Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Abitibi greenstone belt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 20569 KiB  
Article
An Archean Porphyry-Type Deposit: Cu-Au Mineralization Associated with the Chibougamau Tonalite–Diorite Pluton, Abitibi Greenstone Belt, Canada
by Alexandre Crépon, Lucie Mathieu, Daniel J. Kontak, Jeffrey Marsh and Michael A. Hamilton
Minerals 2024, 14(12), 1293; https://doi.org/10.3390/min14121293 - 20 Dec 2024
Cited by 1 | Viewed by 1791
Abstract
The Neoarchean diorite- and tonalite-dominated Chibougamau pluton (Canada) is ideal for case studies dedicated to the petrogenesis and timing of emplacement of fertile magmatic systems and associated Cu-Au porphyry systems. Using whole-rock analyses, geochronology, and zircon chemistry, it is determined that an early [...] Read more.
The Neoarchean diorite- and tonalite-dominated Chibougamau pluton (Canada) is ideal for case studies dedicated to the petrogenesis and timing of emplacement of fertile magmatic systems and associated Cu-Au porphyry systems. Using whole-rock analyses, geochronology, and zircon chemistry, it is determined that an early magmatic phase (pre-2714 Ma) is derived from a dioritic magma with a moderate ƒO2 (ΔFMQ 0 to +1), which is optimal for transporting Au and Cu, and that diorite is a potentially fertile magma. Field descriptions indicate that the main mineralizing style consists of sulfide-filled hairline fractures and quartz–carbonate veins. This is likely the consequence of fluid circulation facilitated by a well-developed diaclase network formed following the intrusion of magma at about 4–7 km depth in a competent hosting material. The petrographic features of fluid inclusions (FIs), considered with their microthermometric data and evaporate mound chemistry, suggest the exsolution of early CO2-rich fluids followed by the unmixing of later aqueous saline fluids characterized by a magmatic signature (i.e., Na-, Ca-, Fe-, Mn-, Ba-, and Cl-F). The type of magmatism and its oxidation state, age relationships, the nature of mineralization, and fluid chemistry together support a model whereby metalliferous fluids are derived from an intermediate hydrous magma. This therefore enforces a porphyry-type metallogenic model for this Archean setting. Full article
Show Figures

Figure 1

18 pages, 2349 KiB  
Article
Garnet Geochemistry and Lu-Hf Geochronology of a Gold-Bearing Sillimanite-Garnet-Biotite Gneiss at the Borden Lake Belt
by Daniel LaFontaine, Audrey Bouvier and Mary Louise Hill
Geosciences 2022, 12(5), 218; https://doi.org/10.3390/geosciences12050218 - 23 May 2022
Viewed by 3773
Abstract
The Kapuskasing Structural Zone transects the Wawa and Abitibi greenstone belts in the Superior province of the Canadian Shield. At the southern margin of the Kapuskasing Structural Zone (KSZ), the Borden Gold deposit hosts low-grade-gold mineralization within upper amphibolite- to granulite-facies sillimanite-garnet-biotite gneisses. [...] Read more.
The Kapuskasing Structural Zone transects the Wawa and Abitibi greenstone belts in the Superior province of the Canadian Shield. At the southern margin of the Kapuskasing Structural Zone (KSZ), the Borden Gold deposit hosts low-grade-gold mineralization within upper amphibolite- to granulite-facies sillimanite-garnet-biotite gneisses. Here, we present the geochemistry and Lu-Hf geochronological studies of a gold-hosting garnet-bearing gneiss to constrain the formation history of the deposit and regional geological history. The garnet is almandine-rich, and contains inclusions of quartz, biotite, pyrite, and zircon. The absence of chemical zoning in garnet is likely due to intracrystalline diffusion at peak metamorphic temperatures. The 176Lu-176Hf internal isochron of two garnet fractions and three corresponding whole-rock splits from a gneissic unit yield a precise internal isochron age at 2629.0 ± 4.3 Ma (MSWD = 0.66), with an initial 176Hf/177Hf = 0.281210 ± 0.000010 corresponding to an εHfi = +4.1. This signature suggests a mafic source, which was derived from a long-term depleted reservoir, for this metasediment. The Lu-Hf age is consistent with the youngest age population of zircons from the paragneisses, which were previously dated in the area. Our results thus provide upper constraints on the timing of retrograde upper-amphibolite metamorphism and gold mineralization at Borden. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

