Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = ARHGEF11

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10798 KiB  
Article
Integrative Analysis of Transcriptomics and Metabolomics Provides Insights into Meat Quality Differences in Hu Sheep with Different Carcass Performance
by Xiaoxue Zhang, Liming Zhao, Huibin Tian, Zongwu Ma, Qi Zhang, Mengru Pu, Peiliang Cao, Deyin Zhang, Yukun Zhang, Yuan Zhao, Jiangbo Cheng, Quanzhong Xu, Dan Xu, Xiaobin Yang, Xiaolong Li, Weiwei Wu, Fadi Li and Weimin Wang
Foods 2025, 14(14), 2477; https://doi.org/10.3390/foods14142477 - 15 Jul 2025
Viewed by 295
Abstract
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the [...] Read more.
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the molecular mechanisms underlying meat quality differences in Hu sheep with high (HHS, n = 10) and low (LHS, n = 10) carcass performance. Phenotypic analysis revealed that the HHS group exhibited superior meat quality traits, including higher intramuscular fat (IMF) content (reflected in elevated marbling scores), along with lower shear force, drip loss, and cooking loss, compared to the LHS group. Transcriptomic analysis identified 376 differentially expressed genes (DEGs) enriched in pathways linked to lipid metabolism, such as the PPAR signaling pathway and long-chain fatty acid metabolic process. Weighted gene co-expression network analysis (WGCNA) revealed important modules and key genes (e.g., ELOVL6, PLIN1, and ARHGEF2) associated with meat quality traits. Metabolomic profiling identified 132 differentially accumulated metabolites (DAMs), with significant enrichment in amino acid metabolism pathways, including D-amino acid metabolism, arginine biosynthesis, and glycine, serine, and threonine metabolism. Integrative analysis of transcriptomic and metabolomic data highlighted six co-enriched pathways, such as the mTOR signaling pathway and amino acid metabolism, underscoring their role in regulating meat quality. These findings provide valuable insights into the genetic and metabolic networks driving meat quality variation and offer potential biomarkers for genetic selection and nutritional strategies to enhance both carcass yield and eating quality in Hu sheep. This research enhances knowledge of the molecular basis of meat quality and supports precision breeding in livestock production. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

15 pages, 28582 KiB  
Article
Exploring the Role of Circadian Rhythm-Related Genes in the Identification of Sepsis Subtypes and the Construction of Diagnostic Models Based on RNA-seq and scRNA-seq
by Xuesong Wang, Zhe Guo, Ziwen Wang, Xinrui Wang, Yuxiang Xia, Dishan Wu and Zhong Wang
Int. J. Mol. Sci. 2025, 26(9), 3993; https://doi.org/10.3390/ijms26093993 - 23 Apr 2025
Viewed by 574
Abstract
Sepsis is a severe systemic response to infection that may lead to the dysfunction of multiple organ systems and may even be life-threatening. Circadian rhythm-related genes (CRDRGs) regulate the circadian clock and affect many physiological processes, including immune responses. In patients with sepsis, [...] Read more.
Sepsis is a severe systemic response to infection that may lead to the dysfunction of multiple organ systems and may even be life-threatening. Circadian rhythm-related genes (CRDRGs) regulate the circadian clock and affect many physiological processes, including immune responses. In patients with sepsis, circadian rhythms may be disrupted, thus leading to problems such as immune responses. RNA-seq datasets of sepsis and control groups were downloaded from the Gene Expression Omnibus (GEO) database, and two sepsis subtypes were identified based on differentially expressed CRDRGs. Two gene modules related to sepsis diagnosis and subtypes were obtained using the weighted co-expression network (WGCNA) algorithm. Subsequently, using four machine learning algorithms (random forest, support vector machine, a generalized linear model, and xgboost), genes related to sepsis diagnosis were identified from the intersection genes of the two modules, and a diagnostic model was constructed. Single-cell sequencing (scRNA-seq) data were obtained from the GEO database to explore the expression landscape of diagnostic-related genes in different cell types. Finally, an RT-qPCR analysis of diagnosis-related genes confirmed the differences in expression trends between the two groups. Multiple differentially expressed CRDRGs were observed in the sepsis and control groups, and two subtypes were identified based on their expression levels. There were apparent differences in the distribution of samples of the two subtypes in two-dimensional space and the pathways involved. Using multiple machine learning algorithms, the intersection genes in the two most relevant modules of the WGCNA were identified, and a robust diagnostic model was constructed with five genes (ARHGEF18, CHD3, PHC1, SFI1, and SPOCK2). The AUC of this model reached 0.987 on the validation set, showing an excellent prediction performance. In this study, two sepsis subtypes were identified, and a sepsis diagnostic model was constructed via consensus clustering and machine learning algorithms. Five genes were identified as diagnostic markers for sepsis and can thus assist in clinical diagnosis and guide personalized treatment. Full article
Show Figures

