Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = ATAM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1242 KB  
Article
IoTMindCare: An Integrative Reference Architecture for Safe and Personalized IoT-Based Depression Management
by Sanaz Zamani, Roopak Sinha, Samaneh Madanian and Minh Nguyen
Sensors 2025, 25(22), 6994; https://doi.org/10.3390/s25226994 - 15 Nov 2025
Viewed by 629
Abstract
Depression affects millions of people worldwide. Traditional management relies heavily on periodic clinical assessments and self-reports, which lack real-time responsiveness and personalization. Despite numerous research prototypes exploring Internet of Things (IoT)-based mental health support, almost none have translated into practical, mainstream solutions. This [...] Read more.
Depression affects millions of people worldwide. Traditional management relies heavily on periodic clinical assessments and self-reports, which lack real-time responsiveness and personalization. Despite numerous research prototypes exploring Internet of Things (IoT)-based mental health support, almost none have translated into practical, mainstream solutions. This gap stems from several interrelated challenges, including the absence of robust, flexible, and safe architectural frameworks; the diversity of IoT device ownership; the need for further research across many aspects of technology-based depression support; highly individualized user needs; and ongoing concerns regarding safety and personalization. We aim to develop a reference architecture for IoT-based safe and personalized depression management. We introduce IoTMindCare, integrating current best practices while maintaining the flexibility required to incorporate future research and technology innovations. A structured review of contemporary IoT-based solutions for depression management is used to establish their strengths, limitations, and gaps. Then, following the Attribute-Driven Design (ADD) method, we design IoTMindCare. The Architecture Trade-off Analysis Method (ATAM) is used to evaluate the proposed reference architecture. The proposed reference architecture features a modular, layered logical view design with cross-layer interactions, incorporating expert input to define system components, data flows, and user requirements. Personalization features, including continuous, context-aware feedback and safety-related mechanisms, were designed based on the needs of stakeholders, primarily users and caregivers, throughout the system architecture. ATAM evaluation shows that IoTMindCare supports safety and personalization significantly better than current designs. This work provides a flexible, safe, and extensible architectural foundation for IoT-based depression management systems, enabling the construction of optimal solutions that integrate the most effective current research and technology while remaining adaptable to future advancements. IoTMindCare provides a unifying, aggregation-style reference architecture that consolidates design principles and operational lessons from multiple prior IoT mental-health solutions, enabling these systems to be instantiated, compared, and extended rather than directly competing with any single implementation. Full article
Show Figures

Figure 1

33 pages, 1091 KB  
Article
Climate Change Impact on Watershed Sustainability Index Assessment
by Bekir Cem Avcı and Masume Atam
Water 2025, 17(20), 2923; https://doi.org/10.3390/w17202923 - 10 Oct 2025
Cited by 1 | Viewed by 954
Abstract
The Watershed Sustainability Index (WSI) is a widely used parameter that provides an integrated assessment of the baseline state of watershed management, considering hydrology, environment, life, and policy. The impacts of climate change on sustainability are becoming increasingly evident. These impacts are discussed [...] Read more.
The Watershed Sustainability Index (WSI) is a widely used parameter that provides an integrated assessment of the baseline state of watershed management, considering hydrology, environment, life, and policy. The impacts of climate change on sustainability are becoming increasingly evident. These impacts are discussed in the 6th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). This study refines the Watershed Sustainability Index (WSI) by embedding climate discontinuities from the IPCC AR6, applying dual climate scenarios (RCP4.5 and RCP8.5), and incorporating comprehensive sensitivity and uncertainty analyses. The approach provides a transferable basis for basin-scale management tools that integrate climate stressors, explore alternative futures, and support adaptive water governance. The impacts of climate change on watershed sustainability have been developed from hydrological, environmental, life, and policy perspectives with an innovative approach. The new WSI assessment methodology is implemented for the Central North Aegean Basin, Türkiye. The WSI was applied to two periods, including five years of baseline condition (2016–2020) and ten years of projected future condition (2021–2030). The future condition was assessed with climate change impacts. The study shows how WSI assessment under climate change considerations may support coordination among all relevant institutions and stakeholders responsible for natural resource management. This approach can be a valuable resource for decision-makers and provide an effective management tool for the basin, considering future conditions. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

