSPR). Ag doping reduced the optical band gap of sol-gel TiO2 films. The optical and plasmonic modifications of TiO2:Ag thin films by the number of layers and different technological conditions (thermal and UV treatment) are discussed. Full article
(This article belongs to the Special Issue Physicochemical Research on Material Surfaces)
Show Figures

Figure 1

68 pages, 16735 KiB  
Review
Emerging Nanomaterials for Drinking Water Purification: A New Era of Water Treatment Technology
by Salma Elhenawy, Majeda Khraisheh, Fares AlMomani, Mohammad Al-Ghouti, Rengaraj Selvaraj and Ala’a Al-Muhtaseb
Nanomaterials 2024, 14(21), 1707; https://doi.org/10.3390/nano14211707 - 25 Oct 2024
Cited by 10 | Viewed by 7772
Abstract
The applications of nanotechnology in the field of water treatment are rapidly expanding and have harvested significant attention from researchers, governments, and industries across the globe. This great interest stems from the numerous benefits, properties, and capabilities that nanotechnology offers in addressing the [...] Read more.
The applications of nanotechnology in the field of water treatment are rapidly expanding and have harvested significant attention from researchers, governments, and industries across the globe. This great interest stems from the numerous benefits, properties, and capabilities that nanotechnology offers in addressing the ever-growing challenges related to water quality, availability, and sustainability. This review paper extensively studies the applications of several nanomaterials including: graphene and its derivative-based adsorbents, CNTs, TiO2 NPs, ZnO NPs, Ag NPs, Fe NPs, and membrane-based nanomaterials in the purification of drinking water. This, it is hoped, will provide the water treatment sector with efficient materials that can be applied successfully in the water purification process to help in addressing the worldwide water scarcity issue. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

12 pages, 7936 KiB  
Article
Controlled Fabrication of Wafer-Scale, Flexible Ag-TiO2 Nanoparticle–Film Hybrid Surface-Enhanced Raman Scattering Substrates for Sub-Micrometer Plastics Detection
by Fanyi Kong, Chenhua Ji, Gaolei Zhao, Lei Zhang, Zheng Hao, Hu Wang, Jianxun Dai, Huolin Huang, Lujun Pan and Dawei Li
Nanomaterials 2024, 14(19), 1597; https://doi.org/10.3390/nano14191597 - 3 Oct 2024
Viewed by 1300
Abstract
As an important trace molecular detection technique, surface-enhanced Raman scattering (SERS) has been extensively investigated, while the realization of simple, low-cost, and controllable fabrication of wafer-scale, flexible SERS-active substrates remains challenging. Here, we report a facile, low-cost strategy for fabricating wafer-scale SERS substrates [...] Read more.
As an important trace molecular detection technique, surface-enhanced Raman scattering (SERS) has been extensively investigated, while the realization of simple, low-cost, and controllable fabrication of wafer-scale, flexible SERS-active substrates remains challenging. Here, we report a facile, low-cost strategy for fabricating wafer-scale SERS substrates based on Ag-TiO2 nanoparticle–film hybrids by combining dip-coating and UV light array photo-deposition. The results show that a centimeter-scale Ag nanoparticle (AgNP) film (~20 cm × 20 cm) could be uniformly photo-deposited on both non-flexible and flexible TiO2 substrates, with a relative standard deviation in particle size of only 5.63%. The large-scale AgNP/TiO2 hybrids working as SERS substrates show high sensitivity and good uniformity at both the micron and wafer levels, as evidenced by scanning electron microscopy and Raman measurements. In situ bending and tensile experiments demonstrate that the as-prepared flexible AgNP/TiO2 SERS substrate is mechanically robust, exhibiting stable SERS activity even in a large bending state as well as after more than 200 tensile cycles. Moreover, the flexible AgNP/TiO2 SERS substrates show excellent performance in detecting sub-micrometer-sized plastics (≤1 μm) and low-concentration organic pollutants on complex surfaces. Overall, this study provides a simple path toward wafer-scale, flexible SERS substrate fabrication, which is a big step for practical applications of the SERS technique. Full article
(This article belongs to the Special Issue Nonlinear Optics in Low-Dimensional Nanomaterials)
Show Figures