Figure 1

18 pages, 9582 KiB  
Article
METTL3 Promotes Cutaneous T-Cell Lymphoma Progression by Regulating ARHGEF12 Expression
by Lu Gan, Yingqi Kong, Haoze Shi, Congcong Zhang, Cuicui Tian and Hao Chen
Int. J. Mol. Sci. 2025, 26(8), 3640; https://doi.org/10.3390/ijms26083640 - 11 Apr 2025
Viewed by 557
Abstract
Recent studies have identified N6-methyladenosine (m6A) RNA methylation as a key regulatory mechanism in tumor progression. This study aimed to elucidate the biological function and clinical relevance of the m6A methyltransferase METTL3 in cutaneous T-cell lymphoma (CTCL). Our findings demonstrated that METTL3 expression [...] Read more.
Recent studies have identified N6-methyladenosine (m6A) RNA methylation as a key regulatory mechanism in tumor progression. This study aimed to elucidate the biological function and clinical relevance of the m6A methyltransferase METTL3 in cutaneous T-cell lymphoma (CTCL). Our findings demonstrated that METTL3 expression is upregulated in CTCL, and its knockdown suppresses CTCL progression. Mechanistically, the downregulation of METTL3-mediated m6A modification on ARHGEF12 mRNA accelerated its degradation, a process that is closely associated with tumor behaviors. These results suggest that METTL3 may serve as a potential therapeutic target in CTCL. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 11311 KiB  
Article
The MCPH7 Gene Product STIL Is Essential for Dendritic Spine Formation
by Tohru Matsuki, Hidenori Tabata, Masashi Ueda, Hideaki Ito, Koh-ichi Nagata, Yumi Tsuneura, Shima Eda, Kenji Kasai and Atsuo Nakayama
Cells 2025, 14(2), 62; https://doi.org/10.3390/cells14020062 - 7 Jan 2025
Cited by 1 | Viewed by 2934
Abstract
Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 [...] Read more.
Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of Stil resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo. Rescue experiments indicated that the STIL requirement for spine formation/maintenance depended on its coiled coil domain that mediates the association with ARHGEF7. The overexpression of Rac1/Cdc42 compensated for the spine reduction caused by STIL knockdown. FRET experiments showed that Rac activation is impaired in STIL knockdown neurons. Chemical long-term potentiation, which triggers Rac activation, promoted STIL accumulation in the spine and its association with ARHGEF7. The dynamics of these proteins further supported their coordinated involvement in spine formation/maintenance. Based on these findings, we concluded that the centrosomal protein STIL is a novel regulatory factor essential for spine formation/maintenance by activating Rac and its downstream pathway, possibly through the association with ARHGEF7. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