18 pages, 613 KB  
Article
Developing a Novel Architectural Technology Adoption Model Incorporating Organizational Factors and Client Satisfaction
by Hesham Algassim, Samad M. E. Sepasgozar, Michael J. Ostwald and Steven Davis
Buildings 2025, 15(10), 1668; https://doi.org/10.3390/buildings15101668 - 15 May 2025
Cited by 2 | Viewed by 1301
Abstract
Despite some high-profile exceptions, the architecture service industry has typically adopted new digital technologies slowly. Previous research has examined the influence of user-friendliness and ease of technology use to explain the slow adoption rate, but contextual factors associated with the operations of architectural [...] Read more.
Despite some high-profile exceptions, the architecture service industry has typically adopted new digital technologies slowly. Previous research has examined the influence of user-friendliness and ease of technology use to explain the slow adoption rate, but contextual factors associated with the operations of architectural organizations—such as result demonstrability, training needs, cost factors, environmental expectations, project factors, and client satisfaction—have been largely overlooked. This paper presents a novel architectural technology adoption model (ATAM) encompassing multiple architecture-service-specific factors and their relationships. The key hypotheses embodied in ATAM are that the digital technology adoption process is shaped by industry-specific factors that directly affect perceived usefulness and perceived ease of use by architects and, subsequently, their intention to employ the technology. Furthermore, the impacts of user satisfaction, user behavior, and client satisfaction on technology acceptance are examined. This paper describes the development of an ATAM, drawing on a set of original data collected from 452 participants from a case study country (Saudi Arabia). The ATAM is then validated through extensive hypothesis testing performed using maximum likelihood structural equation modeling in AMOS. The outcomes show that result demonstrability, training needs, cost factors, environmental expectations, project factors, and client satisfaction are significant factors affecting technology adoption. The development of the ATAM addresses the lack of empirical knowledge about technology adoption in architecture. The ATAM offers a novel and rigorous approach to helping organizations understand and overcome the factors that affect technology adoption in the architecture service sector. Fundamentally, the ATAM supports a new understanding of the factors that are critical for organizations to increase user and client satisfaction with technology adoption. The ATAM contributes to the literature on architectural innovation, but it can be modified and replicated in various sectors associated with architectural services where clients’ satisfaction is critical. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

28 pages, 9610 KB  
Article
Development and Evaluation of Hydrogel-Based Sulfasalazine-Loaded Nanosponges for Enhanced Topical Psoriasis Therapy
by Sunil Kumar, Anroop B. Nair, Varsha Kadian, Pooja Dalal, Babu Lal Jangir, Bandar Aldhubiab, Rashed M. Almuqbil, Ahmed S. Alnaim, Nouf Alwadei and Rekha Rao
Pharmaceuticals 2025, 18(3), 391; https://doi.org/10.3390/ph18030391 - 10 Mar 2025
Cited by 4 | Viewed by 2299
Abstract
Background: The low solubility and poor skin permeability of sulfasalazine (SLZ) present significant challenges for its effective topical delivery. The objective of the current investigation is to formulate a hydrogel-based SLZ-loaded cyclodextrin nanosponge for topical therapy in psoriasis. Methods: SLZ-loaded nanosponges were prepared [...] Read more.
Background: The low solubility and poor skin permeability of sulfasalazine (SLZ) present significant challenges for its effective topical delivery. The objective of the current investigation is to formulate a hydrogel-based SLZ-loaded cyclodextrin nanosponge for topical therapy in psoriasis. Methods: SLZ-loaded nanosponges were prepared by the melt polymerization method and evaluated for physiochemical characteristics, drug release, and cytocompatibility. The selected nanosponges (SLZ-NS4) were transformed to hydrogel and further evaluated for rheology, texture, safety, skin permeability, and in vivo for anti-psoriatic effect in mouse tail and imiquimod-induced psoriasis-like inflammation models in mice. Results: Physiochemical data confirms nanoscale architecture, drug inclusion in nanosponges, crystalline structure, and formulation stability. The release profile of SLZ-NS4 revealed sustained release behavior (22.98 ± 2.24% in 3 h). Cytotoxicity assays indicated negligible toxicity against THP1 cells, resulting in higher viability of cells than pure SLZ (p < 0.05). The HET-CAM assay confirmed the safety, while confocal laser scanning microscopy demonstrated deeper skin permeation of SLZ. In the mouse tail model, a remarkable decline in relative epidermal thickness, potential improvement in percent orthokeratosis, and drug activity with respect to control was observed in animals treated with SLZ-NS4 hydrogel. The efficiency of the developed SLZ-NS4-loaded hydrogel in treating psoriasis was confirmed by the decline in PASI score (81.68 ± 3.61 and 84.86 ± 5.74 with 1 and 2% w/v of SLZ-NS-HG). Histopathological analysis and assessment of oxidative stress markers revealed the profound anti-psoriatic potential of the fabricated SLZ-NS4 hydrogel. Conclusions: These findings highlight the profound potential of the developed delivery system as an effective topical therapy for psoriasis. Full article
(This article belongs to the Special Issue Progress of Hydrogel Applications in Novel Drug Delivery Platforms)
Show Figures