Figure 1

13 pages, 1517 KiB  
Article
Characterization of Food-Additive Titanium Dioxide and Dietary Exposure to Titanium Dioxide Nanoparticles among the Chinese Population
by Yue Cao, Huali Wang, Chunlai Liang, Qing Liu, Tong Ou, Ling Yong, Xiao Xiao, Haixia Sui, Dingguo Jiang, Zhaoping Liu, Sheng Wei and Yan Song
Nanomaterials 2024, 14(17), 1427; https://doi.org/10.3390/nano14171427 - 31 Aug 2024
Viewed by 1497
Abstract
Titanium dioxide (TiO2) is a prevalent food additive, yet comprehensive data on particle size and dietary exposure are lacking in China. Transmission electron microscopy results revealed that the quantitative proportion of nanoparticles (NPs) in food-additive TiO2 was 37.7%, with a [...] Read more.
Titanium dioxide (TiO2) is a prevalent food additive, yet comprehensive data on particle size and dietary exposure are lacking in China. Transmission electron microscopy results revealed that the quantitative proportion of nanoparticles (NPs) in food-additive TiO2 was 37.7%, with a mass fraction of 9.89%. Laboratory test results showed that among the domestic products surveyed, candies excluding gum-based candies contained the highest content of TiO2. Using consumption data from the China Health and Nutrition Survey in 2018, the average dietary exposure for TiO2 and TiO2 NPs in the Chinese population were calculated at 34.84 and 3.44 μg/kg bw/day, respectively. The primary dietary sources were puffed food and powdered drinks. Exposure varied significantly across age and region, with children and Inner Mongolia residents having the highest intake. TiO2 NP exposure showed a negative correlation with age. Despite this, the dietary exposure risk of TiO2 NPs for the Chinese population remains deemed acceptable. Full article
Show Figures

Figure 1

22 pages, 12391 KiB  
Article
Laser-Assisted Preparation of TiO2/Carbon/Ag Nanocomposite for Degradation of Organic Pollutants
by Shahin Almasi Nezhad, Babak Jaleh, Elham Darabi and Davoud Dorranian
Materials 2024, 17(16), 4118; https://doi.org/10.3390/ma17164118 - 20 Aug 2024
Cited by 3 | Viewed by 1625
Abstract
The ever-increasing expansion of chemical industries produces a variety of common pollutants, including colors, which become a global and environmental problem. Using a nanocatalyst is one of the effective ways to reduce these organic contaminants. With this in mind, a straightforward and effective [...] Read more.
The ever-increasing expansion of chemical industries produces a variety of common pollutants, including colors, which become a global and environmental problem. Using a nanocatalyst is one of the effective ways to reduce these organic contaminants. With this in mind, a straightforward and effective method for the production of a novel nanocatalyst based on lignin-derived carbon, titanium dioxide nanoparticles, and Ag particles (TiO2/C/Ag) is described. The preparation of carbon and Ag particles (in sub-micro and nano size) was carried out by laser ablation in air. The nanocomposite was synthesized using a facile magnetic stirrer of TiO2, C, and Ag. According to characterization methods, a carbon nanostructure was successfully synthesized through the laser irradiation of lignin. According to scanning electron microscope images, spherical Ag particles were agglomerated over the nanocomposite. The catalytic activities of the TiO2/C/Ag nanocomposite were tested for the decolorization of methylene blue (MB) and Congo red (CR), employing NaBH4 in a water-based solution at 25 °C. After adding fresh NaBH4 to the mixture of nanocomposite and dyes, both UV absorption peaks of MB and CR completely disappeared after 10 s and 4 min, respectively. The catalytic activity of the TiO2/C/Ag nanocomposite was also examined for the reduction of 4-nitrophenol (4-NP) using a NaBH4 reducing agent, suggesting the complete reduction of 4-NP to 4-aminophenol (4-AP) after 2.30 min. This shows excellent catalytic behavior of the prepared nanocomposite in the reduction of organic pollutants. Full article
Show Figures

