Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (126)

Search Parameters:
Keywords = AISI 316Ti

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 - 2 Aug 2025
Viewed by 245
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Graphical abstract

19 pages, 2616 KiB  
Article
Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding
by Olena Karpovych, Ivan Karpovych, Oleksii Fedosov, Denys Zhumar, Yevhen Karakash, Miroslav Rimar, Jan Kizek and Marcel Fedak
Materials 2025, 18(15), 3596; https://doi.org/10.3390/ma18153596 - 31 Jul 2025
Viewed by 208
Abstract
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate [...] Read more.
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate Electrolytic Tough Pitch Copper (Cu-ETP) copper layer, was solved. The joints were studied using micro-X-ray spectral analysis, microstructural analysis, and mechanical tests. High mutual diffusion of copper and titanium, along with increased concentrations of Cr and V in copper, was detected. The shear strength of the obtained welded joints is 250 MPa and 235 MPa at 30 min and 15 min, respectively, which is higher than the copper layer’s strength (180 MPa). The obtained results are explained by the dislocation diffusion mechanism in the volume of grains and beyond, due to thermal deformations during welding. Under operating conditions of internal pressure and cryogenic temperatures, the strength of the connection is ensured by the entire two-layer structure, and tightness is ensured by a vacuum-tight diffusion connection. The obtained strength of the connection (250 MPa) is sufficient under the specified operating conditions. Analysis of existing solutions in the literature review indicates that industrial application of technology for manufacturing bimetallic adapters from AISI 321 stainless steel and Ti-6Al-4V titanium alloy is limited to butt joints with small geometric dimensions. Studies of the transition zone structure and diffusion processes in bimetallic joints with developed conical contact surfaces enabled determination of factors affecting joint structure and diffusion coefficients. The obtained bimetallic adapters, made of Ti-6Al-4V titanium alloy and AISI 321 stainless steel, can be used to connect titanium high-pressure vessels with stainless steel pipelines. Full article
Show Figures

Figure 1

21 pages, 7349 KiB  
Article
Effect of Ti Doping of Al0.7CoCrFeNi-Based High Entropy Alloys on Their Erosion Resistance by Solid Particles
by Wojciech J. Nowak, Tadeusz Kubaszek, Andrzej Gradzik, Małgorzata Grądzka-Dahlke, Dariusz Perkowski, Marzena Tokarewicz, Mariusz Walczak and Mirosław Szala
Materials 2025, 18(14), 3328; https://doi.org/10.3390/ma18143328 - 15 Jul 2025
Viewed by 259
Abstract
The erosion resistance of materials against solid particles is a very important property, especially in the transportation of powders or in aeronautics (dust inside jet engines). There is a strong need to introduce new materials that have higher solid particle erosion resistance than [...] Read more.
The erosion resistance of materials against solid particles is a very important property, especially in the transportation of powders or in aeronautics (dust inside jet engines). There is a strong need to introduce new materials that have higher solid particle erosion resistance than state-of-the-art materials. Thus, in the present work, the solid erosion particles of high entropy alloys (HEAs) based on the Al0.7CoCrFeNi matrix were studied compared to the state-of-the-art stainless steel AISI 304. Furthermore, the effect of the addition of Ti to HEAs on hardness and erosion resistance was investigated. Current research included the development of the chemical composition of a new kind of HEA designed on the basis of thermodynamical calculations performed in CALPHAD, its manufacturing, full characterization involving microstructural and phase analyses, hardness measurements, solid particle erosion tests, and finally, the elucidation of erosion mechanisms. It was found that HEAs showed higher hardness as well as erosion resistance than AISI 304. Moreover, it was found that the increase in Ti content in an HEA resulted in an increase in the hardness and resistance to the erosion of the studied HEA. As the main reason for this phenomenon, the stabilization of the β-BCC phase, suppression of the α-FCC phase, and the appearance of the Ni3Ti phase in the studied HEA were claimed. Full article
(This article belongs to the Special Issue New Advances in High Entropy Alloys)
Show Figures