Figure 1

19 pages, 6058 KB  
Article
Influence of Nutrient Medium Components on In Vitro Tuberization of Solanum tuberosum L. and Subsequent Minituber Production in Aeroponic and Greenhouse Conditions
by Gayane Hrant Melyan, Yuri Tsatur Martirosyan, Aghvan Jumshud Sahakyan, Hovik Yakshibek Sayadyan, Andreas Shmavon Melikyan, Andranik Hakob Barseghyan, Arayik Sajan Vardanyan, Hamlet Sargis Martirosyan, Margarita Gurgen Harutyunyan, Anzhela Liparit Mkrtchyan, Inna Lendrush Hakobjanyan, Kima Seryozha Dangyan, Khachik Harut Terteryan, Kamo Atam Khazaryan and Meruzhan Haykaram Galstyan
Life 2025, 15(2), 241; https://doi.org/10.3390/life15020241 - 5 Feb 2025
Cited by 3 | Viewed by 1969
Abstract
Potatoes, a vital global food crop, have shown remarkable adaptability, significantly contributing to food security. Technological advancements now enable their cultivation from soil-based systems to liquid synthetic nutrient media, even in artificial closed environments without natural light or fertile soil. This study examined [...] Read more.
Potatoes, a vital global food crop, have shown remarkable adaptability, significantly contributing to food security. Technological advancements now enable their cultivation from soil-based systems to liquid synthetic nutrient media, even in artificial closed environments without natural light or fertile soil. This study examined the effects of Benzylaminopurine (BAP) and Kinetin (Kin) at concentrations ranging from 0 to 5 mg/L and sucrose concentrations ranging from 20 to 120 g/L on in vitro tuberization, focusing on microtuber size, weight, and tuberization rate. Nodal segments from virus-free ‘Red Scarlet’ in vitro potato plantlets were used as explants. These explants were cultured on Murashige and Skoog (MS) medium solidified with 0.5% agar. The study also compared minituber production efficiency under soil-based greenhouse and aeroponic conditions. The highest in vitro potato tuberization rate (90%) was achieved with 80 g/L sucrose and 3.0 mg/L BAP. After induction, virus-free microtubers were transferred to both greenhouse conditions and aeroponic systems for further assessment of minituber production and biochemical composition. These findings demonstrate the potential of aeroponics as a superior method for producing high-quality, pathogen-free minitubers. Aeroponics resulted in significantly higher minituber yields compared to soil-based greenhouse systems, offering a scalable and efficient solution for seed production. Full article
(This article belongs to the Special Issue Plant Functional Genomics and Breeding)
Show Figures