30 pages, 18286 KiB  
Review
X-Linked Epilepsies: A Narrative Review
by Pia Bernardo, Claudia Cuccurullo, Marica Rubino, Gabriella De Vita, Gaetano Terrone, Leonilda Bilo and Antonietta Coppola
Int. J. Mol. Sci. 2024, 25(7), 4110; https://doi.org/10.3390/ijms25074110 - 8 Apr 2024
Cited by 4 | Viewed by 3952
Abstract
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in [...] Read more.
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype–phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance. Full article
(This article belongs to the Special Issue Molecular Advances in Epilepsy and Seizures)
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Exosomal miRNA Changes Associated with Restoration to Sinus Rhythm in Atrial Fibrillation Patients
by Pei-Chien Tsai, Albert Min-Shan Ko, Yu-Lin Chen, Cheng-Hsun Chiu, Yung-Hsin Yeh and Feng-Chun Tsai
Int. J. Mol. Sci. 2024, 25(7), 3861; https://doi.org/10.3390/ijms25073861 - 29 Mar 2024
Cited by 2 | Viewed by 1988
Abstract
We aimed to identify serum exosomal microRNAs (miRNAs) associated with the transition from atrial fibrillation (AF) to sinus rhythm (SR) and investigate their potential as biomarkers for the early recurrence of AF within three months post-treatment. We collected blood samples from eight AF [...] Read more.
We aimed to identify serum exosomal microRNAs (miRNAs) associated with the transition from atrial fibrillation (AF) to sinus rhythm (SR) and investigate their potential as biomarkers for the early recurrence of AF within three months post-treatment. We collected blood samples from eight AF patients at Chang Gung Memorial Hospital in Taiwan both immediately before and within 14 days following rhythm control treatment. Exosomes were isolated from these samples, and small RNA sequencing was performed. Using DESeq2 analysis, we identified nine miRNAs (16-2-3p, 22-3p, 23a-3p, 23b-3p, 125a-5p, 328-3p, 423-5p, 504-5p, and 582-3p) associated with restoration to SR. Further analysis using the DIABLO model revealed a correlation between the decreased expression of miR-125a-5p and miR-328-3p and the early recurrence of AF. Furthermore, early recurrence is associated with a longer duration of AF, presumably indicating a more extensive state of underlying cardiac remodeling. In addition, the reads were mapped to mRNA sequences, leading to the identification of 14 mRNAs (AC005041.1, ARHGEF12, AMT, ANO8, BCL11A, DIO3OS, EIF4ENIF1, G2E3-AS1, HERC3, LARS, NT5E, PITX1, SLC16A12, and ZBTB21) associated with restoration to SR. Monitoring these serum exosomal miRNA and mRNA expression patterns may be beneficial for optimizing treatment outcomes in AF patients. Full article
(This article belongs to the Special Issue Genetic Research in Cardiac Diseases)
Show Figures

Figure 1

7 pages, 394 KiB  
Communication
High Frequencies of Genetic Variants in Patients with Atypical Femoral Fractures
by Álvaro del Real, Raquel Cruz, Carolina Sañudo, José L. Pérez-Castrillón, María I. Pérez-Núñez, Jose M. Olmos, José L. Hernández, Carmen García-Ibarbia, Carmen Valero and Jose A. Riancho
Int. J. Mol. Sci. 2024, 25(4), 2321; https://doi.org/10.3390/ijms25042321 - 15 Feb 2024
Cited by 3 | Viewed by 1752
Abstract
This study explores the genetic factors associated with atypical femoral fractures (AFF), rare fractures associated with prolonged anti-resorptive therapy. AFF are fragility fractures that typically appear in the subtrochanteric or diaphyseal regions of the femur. While some cases resemble fractures in rare genetic [...] Read more.
This study explores the genetic factors associated with atypical femoral fractures (AFF), rare fractures associated with prolonged anti-resorptive therapy. AFF are fragility fractures that typically appear in the subtrochanteric or diaphyseal regions of the femur. While some cases resemble fractures in rare genetic bone disorders, the exact cause remains unclear. This study investigates 457 genes related to skeletal homeostasis in 13 AFF patients by exome sequencing, comparing the results with osteoporotic patients (n = 27) and Iberian samples from the 1000 Genomes Project (n = 107). Only one AFF case carried a pathogenic variant in the gene set, specifically in the ALPL gene. The study then examined variant accumulation in the gene set, revealing significantly more variants in AFF patients than in osteoporotic patients without AFF (p = 3.7 × 10−5), particularly in ACAN, AKAP13, ARHGEF3, P4HB, PITX2, and SUCO genes, all of them related to osteogenesis. This suggests that variant accumulation in bone-related genes may contribute to AFF risk. The polygenic nature of AFF implies that a complex interplay of genetic factors determines the susceptibility to AFF, with ACAN, SUCO, AKAP13, ARHGEF3, PITX2, and P4HB as potential genetic risk factors. Larger studies are needed to confirm the utility of gene set analysis in identifying patients at high risk of AFF during anti-resorptive therapy. Full article
(This article belongs to the Special Issue Molecular Advances in Osteoporosis Study)
Show Figures