Figure 1

12 pages, 3535 KiB  
Article
TiN-Ag Multilayer Protective Coatings for Surface Modification of AISI 316 Stainless Steel Medical Implants
by Božana Petrović, Dijana Mitić, Minja Miličić Lazić, Miloš Lazarević, Anka Trajkovska Petkoska, Ilija Nasov, Slavoljub Živković and Vukoman Jokanović
Coatings 2025, 15(7), 820; https://doi.org/10.3390/coatings15070820 - 14 Jul 2025
Viewed by 328
Abstract
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film [...] Read more.
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film consisting of titanium nitride and silver layers (TiN-Ag film). TiN-Ag films were deposited on the surface of AISI 316 SS substrate by a combination of cathodic arc evaporation and DC magnetron sputtering. SS substrate was analyzed by TEM, while deposited coatings were analyzed by SEM, EDS and wettability measurements. Also, mitochondrial activity assay, and osteogenic and chondrogenic differentiation were performed on dental pulp stem cells (DPSCs). SEM and EDS revealed excellent adhesion between coatings’ layers, with the top layer predominantly composed of Ag, which is responsible for antibacterial properties. TiN-Ag film exhibited moderately hydrophilic behaviour which is desirable for orthopedic implant applications. Biological assays revealed significantly higher mitochondrial activity and enhanced osteogenic and chondrogenic differentiation of DPSC on TiN-Ag films compared to TiN films. The newly designed TiN-Ag coatings showed a great potential for the surface modification of SS implants, and further detailed investigations will explore their suitability for application in clinical practice. Full article
Show Figures

Figure 1

14 pages, 4177 KiB  
Article
Comparative Evaluation of Corrosion Resistance of AISI 316L and Ti6Al4V Dental Materials Under Simulated Inflammatory Conditions
by Mojca Slemnik
Materials 2025, 18(10), 2243; https://doi.org/10.3390/ma18102243 - 12 May 2025
Viewed by 441
Abstract
Titanium and its alloys, as well as stainless steel, are commonly used materials for implants in the human body due to their excellent biocompatibility, corrosion resistance, and mechanical properties. However, the long-term performance of these materials in the oral cavity can be affected [...] Read more.
Titanium and its alloys, as well as stainless steel, are commonly used materials for implants in the human body due to their excellent biocompatibility, corrosion resistance, and mechanical properties. However, the long-term performance of these materials in the oral cavity can be affected by the complex oral environment, including the ingestion of food, beverages, and oral hygiene products, leading to the presence of various ions, pH fluctuations, and inflammatory processes. In this study, the corrosion properties of two biocompatible materials, Ti6Al4V and AISI 316L stainless steel, are investigated under varying oral inflammatory conditions. Using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), SEM, and EDS analysis, the corrosion behaviour of both materials was analysed in environments simulating mild and severe inflammation. Results indicate that Ti6Al4V exhibits superior corrosion resistance at low H2O2 concentrations mimicking mild inflammation, with significantly lower corrosion rates compared to AISI 316L. However, at higher H2O2 concentrations, which correspond to severe inflammation, AISI 316L shows better resistance despite its susceptibility to pitting corrosion. Both alloys show reduced passivation after 72 h, with corrosion products accumulating on the surface after 96 h, contributing to repassivation. These results emphasise the need for individualized material selection in dental applications based on a patient’s susceptibility to oral inflammation. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

26 pages, 12604 KiB  
Article
Investigation of Lattice Geometries Formed by Metal Powder Additive Manufacturing for Energy Absorption: A Comparative Study on Ti6Al4V, Inconel 718, and AISI 316L
by Ömer Faruk Çakır and Mehmet Erdem
Machines 2025, 13(4), 316; https://doi.org/10.3390/machines13040316 - 13 Apr 2025
Cited by 1 | Viewed by 852
Abstract
Impact absorbers are needed in many different areas in terms of energy absorption and crashworthiness. While the design of these structures is expected to increase mechanical performance, they are expected to be lightweight, and when evaluated in this context, lattice structures come to [...] Read more.
Impact absorbers are needed in many different areas in terms of energy absorption and crashworthiness. While the design of these structures is expected to increase mechanical performance, they are expected to be lightweight, and when evaluated in this context, lattice structures come to the fore. In this study, impact absorbers, also known as crash boxes, consisting of lattice structures designed to increase energy absorption performance were fabricated by a new manufacturing method, metal powder additive manufacturing, and their mechanical performance was experimentally investigated under quasi-static axial loading, and energy absorption data were obtained. The specimens were designed from Ti6Al4V, INC 718, and AISI 316L materials by forming 18 matrix structures with square and hexagonal geometries. According to this study, the lattice structures absorbed up to 4.5 times more energy than the shell structures of a similar material group. According to the normalized values among all samples, the hexagonal sample made of Ti6Al4V material showed 4.3 times higher energy absorption efficiency. The AISI 316L material showed the best crushing performance due to its ductile structure. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