Figure 1

22 pages, 2382 KB  
Article
Exploring AAM Acceptance in Tourism: Environmental Consciousness’s Influence on Hedonic Motivation and Intention to Use
by Yining Suo, Chenglong Li, Li Tang and Longyang Huang
Sustainability 2024, 16(8), 3324; https://doi.org/10.3390/su16083324 - 16 Apr 2024
Cited by 9 | Viewed by 3955
Abstract
Tourist destinations thrive on sustainable development. Electric vertical take-off and landing (eVTOL) aircraft, representing energy-efficient advancements in aviation that are pivotal to advanced air mobility (AAM), have garnered attention. Yet, the discourse on eVTOLs’ role in tourism remains scant. This study, drawing from [...] Read more.
Tourist destinations thrive on sustainable development. Electric vertical take-off and landing (eVTOL) aircraft, representing energy-efficient advancements in aviation that are pivotal to advanced air mobility (AAM), have garnered attention. Yet, the discourse on eVTOLs’ role in tourism remains scant. This study, drawing from 450 samples in the Mogan Mountain Scenic Area, introduces the AAM-tourism acceptance model (ATAM). It integrates the theory of planned behavior (TPB) and technology acceptance model (TAM) theoretical frameworks, incorporating environmental consciousness, perceived safety, hedonic motivation, and personal innovativeness, assessing their influence on tourists’ eVTOL usage intention through a structural equation model (SEM). The results reveal that environmental consciousness significantly impacts hedonic motivation and perceived usefulness, driving eVTOL adoption. Furthermore, personal innovativeness influences intention through hedonic motivation and perceived behavioral control. Therefore, environmental consciousness and hedonic motivation align deeply with eVTOL attributes, both significantly positively influencing intention to use. Thus, the study validates eVTOL’s viability in tourism and its potential for sectoral expansion. Moreover, it offers insights into how psychological factors shape eVTOL adoption, guiding the promotion of eVTOL sightseeing services and informing research on AAM acceptance across various domains. Full article
(This article belongs to the Collection Sustainable Transport Economics, Behaviour and Policy)
Show Figures

Figure 1

19 pages, 6749 KB  
Article
Spatial-Temporal Response of Sediment Loads to Climate Change and Soil Conservation Practices in the Northern Aegean Watershed, Türkiye
by Bekir Cem Avcı, Erdal Kesgin, Masume Atam and Remziye Ilayda Tan
Water 2023, 15(13), 2461; https://doi.org/10.3390/w15132461 - 5 Jul 2023
Cited by 12 | Viewed by 2406
Abstract
Climate change and agricultural activities are significant sources of stress to the natural environment and water resources. These also affect erosion and the associated estimation of sediment yields, which is also a crucial task in the hydrological models. The presented study is significant [...] Read more.
Climate change and agricultural activities are significant sources of stress to the natural environment and water resources. These also affect erosion and the associated estimation of sediment yields, which is also a crucial task in the hydrological models. The presented study is significant for the development of sustainable watershed management practices. It also aims to determine the effects of climate change and different agricultural best management practices (BMPs) on the sediment loads of the North Aegean Basin in Türkiye by using the Soil and Water Assessment Tool (SWAT) model. While sediment calibration was performed for 2014, streamflow calibration and verification were performed using the SWAT Calibration and Uncertainty Program (SWAT-CUP) for the period 2012–2013 and 2014–2015, respectively. The obtained results showed that the climate change scenarios reduce the surface waters of the basin and sediment yield in accordance with the hydrological transport processes. During the 2012–2030 time period, runoff in the basin for the RCP4.5 and RCP8.5 climate change scenarios decreased by 38.5% and 31.8%, respectively, and the basin sediment yield decreased by 55.7% and 50.7%, respectively. The sediment yields to water resources had distinctive reductions due to BMPs such as zero tillage, vertical tillage, cover crop, and terracing. Considering the RCP4.5 and RCP8.5 scenarios, BMPs reduced the sediment yield in the range of 0.93–4.03% and 0.89–3.85%, respectively. Determining the sediment transport by using hydrological modeling and the effects of climate change for different agricultural practices on erosion will be useful for decision-makers. Full article
Show Figures

Figure 1

25 pages, 1655 KB  
Review
Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive
by Anroop B. Nair, Pooja Dalal, Varsha Kadian, Sunil Kumar, Minakshi Garg, Rekha Rao, Rashed M. Almuqbil, Ahmed S. Alnaim, Bandar Aldhubiab and Fatemah Alqattan
Plants 2023, 12(5), 1168; https://doi.org/10.3390/plants12051168 - 3 Mar 2023
Cited by 24 | Viewed by 4969
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and [...] Read more.
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol’s challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases. Full article
Show Figures

Figure 1

15 pages, 3186 KB  
Article
Formulation, Characterization, Anti-Inflammatory and Cytotoxicity Study of Sesamol-Laden Nanosponges
by Anroop B. Nair, Pooja Dalal, Varsha Kadian, Sunil Kumar, Archana Kapoor, Minakshi Garg, Rekha Rao, Bandar Aldhubiab, Nagaraja Sreeharsha, Rashed M. Almuqbil, Mahesh Attimarad, Heba S. Elsewedy and Pottathil Shinu
Nanomaterials 2022, 12(23), 4211; https://doi.org/10.3390/nano12234211 - 26 Nov 2022
Cited by 20 | Viewed by 3723
Abstract
Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was [...] Read more.
Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into β-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (−17 to −26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (β-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 μg/mL) in comparison to SES (106 μg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery. Full article
Show Figures