Figure 1

17 pages, 4892 KiB  
Article
Ephexin3/ARHGEF5 Together with Cell Migration Signaling Partners within the Tumor Microenvironment Define Prognostic Transcriptional Signatures in Multiple Cancer Types
by Dante Gustavo Juan-Guadarrama, Yarely Mabell Beltrán-Navarro, Guadalupe Reyes-Cruz and José Vázquez-Prado
Int. J. Mol. Sci. 2023, 24(22), 16427; https://doi.org/10.3390/ijms242216427 - 17 Nov 2023
Cited by 1 | Viewed by 2206
Abstract
Cancer cell migration involves a repertoire of signaling proteins that lead cytoskeleton reorganization as a critical step in metastatic dissemination. RhoGEFs are multidomain effectors that integrate signaling inputs to activate the molecular switches that orchestrate actin cytoskeleton reorganization. Ephexins, a group of five [...] Read more.
Cancer cell migration involves a repertoire of signaling proteins that lead cytoskeleton reorganization as a critical step in metastatic dissemination. RhoGEFs are multidomain effectors that integrate signaling inputs to activate the molecular switches that orchestrate actin cytoskeleton reorganization. Ephexins, a group of five RhoGEFs, play oncogenic roles in invasive and metastatic cancer, leading to a mechanistic hypothesis about their function as signaling nodes assembling functional complexes that guide cancer cell migration. To identify clinically significant Ephexin signaling partners, we applied three systematic data mining strategies, based on the screening of essential Ephexins in multiple cancer cell lines and the identification of coexpressed signaling partners in the TCGA cancer patient datasets. Based on the domain architecture of encoded proteins and gene ontology criteria, we selected Ephexin signaling partners with a role in cytoskeletal reorganization and cell migration. We focused on Ephexin3/ARHGEF5, identified as an essential gene in multiple cancer cell types. Based on significant coexpression data and coessentiality, the signaling repertoire that accompanies Ephexin3 corresponded to three groups: pan-cancer, cancer-specific and coessential. To further select the Ephexin3 signaling partners likely to be relevant in clinical settings, we first identified those whose high expression was statistical linked to shorter patient survival. The resulting Ephexin3 transcriptional signatures represent significant accumulated risk, predictive of shorter survival, in 17 cancer types, including PAAD, LUAD, LGG, OSC, AML, KIRC, THYM, BLCA, LIHC and UCEC. The signaling landscape that accompanies Ephexin3 in various cancer types included the tyrosine kinase receptor MET and the tyrosine phosphatase receptor PTPRF, the serine/threonine kinases MARK2 and PAK6, the Rho GTPases RHOD, RHOF and RAC1, and the cytoskeletal regulator DIAHP1. Our findings set the basis to further explore the role of Ephexin3/ARHGEF5 as an essential effector and signaling hub in cancer cell migration. Full article
(This article belongs to the Special Issue Tumor Microenvironment 2023)
Show Figures