29 pages, 6853 KiB  
Article
Zircon from Altered Monzonite Rocks Provides Insights into Magmatic and Mineralizing Processes at the Douay Au Project, Abitibi Greenstone Belt
by Lucie Mathieu, Taylor D. Wasuita, Ross Sherlock, Fred Speidel, Jeffrey H. Marsh, Benoît Dubé and Olivier Côté-Mantha
Geosciences 2022, 12(3), 114; https://doi.org/10.3390/geosciences12030114 - 2 Mar 2022
Cited by 4 | Viewed by 3743
Abstract
Zircon provides essential information on the age and oxidation state of magmatic systems and can be used to characterize magmatic-hydrothermal Au mineralizing systems. Using the Douay intrusion-related gold system (IRGS) as a type example of Neoarchean syenite-associated mineralization (Abitibi greenstone belt), we demonstrate [...] Read more.
Zircon provides essential information on the age and oxidation state of magmatic systems and can be used to characterize magmatic-hydrothermal Au mineralizing systems. Using the Douay intrusion-related gold system (IRGS) as a type example of Neoarchean syenite-associated mineralization (Abitibi greenstone belt), we demonstrate that zircon from altered quartz-monzonite rocks can also be used to infer the age of a magmatic-hydrothermal event. Here, zircon chemistry is used to identify the following sequence of events at the Douay exploration project: (1) the crystallization of zircon at ~2690 Ma in evolved residual melts with distinct U-contents (quartz-monzonite magma); (2) the extensive radiation damage for the U-rich grains over a period of ~10–15 My; and (3) the alteration of zircon grains at ~2676 Ma by interaction with magmatic-hydrothermal mineralizing fluids derived from syenite and carbonatite intrusive phases. This study also distinguishes extensively altered zircon grains from pristine to least-altered zircon formed in distinct magmatic environments using a Th/U vs. U discrimination diagram. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

25 pages, 17159 KiB  
Article
Albite ± Actinolite-Altered Porphyry Dykes in Archean Gold Deposits of the Boulder Lefroy-Golden Mile Fault System, Yilgarn Craton, Western Australia: Petrography, Chronology, and Comparison to Canadian Albitites
by Andreas G. Mueller, Neal J. McNaughton and Janet R. Muhling
Minerals 2021, 11(11), 1288; https://doi.org/10.3390/min11111288 - 19 Nov 2021
Cited by 3 | Viewed by 4577
Abstract
The Boulder Lefroy-Golden Mile fault system in the Archean Yigarn Craton is the most productive gold-mineralized structure in Australia (>2300 t Au). The New Celebration deposit (51 t Au) is part of a group of hematite- and anhydrite-bearing mesothermal deposits and Fe-Cu-Au skarns [...] Read more.
The Boulder Lefroy-Golden Mile fault system in the Archean Yigarn Craton is the most productive gold-mineralized structure in Australia (>2300 t Au). The New Celebration deposit (51 t Au) is part of a group of hematite- and anhydrite-bearing mesothermal deposits and Fe-Cu-Au skarns associated with monzodiorite-tonalite intrusions in the strike-slip fault system. Ore-grade biotite-carbonate and late sericite-carbonate-alkali feldspar replacement is bound to the contacts of a felsic (low Cr, Ni, V) quartz-plagioclase porphyry dyke dated at 2676 ± 7 Ma. The sodic-potassic alteration of the felsic boudinaged dyke contrasts with the albite-actinolite alteration in the adjacent mafic (high Cr, Ni, V) plagioclase porphyry dated at 2662 ± 4 Ma, although both share the same sulfide-oxide assemblage: pyrite ± chalcopyrite, magnetite ± hematite. The younger porphyry locally crosscuts foliation and is bordered by post-kinematic actinolite-pyrite selvages overprinting talc-chlorite-phlogopite-dolomite schist. It contains auriferous pyrite (70 ppb Au; 610 ppb Ag) where sampled for zircon U-Pb chronology at +224 m elevation. Above the sample site, the dyke was mined as gold ore (1–6 g/t Au) at +300–350 m. Temperature estimates based on actinolite-albite pairs (300–350 °C) agree with the fluid inclusion trapping temperature of main-stage auriferous veins (330 ± 20 °C). These relationships are interpreted to indicate syn-mineralization emplacement. Gold-related albite-altered porphyry dykes (albitites) also occur in the world-class Hollinger-McIntyre (986 t Au) and Kerr Addison-Chesterville deposits (336 t Au), Abitibi greenstone belt, Canada. Full article
(This article belongs to the Special Issue Geology and Mineralogy of Hydrothermal Gold Deposits)
Show Figures