Figure 1

19 pages, 5760 KB  
Article
The Transcription Factors TaTDRL and TaMYB103 Synergistically Activate the Expression of TAA1a in Wheat, Which Positively Regulates the Development of Microspore in Arabidopsis
by Baolin Wu, Yu Xia, Gaisheng Zhang, Junwei Wang, Shoucai Ma, Yulong Song, Zhiquan Yang, Elizabeth S. Dennis and Na Niu
Int. J. Mol. Sci. 2022, 23(14), 7996; https://doi.org/10.3390/ijms23147996 - 20 Jul 2022
Cited by 9 | Viewed by 2749
Abstract
Pollen fertility plays an important role in the application of heterosis in wheat (Triticum aestivum L.). However, the key genes and mechanisms underlying pollen abortion in K-type male sterility remain unclear. TAA1a is an essential gene for pollen development in wheat. Here, [...] Read more.
Pollen fertility plays an important role in the application of heterosis in wheat (Triticum aestivum L.). However, the key genes and mechanisms underlying pollen abortion in K-type male sterility remain unclear. TAA1a is an essential gene for pollen development in wheat. Here, we explored the mechanism involved in its transcriptional regulation during pollen development, focusing on a 1315-bp promoter region. Several cis-acting elements were identified in the TAA1a promoter, including binding motifs for Arabidopsis thaliana AtAMS and AtMYB103 (CANNTG and CCAACC, respectively). Evolutionary analysis indicated that TaTDRL and TaMYB103 were the T. aestivum homologs of AtAMS and AtMYB103, respectively, and encoded nucleus-localized transcription factors containing 557 and 352 amino acids, respectively. TaTDRL and TaMYB103 were specifically expressed in wheat anthers, and their expression levels were highest in the early uninucleate stage; this expression pattern was consistent with that of TAA1a. Meanwhile, we found that TaTDRL and TaMYB03 directly interacted, as evidenced by yeast two-hybrid and bimolecular fluorescence complementation assays, while yeast one-hybrid and dual-luciferase assays revealed that both TaTDRL and TaMYB103 could bind the TAA1a promoter and synergistically increase its transcriptional activity. Furthermore, TaTDRL-EAR and TaMYB103-EAR transgenic Arabidopsis plants displayed abnormal microspore morphology, reduced pollen viability, and lowered seed setting rates. Additionally, the expression of AtMS2, a TAA1a homolog, was significantly lower in the two repressor lines than in the corresponding overexpression lines or WT plants. In summary, we identified a potential transcriptional regulatory mechanism associated with wheat pollen development. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

28 pages, 1075 KB  
Review
Lightweight Software Architecture Evaluation for Industry: A Comprehensive Review
by Mahdi Sahlabadi, Ravie Chandren Muniyandi, Zarina Shukur and Faizan Qamar
Sensors 2022, 22(3), 1252; https://doi.org/10.3390/s22031252 - 7 Feb 2022
Cited by 18 | Viewed by 7881
Abstract
Processes for evaluating software architecture (SA) help to investigate problems and potential risks in SA. It is derived from many studies that proposed a plethora of systematic SA evaluation methods, while industrial practitioners currently refrain from applying them since they are heavyweight. Nowadays, [...] Read more.
Processes for evaluating software architecture (SA) help to investigate problems and potential risks in SA. It is derived from many studies that proposed a plethora of systematic SA evaluation methods, while industrial practitioners currently refrain from applying them since they are heavyweight. Nowadays, heterogeneous software architectures are organized based on the new infrastructure. Hardware and associated software allow different systems, such as embedded, sensor-based, modern AI, and cloud-based systems, to cooperate efficiently. It brings more complexities to SA evaluation. Alternatively, lightweight architectural evaluation methods have been proposed to satisfy the practitioner’s concerns, but practitioners still do not adopt these methods. This study employs a systematic literature review with a text analysis of SA’s definitions to propose a comparison framework for SA. It identifies lightweight features and factors to improve the architectural evaluation methods among industrial practitioners. The features are determined based on the practitioner’s concerns by analyzing the architecture’s definitions from stakeholders and reviewing architectural evaluation methods. The lightweight factors are acquired by studying the five most commonly used lightweight methods and the Architecture-based Tradeoff Analysis Method (ATAM), the most well-known heavyweight method. Subsequently, the research addresses these features and factors. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