Figure 1

17 pages, 4596 KiB  
Article
Oncogenic Gαq activates RhoJ through PDZ-RhoGEF
by Rodolfo Daniel Cervantes-Villagrana, Víctor Manuel Color-Aparicio, Alejandro Castillo-Kauil, Irving García-Jiménez, Yarely Mabell Beltrán-Navarro, Guadalupe Reyes-Cruz and José Vázquez-Prado
Int. J. Mol. Sci. 2023, 24(21), 15734; https://doi.org/10.3390/ijms242115734 - 29 Oct 2023
Cited by 1 | Viewed by 3384
Abstract
Oncogenic Gαq causes uveal melanoma via non-canonical signaling pathways. This constitutively active mutant GTPase is also found in cutaneous melanoma, lung adenocarcinoma, and seminoma, as well as in benign vascular tumors, such as congenital hemangiomas. We recently described that PDZ-RhoGEF (also known [...] Read more.
Oncogenic Gαq causes uveal melanoma via non-canonical signaling pathways. This constitutively active mutant GTPase is also found in cutaneous melanoma, lung adenocarcinoma, and seminoma, as well as in benign vascular tumors, such as congenital hemangiomas. We recently described that PDZ-RhoGEF (also known as ARHGEF11), a canonical Gα12/13 effector, is enabled by Gαs Q227L to activate CdcIn addition, and we demonstrated that constitutively active Gαq interacts with the PDZ-RhoGEF DH-PH catalytic module, but does not affect its binding to RhoA or Cdc. This suggests that it guides this RhoGEF to gain affinity for other GTPases. Since RhoJ, a small GTPase of the Cdc42 subfamily, has been involved in tumor-induced angiogenesis and the metastatic dissemination of cancer cells, we hypothesized that it might be a target of oncogenic Gαq signaling via PDZ-RhoGEF. Consistent with this possibility, we found that Gαq Q209L drives full-length PDZ-RhoGEF and a DH-PH construct to interact with nucleotide-free RhoJ-G33A, a mutant with affinity for active RhoJ-GEFs. Gαq Q209L binding to PDZ-RhoGEF was mapped to the PH domain, which, as an isolated construct, attenuated the interaction of this mutant GTPase with PDZ-RhoGEF’s catalytic module (DH-PH domains). Expression of these catalytic domains caused contraction of endothelial cells and generated fine cell sprouts that were inhibited by co-expression of dominant negative RhoJ. Using relational data mining of uveal melanoma patient TCGA datasets, we got an insight into the signaling landscape that accompanies the Gαq/PDZ-RhoGEF/RhoJ axis. We identified three transcriptional signatures statistically linked with shorter patient survival, including GPCRs and signaling effectors that are recognized as vulnerabilities in cancer cell synthetic lethality datasets. In conclusion, we demonstrated that an oncogenic Gαq mutant enables the PDZ-RhoGEF DH-PH module to recognize RhoJ, suggesting an allosteric mechanism by which this constitutively active GTPase stimulates RhoJ via PDZ-RhoGEF. These findings highlight PDZ-RhoGEF and RhoJ as potential targets in tumors driven by mutant Gαq. Full article
Show Figures

Figure 1

17 pages, 4000 KiB  
Article
βPix Guanine Nucleotide Exchange Factor Regulates Regeneration of Injured Peripheral Axons
by Yewon Jeon, Yoon Kyung Shin, Hwigyeong Kim, Yun Young Choi, Minjae Kang, Younghee Kwon, Yongcheol Cho, Sung Wook Chi and Jung Eun Shin
Int. J. Mol. Sci. 2023, 24(18), 14357; https://doi.org/10.3390/ijms241814357 - 20 Sep 2023
Cited by 3 | Viewed by 1853
Abstract
Axon regeneration is essential for successful recovery after peripheral nerve injury. Although growth cone reformation and axonal extension are crucial steps in axonal regeneration, the regulatory mechanisms underlying these dynamic processes are poorly understood. Here, we identify βPix (Arhgef7), the guanine nucleotide exchange [...] Read more.
Axon regeneration is essential for successful recovery after peripheral nerve injury. Although growth cone reformation and axonal extension are crucial steps in axonal regeneration, the regulatory mechanisms underlying these dynamic processes are poorly understood. Here, we identify βPix (Arhgef7), the guanine nucleotide exchange factor for Rac1 GTPase, as a regulator of axonal regeneration. After sciatic nerve injury in mice, the expression levels of βPix increase significantly in nerve segments containing regenerating axons. In regrowing axons, βPix is localized in the peripheral domain of the growth cone. Using βPix neuronal isoform knockout (NIKO) mice in which the neuronal isoforms of βPix are specifically removed, we demonstrate that βPix promotes neurite outgrowth in cultured dorsal root ganglion neurons and in vivo axon regeneration after sciatic nerve crush injury. Activation of cJun and STAT3 in the cell bodies is not affected in βPix NIKO mice, supporting the local action of βPix in regenerating axons. Finally, inhibiting Src, a kinase previously identified as an activator of the βPix neuronal isoform, causes axon outgrowth defects in vitro, like those found in the βPix NIKO neurons. Altogether, these data indicate that βPix plays an important role in axonal regrowth during peripheral nerve regeneration. Full article
Show Figures