Figure 1

20 pages, 2241 KiB  
Article
Intrusion-Associated Gold Systems and Multistage Metallogenic Processes in the Neoarchean Abitibi Greenstone Belt
by Lucie Mathieu
Minerals 2021, 11(3), 261; https://doi.org/10.3390/min11030261 - 3 Mar 2021
Cited by 22 | Viewed by 7102
Abstract
In gold-endowed greenstone belts, ore bodies generally correspond to orogenic gold systems (OGS) formed during the main deformation stage that led to craton stabilization (syntectonic period). Most OGS deposits postdate and locally overprint magmatic-hydrothermal systems, such as Au-Cu porphyry that mostly formed during [...] Read more.
In gold-endowed greenstone belts, ore bodies generally correspond to orogenic gold systems (OGS) formed during the main deformation stage that led to craton stabilization (syntectonic period). Most OGS deposits postdate and locally overprint magmatic-hydrothermal systems, such as Au-Cu porphyry that mostly formed during the main magmatic stage (synvolcanic period) and polymetallic intrusion-related gold systems (IRGS) of the syntectonic period. Porphyries are associated with tonalite-dominated and sanukitoid plutons, whereas most IRGS are related to alkaline magmatism. As reviewed here, most intrusion-associated mineralization in the Abitibi greenstone belt is the result of complex and local multistage metallogenic processes. A new classification is proposed that includes (1) OGS and OGS-like deposits dominated by metamorphic and magmatic fluids, respectively; (2) porphyry and IRGS that may contain gold remobilized during subsequent deformation episodes; (3) porphyry and IRGS that are overprinted by OGS. Both OGS and OGS-like deposits are associated with crustal-scale faults and display similar gold-deposition mechanisms. The main difference is that magmatic fluid input may increase the oxidation state and CO2 content of the mineralizing fluid for OGS-like deposits, while OGS are characterized by the circulation of reduced metamorphic fluids. For porphyry and IRGS, mineralizing fluids and metals have a magmatic origin. Porphyries are defined as base metal and gold-bearing deposits associated with large-volume intrusions, while IRGS are gold deposits that may display a polymetallic signature and that can be associated with small-volume syntectonic intrusions. Some porphyry, such as the Côté Gold deposit, demonstrate that magmatic systems can generate economically significant gold mineralization. In addition, many deposits display evidence of multistage processes and correspond to gold-bearing or gold-barren magmatic-hydrothermal systems overprinted by OGS or by gold-barren metamorphic fluids. In most cases, the source of gold remains debated. Whether magmatic activity was essential or marginal for fertilizing the upper crust during the Neoarchean remains a major topic for future research, and petrogenetic investigations may be paramount for distinguishing gold-endowed from barren greenstone belts. Full article
(This article belongs to the Special Issue Magmatic-Hydrothermal Systems through Time)
Show Figures

Graphical abstract

32 pages, 70698 KiB  
Article
Oxygen Fugacity and Volatile Content of Syntectonic Magmatism in the Neoarchean Abitibi Greenstone Belt, Superior Province, Canada
by Baptiste Madon, Lucie Mathieu and Jeffrey H. Marsh
Minerals 2020, 10(11), 966; https://doi.org/10.3390/min10110966 - 28 Oct 2020
Cited by 10 | Viewed by 6374
Abstract
Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with [...] Read more.
Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion. Full article
(This article belongs to the Special Issue Distribution of Major- and Trace-Elements in Igneous Minerals)
Show Figures

Figure 1

17 pages, 4656 KiB  
Article
Tonalite-Dominated Magmatism in the Abitibi Subprovince, Canada, and Significance for Cu-Au Magmatic-Hydrothermal Systems
by Lucie Mathieu, Alexandre Crépon and Daniel J. Kontak
Minerals 2020, 10(3), 242; https://doi.org/10.3390/min10030242 - 7 Mar 2020
Cited by 23 | Viewed by 5208
Abstract
In Archean greenstone belts, magmatism is dominated by intrusive and volcanic rocks with tholeiitic affinities, as well as tonalite- and granodiorite-dominated large-volume batholiths, i.e., tonalite–trondhjemite–granodiorite (TTG) suites. These intrusions are associated with poorly documented mineralization (Cu-Au porphyries) that, in the Neoarchean Abitibi Subprovince [...] Read more.
In Archean greenstone belts, magmatism is dominated by intrusive and volcanic rocks with tholeiitic affinities, as well as tonalite- and granodiorite-dominated large-volume batholiths, i.e., tonalite–trondhjemite–granodiorite (TTG) suites. These intrusions are associated with poorly documented mineralization (Cu-Au porphyries) that, in the Neoarchean Abitibi Subprovince (>2.79 to ~2.65 Ga), Superior Province, Canada, are associated with diorite bearing plutons, i.e., tonalite–trondhjemite–diorite (TTD) suites. The importance of TTG versus TTD suites in the evolution of greenstone belts and of their magmatic-hydrothermal systems and related mineralization is unconstrained. The aim of this study was to portray the chemistry and distribution of these suites in the Abitibi Subprovince. The study used data compiled by the geological surveys of Québec and Ontario to evaluate the chemistry of TTG and TTD suites and uncovered two coeval magmas that significantly differentiated (fractional crystallization mostly): 1) a heavy rare earth elements (HREE)-depleted tonalitic magma from high pressure melting of an hydrated basalt source; and 2) a hybrid HREE-undepleted magma that may be a mixture of mantle-derived (tholeiite) and tonalitic melts. The HREE-depleted rocks (mostly tonalite and granodiorite) display chemical characteristics of TTG suites (HREE, Ti, Nb, Ta, Y, and Sr depletion, lack of mafic unit, Na-rich), while the other rocks (tonalite and diorite) formed TTD suites. Tonalite-dominated magmatism, in the Abitibi Subprovince, comprises crustal melts as well as a significant proportion of mantle-derived magmas and this may be essential for Cu-Au magmatic-hydrothermal mineralizing systems. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Graphical abstract