22 pages, 2477 KB  
Review
Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases
by Özgecan Erdem, Ismail Eş, Garbis Atam Akceoglu, Yeşeren Saylan and Fatih Inci
Biosensors 2021, 11(9), 296; https://doi.org/10.3390/bios11090296 - 25 Aug 2021
Cited by 92 | Viewed by 13632
Abstract
Chronic diseases (CDs) are noncommunicable illnesses with long-term symptoms accounting for ~70% of all deaths worldwide. For the diagnosis and prognosis of CDs, accurate biomarker detection is essential. Currently, the detection of CD-associated biomarkers is employed through complex platforms with certain limitations in [...] Read more.
Chronic diseases (CDs) are noncommunicable illnesses with long-term symptoms accounting for ~70% of all deaths worldwide. For the diagnosis and prognosis of CDs, accurate biomarker detection is essential. Currently, the detection of CD-associated biomarkers is employed through complex platforms with certain limitations in their applicability and performance. There is hence unmet need to present innovative strategies that are applicable to the point-of-care (PoC) settings, and also, provide the precise detection of biomarkers. On the other hand, especially at PoC settings, microneedle (MN) technology, which comprises micron-size needles arranged on a miniature patch, has risen as a revolutionary approach in biosensing strategies, opening novel horizons to improve the existing PoC devices. Various MN-based platforms have been manufactured for distinctive purposes employing several techniques and materials. The development of MN-based biosensors for real-time monitoring of CD-associated biomarkers has garnered huge attention in recent years. Herein, we summarize basic concepts of MNs, including microfabrication techniques, design parameters, and their mechanism of action as a biosensing platform for CD diagnosis. Moreover, recent advances in the use of MNs for CD diagnosis are introduced and finally relevant clinical trials carried out using MNs as biosensing devices are highlighted. This review aims to address the potential use of MNs in CD diagnosis. Full article
Show Figures

Figure 1

25 pages, 1199 KB  
Article
Architecting an Agent-Based Fault Diagnosis Engine for IEC 61499 Industrial Cyber-Physical Systems
by Barry Dowdeswell, Roopak Sinha and Stephen G. MacDonell
Future Internet 2021, 13(8), 190; https://doi.org/10.3390/fi13080190 - 23 Jul 2021
Cited by 5 | Viewed by 4286
Abstract
IEC 61499 is a reference architecture for constructing Industrial Cyber-Physical Systems (ICPS). However, current function block development environments only provide limited fault-finding capabilities. There is a need for comprehensive diagnostic tools that help engineers identify faults, both during development and after deployment. This [...] Read more.
IEC 61499 is a reference architecture for constructing Industrial Cyber-Physical Systems (ICPS). However, current function block development environments only provide limited fault-finding capabilities. There is a need for comprehensive diagnostic tools that help engineers identify faults, both during development and after deployment. This article presents the software architecture for an agent-based fault diagnostic engine that equips agents with domain-knowledge of IEC 61499. The engine encourages a Model-Driven Development with Diagnostics methodology where agents work alongside engineers during iterative cycles of design, development, diagnosis and refinement. Attribute-Driven Design (ADD) was used to propose the architecture to capture fault telemetry directly from the ICPS. A Views and Beyond Software Architecture Document presents the architecture. The Architecturally-Significant Requirement (ASRs) were used to design the views while an Architectural Trade-off Analysis Method (ATAM) evaluated critical parts of the architecture. The agents locate faults during both early-stage development and later provide long-term fault management. The architecture introduces dynamic, low-latency software-in-loop Diagnostic Points (DPs) that operate under the control of an agent to capture fault telemetry. Using sound architectural design approaches and documentation methods, coupled with rigorous evaluation and prototyping, the article demonstrates how quality attributes, risks and architectural trade-offs were identified and mitigated early before the construction of the engine commenced. Full article
(This article belongs to the Special Issue Modern Trends in Multi-Agent Systems)
Show Figures