Figure 1

12 pages, 3545 KiB  
Article
Epigenetic Findings in Twins with Esophageal Atresia
by Michal Błoch, Piotr Gasperowicz, Sylwester Gerus, Katarzyna Rasiewicz, Arleta Lebioda, Pawel Skiba, Rafal Płoski, Dariusz Patkowski, Pawel Karpiński and Robert Śmigiel
Genes 2023, 14(9), 1822; https://doi.org/10.3390/genes14091822 - 20 Sep 2023
Cited by 1 | Viewed by 1958
Abstract
Esophageal atresia (EA) is the most common malformation of the upper gastrointestinal tract. The estimated incidence of EA is 1 in 3500 births. EA is more frequently observed in boys and in twins. The exact cause of isolated EA remains unknown; a multifactorial [...] Read more.
Esophageal atresia (EA) is the most common malformation of the upper gastrointestinal tract. The estimated incidence of EA is 1 in 3500 births. EA is more frequently observed in boys and in twins. The exact cause of isolated EA remains unknown; a multifactorial etiology, including epigenetic gene expression modifications, is considered. The study included six pairs of twins (three pairs of monozygotic twins and three pairs of dizygotic twins) in which one child was born with EA as an isolated defect, while the other twin was healthy. DNA samples were obtained from the blood and esophageal tissue of the child with EA as well as from the blood of the healthy twin. The reduced representation bisulfite sequencing (RRBS) technique was employed for a whole-genome methylation analysis. The analyses focused on comparing the CpG island methylation profiles between patients with EA and their healthy siblings. Hypermethylation in the promoters of 219 genes and hypomethylation in the promoters of 78 genes were observed. A pathway enrichment analysis revealed the statistically significant differences in methylation profile of 10 hypermethylated genes in the Rho GTPase pathway, previously undescribed in the field of EA (ARHGAP36, ARHGAP4, ARHGAP6, ARHGEF6, ARHGEF9, FGD1, GDI1, MCF2, OCRL, and STARD8). Full article
(This article belongs to the Special Issue Genetics and Genomics of Heritable Pediatric Disorders)
Show Figures

Figure 1

24 pages, 1799 KiB  
Article
Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers
by Ezgi Demir Karaman and Zerrin Işık
Med. Sci. 2023, 11(3), 44; https://doi.org/10.3390/medsci11030044 - 27 Jun 2023
Cited by 12 | Viewed by 5417
Abstract
Combining omics data from different layers using integrative methods provides a better understanding of the biology of a complex disease such as cancer. The discovery of biomarkers related to cancer development or prognosis helps to find more effective treatment options. This study integrates [...] Read more.
Combining omics data from different layers using integrative methods provides a better understanding of the biology of a complex disease such as cancer. The discovery of biomarkers related to cancer development or prognosis helps to find more effective treatment options. This study integrates multi-omics data of different cancer types with a network-based approach to explore common gene modules among different tumors by running community detection methods on the integrated network. The common modules were evaluated by several biological metrics adapted to cancer. Then, a new prognostic scoring method was developed by weighting mRNA expression, methylation, and mutation status of genes. The survival analysis pointed out statistically significant results for GNG11, CBX2, CDKN3, ARHGEF10, CLN8, SEC61G and PTDSS1 genes. The literature search reveals that the identified biomarkers are associated with the same or different types of cancers. Our method does not only identify known cancer-specific biomarker genes, but also proposes new potential biomarkers. Thus, this study provides a rationale for identifying new gene targets and expanding treatment options across cancer types. Full article
(This article belongs to the Section Cancer and Cancer-Related Research)
Show Figures