Figure 1

22 pages, 4842 KiB  
Article
Morphology-Dependent Photocatalytic Activity of Nanostructured Titanium Dioxide Coatings with Silver Nanoparticles
by Nasir Shakeel, Ireneusz Piwoński, Aneta Kisielewska, Maciej Krzywiecki, Damian Batory and Michał Cichomski
Int. J. Mol. Sci. 2024, 25(16), 8824; https://doi.org/10.3390/ijms25168824 - 13 Aug 2024
Viewed by 1573
Abstract
This study aims to improve the photocatalytic properties of titanium dioxide nanorods (TNRs) and other related nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) by modifying them with silver nanoparticles (AgNPs). This preparation is carried out using a two-step method: sol–gel dip-coating deposition [...] Read more.
This study aims to improve the photocatalytic properties of titanium dioxide nanorods (TNRs) and other related nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) by modifying them with silver nanoparticles (AgNPs). This preparation is carried out using a two-step method: sol–gel dip-coating deposition combined with hydrothermal crystal growth. Further modification with AgNPs was achieved through the photoreduction of Ag+ ions under UV illumination. The investigation explores the impact of different growth factors on the morphological development of TiO2 nanostructures by modulating (i) the chemical composition, the water:acid ratio, (ii) the precursor concentration involved in the hydrothermal process, and (iii) the duration of the hydrothermal reaction. Morphological characteristics, including the length, diameter, and nanorod density of the nanostructures, were analyzed using scanning electron microscope (SEM). The chemical states were determined through use of the X-ray photoelectron spectroscopy (XPS) technique, while phase composition and crystalline structure analysis was performed using the Grazing Incidence X-ray Diffraction (GIXRD) method. The results indicate that various nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) can be obtained by modifying these parameters. The photocatalytic efficiency of these nanostructures and Ag-coated nanostructures was assessed by measuring the degradation of the organic dye rhodamine B (RhB) under both ultraviolet (UV) irradiation and visible light. The results clearly show that UV light causes the RhB solution to lose its color, whereas under visible light RhB changes into rhodamine 110, indicating a successful photocatalytic transformation. The nanoball-like structures’ modification with the active metal silver (TNRs 4 Ag) exhibited high photocatalytic efficiency under both ultraviolet (UV) and visible light for different chemical composition parameters. The nanorod structure (TNRs 2 Ag) is more efficient under UV, but under visible-light photocatalyst, the TNRs 6 Ag (dense nanorods) sample is more effective. Full article
(This article belongs to the Special Issue Nanomaterials in Novel Thin Films and Coatings)
Show Figures

Figure 1

11 pages, 3054 KiB  
Article
Enhanced TiO2-Based Photocatalytic Volatile Organic Compound Decomposition Combined with Ultrasonic Atomization in the Co-Presence of Carbon Black and Heavy Metal Nanoparticles
by Zen Maeno, Mika Nishitani, Takehiro Saito, Kazuhiko Sekiguchi, Naoki Kagi and Norikazu Namiki
Molecules 2024, 29(16), 3819; https://doi.org/10.3390/molecules29163819 - 12 Aug 2024
Cited by 1 | Viewed by 1171
Abstract
Volatile organic compounds (VOCs) are representative indoor air pollutants that negatively affect the human body owing to their toxicity. One of the most promising methods for VOC removal is photocatalytic degradation using TiO2. In this study, the addition of carbon black [...] Read more.
Volatile organic compounds (VOCs) are representative indoor air pollutants that negatively affect the human body owing to their toxicity. One of the most promising methods for VOC removal is photocatalytic degradation using TiO2. In this study, the addition of carbon black (CB) and heavy metal nanoparticles (NPs) was investigated to improve the efficiency of a TiO2-based photocatalytic VOC decomposition system combined with ultrasonic atomization and ultraviolet irradiation, as described previously. The addition of CB and Ag NPs significantly improved the degradation efficiency. A comparison with other heavy metal nanoparticles and their respective roles are discussed. Full article
Show Figures

Graphical abstract

Back to TopTop