Figure 1

16 pages, 5538 KB  
Article
Revisiting Trans-Arctic Maritime Navigability in 2011–2016 from the Perspective of Sea Ice Thickness
by Xiangying Zhou, Chao Min, Yijun Yang, Jack C. Landy, Longjiang Mu and Qinghua Yang
Remote Sens. 2021, 13(14), 2766; https://doi.org/10.3390/rs13142766 - 14 Jul 2021
Cited by 18 | Viewed by 4773
Abstract
Arctic navigation has become operational in recent decades with the decline in summer sea ice. To assess the navigability of trans-Arctic passages, combined model and satellite sea ice thickness (CMST) data covering both freezing seasons and melting seasons are integrated with the Arctic [...] Read more.
Arctic navigation has become operational in recent decades with the decline in summer sea ice. To assess the navigability of trans-Arctic passages, combined model and satellite sea ice thickness (CMST) data covering both freezing seasons and melting seasons are integrated with the Arctic Transportation Accessibility Model (ATAM). The trans-Arctic navigation window and transit time are thereby obtained daily from modeled sea ice fields constrained by satellite observations. Our results indicate that the poorest navigability conditions for the maritime Arctic occurred in 2013 and 2014, particularly in the Northwest Passage (NWP) with sea ice blockage. The NWP has generally exhibited less favorable navigation conditions and shorter navigable windows than the Northern Sea Route (NSR). For instance, in 2013, Open Water (OW) vessels that can only safely resist ice with a thickness under 15 cm had navigation windows of 47 days along the NSR (45% shorter than the 2011–2016 mean) and only 13 days along the NWP (80% shorter than the 2011–2016 mean). The longest navigation windows were in 2011 and 2015, with lengths of 103 and 107 days, respectively. The minimum transit time occurred in 2012, when more northward routes were accessible, especially in the Laptev Sea and East Siberian Sea with the sea ice edge retreated. The longest navigation windows for Polar Class 6 (PC6) vessels with a resistance to ice thickness up to 120 cm reached more than 200 days. PC6 vessels cost less transit time and exhibit less fluctuation in their navigation windows compared with OW vessels because of their ice-breaking capability. Finally, we found that restricted navigation along the NSR in 2013 and 2014 was related to the shorter periods of navigable days in the East Siberian Sea and Vilkitskogo Strait, with local blockages of thick ice having a disproportionate impact on the total transit. Shorter than usual navigable windows in the Canadian Arctic Archipelago and Beaufort Sea shortened the windows for entire routes of the NWP in 2013 and 2014. Full article
(This article belongs to the Special Issue Polar Sea Ice: Detection, Monitoring and Modeling)
Show Figures

Graphical abstract

22 pages, 1072 KB  
Article
Architecture-Centric Evaluation of Blockchain-Based Smart Contract E-Voting for National Elections
by Olawande Daramola and Darren Thebus
Informatics 2020, 7(2), 16; https://doi.org/10.3390/informatics7020016 - 20 May 2020
Cited by 59 | Viewed by 14676
Abstract
E-voting is one of the valid use cases of blockchain technology with many blockchain e-voting systems already proposed. But efforts that focus on critical analysis of blockchain e-voting architectures for national elections from stakeholders’ perspectives are mostly lacking in the literature. Therefore, government [...] Read more.
E-voting is one of the valid use cases of blockchain technology with many blockchain e-voting systems already proposed. But efforts that focus on critical analysis of blockchain e-voting architectures for national elections from stakeholders’ perspectives are mostly lacking in the literature. Therefore, government decision-makers and election stakeholders do not yet have a sufficient basis to understand the potential risks, challenges, and prospects that are associated with blockchain e-voting. This paper demonstrates how the use of the Architecture Trade-off Analysis Method (ATAM) can enable stakeholders in national elections to understand the risks, prospects, and challenges that could be associated with a blockchain e-voting system for national elections. By using a study context of South Africa, a proposed blockchain e-voting architecture was used as a basis to aid election stakeholders to reason on the concept of blockchain e-voting to get them to understand the potential risks, security threats, critical requirements attributes, and weaknesses that could be associated with using blockchain e-voting for national elections. The study found that blockchain e-voting can prevent many security attacks, internal vote manipulation, and promote transparency. However, voter validation and the security of the blockchain architecture are potential weaknesses that will need significant attention. Full article
Show Figures

Figure 1

Back to TopTop