Figure 1

15 pages, 2046 KiB  
Article
Novel Susceptibility Genes Drive Familial Non-Medullary Thyroid Cancer in a Large Consanguineous Kindred
by Pierre Majdalani, Uri Yoel, Tayseer Nasasra, Merav Fraenkel, Alon Haim, Neta Loewenthal, Raz Zarivach, Eli Hershkovitz and Ruti Parvari
Int. J. Mol. Sci. 2023, 24(9), 8233; https://doi.org/10.3390/ijms24098233 - 4 May 2023
Cited by 3 | Viewed by 2724
Abstract
Familial non-medullary thyroid cancer (FNMTC) is a well-differentiated thyroid cancer (DTC) of follicular cell origin in two or more first-degree relatives. Patients typically demonstrate an autosomal dominant inheritance pattern with incomplete penetrance. While known genes and chromosomal loci account for some FNMTC, the [...] Read more.
Familial non-medullary thyroid cancer (FNMTC) is a well-differentiated thyroid cancer (DTC) of follicular cell origin in two or more first-degree relatives. Patients typically demonstrate an autosomal dominant inheritance pattern with incomplete penetrance. While known genes and chromosomal loci account for some FNMTC, the molecular basis for most FNMTC remains elusive. To identify the variation(s) causing FNMTC in an extended consanguineous family consisting of 16 papillary thyroid carcinoma (PTC) cases, we performed whole exome sequence (WES) analysis of six family patients. We demonstrated an association of ARHGEF28, FBXW10, and SLC47A1 genes with FNMTC. The variations in these genes may affect the structures of their encoded proteins and, thus, their function. The most promising causative gene is ARHGEF28, which has high expression in the thyroid, and its protein-protein interactions (PPIs) suggest predisposition of PTC through ARHGEF28-SQSTM1-TP53 or ARHGEF28-PTCSC2-FOXE1-TP53 associations. Using DNA from a patient’s thyroid malignant tissue, we analyzed the possible cooperation of somatic variations with these genes. We revealed two somatic heterozygote variations in XRCC1 and HRAS genes known to implicate thyroid cancer. Thus, the predisposition by the germline variations and a second hit by somatic variations could lead to the progression to PTC. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 44790 KiB  
Article
Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage
by Zhigang Hu and Xiaolin Liu
Int. J. Mol. Sci. 2023, 24(6), 5214; https://doi.org/10.3390/ijms24065214 - 8 Mar 2023
Cited by 10 | Viewed by 2777
Abstract
Skeletal muscle is an important economic trait in duck breeding; however, little is known about the molecular mechanisms of its embryonic development. Here, the transcriptomes and metabolomes of breast muscle of Pekin duck from 15 (E15_BM), 21 (E21_BM), and 27 (E27_BM) days of [...] Read more.
Skeletal muscle is an important economic trait in duck breeding; however, little is known about the molecular mechanisms of its embryonic development. Here, the transcriptomes and metabolomes of breast muscle of Pekin duck from 15 (E15_BM), 21 (E21_BM), and 27 (E27_BM) days of incubation were compared and analyzed. The metabolome results showed that the differentially accumulated metabolites (DAMs), including the up-regulated metabolites, l-glutamic acid, n-acetyl-1-aspartylglutamic acid, l-2-aminoadipic acid, 3-hydroxybutyric acid, bilirubin, and the significantly down-regulated metabolites, palmitic acid, 4-guanidinobutanoate, myristic acid, 3-dehydroxycarnitine, and s-adenosylmethioninamine, were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of cofactors, protein digestion and absorption, and histidine metabolism, suggesting that these pathways may play important roles in the muscle development of duck during the embryonic stage. Moreover, a total of 2142 (1552 up-regulated and 590 down-regulated), 4873 (3810 up-regulated and 1063 down-regulated), and 2401 (1606 up-regulated and 795 down-regulated) DEGs were identified from E15_BM vs. E21_BM, E15_BM vs. E27_BM and E21_BM vs. E27_BM in the transcriptome, respectively. The significantly enriched GO terms from biological processes were positive regulation of cell proliferation, regulation of cell cycle, actin filament organization, and regulation of actin cytoskeleton organization, which were associated with muscle or cell growth and development. Seven significant pathways, highly enriched by FYN, PTK2, PXN, CRK, CRKL, PAK, RHOA, ROCK, INSR, PDPK1, and ARHGEF, were focal adhesion, regulation of actin cytoskeleton, wnt signaling pathway, insulin signaling pathway, extracellular matrix (ECM)-receptor interaction, cell cycle, and adherens junction, which participated in regulating the development of skeletal muscle in Pekin duck during the embryonic stage. KEGG pathway analysis of the integrated transcriptome and metabolome indicated that the pathways, including arginine and proline metabolism, protein digestion and absorption, and histidine metabolism, were involved in regulating skeletal muscle development in embryonic Pekin duck. These findings suggested that the candidate genes and metabolites involved in crucial biological pathways may regulate muscle development in the Pekin duck at the embryonic stage, and increased our understanding of the molecular mechanisms underlying the avian muscle development. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