14 pages, 9988 KiB  
Article
Acquisition and Processing of Wider Bandwidth Seismic Data in Crystalline Crust: Progress with the Metal Earth Project
by Mostafa Naghizadeh, David Snyder, Saeid Cheraghi, Steven Foster, Samo Cilensek, Elvis Floreani and Jeff Mackie
Minerals 2019, 9(3), 145; https://doi.org/10.3390/min9030145 - 28 Feb 2019
Cited by 33 | Viewed by 9741
Abstract
The Metal Earth project acquired 927 km of deep seismic reflection profiles from August to November of 2017. Seismic data acquired in this early stage of the Metal Earth project benefited greatly from recent advances in the petroleum sector as well as those [...] Read more.
The Metal Earth project acquired 927 km of deep seismic reflection profiles from August to November of 2017. Seismic data acquired in this early stage of the Metal Earth project benefited greatly from recent advances in the petroleum sector as well as those in mineral exploration. Vibroseis acquisition with receivers having a 5 Hz response (10 dB down) generated records from a sweep signal starting at 2 Hz, sweeping up to 150 Hz or 200 Hz. Not only does this broadband signal enhance reflections from the deepest to the shallowest crust, but it also helps the use of full waveform inversion (e.g., to mitigate cycle-skipping) and related techniques. Metal Earth regional-scale transects using over 5000 active sensors target mineralizing fluid pathways throughout the crust, whereas higher spatial-resolution reflection and full-waveform surveys target structures at mine camp scales. Because Metal Earth was proposed to map and compare entire Archean ore and geologically similar non-ore systems, regional sections cover the entire crust to the Moho in the Abitibi and Wabigoon greenstone belts of the Superior craton in central Canada. Where the new sections overlap with previous Lithoprobe surveys, a clear improvement in reflector detection and definition is observed. Improvements are here attributed to the increased bandwidth of the signal, better estimates of refraction and reflection velocities used in processing, and especially the pre-stack time migration of the data. Full article
(This article belongs to the Special Issue Seismic Methods in Mineral Exploration)
Show Figures

Figure 1

39 pages, 50723 KiB  
Article
An Integrated Model for Ilmenite, Al-Spinel, and Corundum Exsolutions in Titanomagnetite from Oxide-Rich Layers of the Lac Doré Complex (Québec, Canada)
by Jean-Philippe Arguin, Philippe Pagé, Sarah-Jane Barnes, Réjean Girard and Charley Duran
Minerals 2018, 8(11), 476; https://doi.org/10.3390/min8110476 - 24 Oct 2018
Cited by 32 | Viewed by 8273
Abstract
The titanomagnetite of the Lac Doré Complex, an Archean layered intrusion that is located in the Abitibi greenstone belt in Québec (Canada), contains a wide variety of exsolution textures, which are the remnants of a complex cooling history. In the present study, we [...] Read more.
The titanomagnetite of the Lac Doré Complex, an Archean layered intrusion that is located in the Abitibi greenstone belt in Québec (Canada), contains a wide variety of exsolution textures, which are the remnants of a complex cooling history. In the present study, we reconstitute the decomposition stages of the original solid solution in order to explain the formation of ilmenite, Al-spinel (hercynite and gahnite), and corundum exsolutions in magnetite. This was conducted through a detailed mineralogical and textural examination and in situ determination of mineral chemistry. Our investigation reveals two discrete types of ilmenite exsolutions, which are ascribed, respectively, to the oxidation of ulvöspinel at temperatures above and below the magnetite-ulvöspinel solvus. Exsolutions of Al-spinel result from either a decrease in the solubility of the (FeZn)Al2O4 components upon cooling, or local excesses of Al and Zn due to the removal of ulvöspinel during the early oxidation. The origin of corundum is ascribed to the oxidation of pre-existing hercynite exsolutions. The trace element composition of the titanomagnetite indicates stratigraphic reversals in Cr, Mg, Co, Ti, and Si and important changes in redox conditions. We interpret this as a direct consequence of a major event of magma chamber replenishment, which strongly influenced the distribution of exsolutions. Full article
(This article belongs to the Special Issue Spinel Group Minerals)
Show Figures

Figure 1

Back to TopTop