21 pages, 5414 KiB  
Article
GEF-H1 Transduces FcεRI Signaling in Mast Cells to Activate RhoA and Focal Adhesion Formation during Exocytosis
by Yitian Guo, Judeah Negre and Gary Eitzen
Cells 2023, 12(4), 537; https://doi.org/10.3390/cells12040537 - 7 Feb 2023
Cited by 5 | Viewed by 2310
Abstract
When antigen-stimulated, mast cells release preformed inflammatory mediators stored in cytoplasmic granules. This occurs via a robust exocytosis mechanism termed degranulation. Our previous studies revealed that RhoA and Rac1 are activated during mast cell antigen stimulation and are required for mediator release. Here, [...] Read more.
When antigen-stimulated, mast cells release preformed inflammatory mediators stored in cytoplasmic granules. This occurs via a robust exocytosis mechanism termed degranulation. Our previous studies revealed that RhoA and Rac1 are activated during mast cell antigen stimulation and are required for mediator release. Here, we show that the RhoGEF, GEF-H1, acts as a signal transducer of antigen stimulation to activate RhoA and promote mast cell spreading via focal adhesion (FA) formation. Cell spreading, granule movement, and exocytosis were all reduced in antigen-stimulated mast cells when GEF-H1 was depleted by RNA interference. GEF-H1-depleted cells also showed a significant reduction in RhoA activation, resulting in reduced stress fiber formation without altering lamellipodia formation. Ectopic expression of a constitutively active RhoA mutant restored normal morphology in GEF-H1-depleted cells. FA formation during antigen stimulation required GEF-H1, suggesting it is a downstream target of the GEF-H1-RhoA signaling axis. GEF-H1 was activated by phosphorylation in conjunction with antigen stimulation. Syk kinase is linked to the FcεRI signaling pathway and the Syk inhibitor, GS-9973, blocked GEF-H1 activation and also suppressed cell spreading, granule movement, and exocytosis. We concluded that during FcεRI receptor stimulation, GEF-H1 transmits signals to RhoA activation and FA formation to facilitate the exocytosis mechanism. Full article
(This article belongs to the Special Issue Mast Cells in Immunity and Inflammation)
Show Figures

Figure 1

Back to TopTop