18 pages, 3619 KiB  
Article
Effect of Grain Size on Thermophysical Properties in Twinning-Induced Plasticity Steel
by Joong-Ki Hwang
Materials 2025, 18(4), 890; https://doi.org/10.3390/ma18040890 - 18 Feb 2025
Viewed by 666
Abstract
This study investigated the thermophysical properties of TWIP steel with respect to grain size. The coefficient of thermal expansion (β) of TWIP steel was approximately 22.4 × 10−6 °C−1, and this value was hardly affected by the grain [...] Read more.
This study investigated the thermophysical properties of TWIP steel with respect to grain size. The coefficient of thermal expansion (β) of TWIP steel was approximately 22.4 × 10−6 °C−1, and this value was hardly affected by the grain size. Therefore the density of TWIP steel was also unaffected by grain size within the tested range. The β in TWIP steel was higher than that of plain carbon steels (13–15 × 10−6 °C−1) such as interstitial free (IF) steel and low-carbon steel, and stainless steels (18–21 × 10−6 °C−1) such as X10NiCrMoTiB1515 steel and 18Cr-9Ni-2.95Cu-0.58Nb-0.1C steel. The specific heat capacity (cp) increased with temperature because the major factor affecting cp is the lattice vibrations. As the temperature increases, atomic vibrations become more active, allowing the material to store more thermal energy. Meanwhile, cp slightly increased with increasing grain size since grain boundaries can suppress lattice vibrations and reduce the material’s ability to store thermal energy. The thermal conductivity (k) in TWIP steel gradually increased with temperature, consistent with the behavior observed in other high-alloy metals. k slightly increased with grain size, especially at lower temperatures, due to the increased grain boundary scattering of free electrons and phonons. This trend aligns with the Kapitza resistance model. While TWIP steel with refined grains exhibited higher yield and tensile strengths, this came with a decrease in total elongation and k. Thus, optimizing grain size to enhance both mechanical and thermal properties presents a challenge. The k in TWIP steel was substantially lower compared with that of plain carbon steels such as AISI 4340 steel, especially at low temperatures, due to its higher alloy content. At room temperature, the k of TWIP steels and plain carbon steels were approximately 13 W/m°C and 45 W/m°C, respectively. However, in higher temperature ranges where face centered cubic structures are predominant, the difference in k of the two steels became less pronounced. At 800 °C, for example, TWIP and plain carbon steels exhibited k values of approximately 24 W/m°C and 29 W/m°C, respectively. Full article
Show Figures

Figure 1

34 pages, 25406 KiB  
Article
Study on Fatigue Life and Fracture Behaviour of Similar and Dissimilar Resistance Spot-Welded Joints of Titanium Grade 2 Alloy and Austenitic Stainless Steel 304
by Marwan T. Mezher, Alejandro Pereira and Tomasz Trzepieciński
Appl. Sci. 2025, 15(4), 1938; https://doi.org/10.3390/app15041938 - 13 Feb 2025
Viewed by 1297
Abstract
Resistance spot welding (RSW) is now the primary joining process used in the automobile and aerospace sectors. Mechanical parts, when put into service, often undergo cyclic stress. As a result, avoiding fatigue failure should be the top priority when designing these parts. Given [...] Read more.
Resistance spot welding (RSW) is now the primary joining process used in the automobile and aerospace sectors. Mechanical parts, when put into service, often undergo cyclic stress. As a result, avoiding fatigue failure should be the top priority when designing these parts. Given that spot welds are a type of localised joining that results in intrinsic circumferential notches, they increase the likelihood of stress concentrations and subsequent fatigue failures of the structure. Most of the fatigue failures in automotive parts originate around a spot weld. To that end, this study seeks to examine the mechanical properties and fatigue behaviour RSW joints made of titanium (Ti) grade 2 alloy and AISI 304 austenitic stainless steel (ASS) with equal and unequal thicknesses of 0.5 and 1 mm. Based on the mechanical properties and fatigue life results, the maximum tensile shear strength and fatigue life for the RSW titanium joint were 613 MPa and 7.37 × 105 cycles for the 0.5–0.5 mm case, 374.7 MPa and 1.39 × 106 cycles for the 1–1 mm case, and 333.5 MPa and 7.69 × 105 cycles for the 1–0.5 mm case, respectively. The maximum shear strength and fatigue life of ASS welded joints were 526.8 MPa and 4.56 × 106 cycles for the 1–1 mm case, 515.2 MPa and 3.35 × 106 cycles for the 0.5–0.5 mm case, and 369.5 MPa and 7.39 × 105 cycles for the 1–0.5 mm case, respectively. The assessment of the shear strength and fatigue life of the dissimilar joints revealed that the maximum shear strength and fatigue life recorded were 183.9 MPa and 6.47 × 105 cycles for the 1 mm Ti–0.5 mm ASS case, 115 MPa and 3.7 × 105 cycles for the 1 mm Ti–1 mm ASS case, 156 MPa and 4.11 × 105 cycles for the 0.5 mm Ti–0.5 mm ASS case, and 129 MPa and 4.11 × 105 cycles for the 0.5 mm Ti–1 mm ASS case. The fatigue life of titanium and stainless steel welded joints is significantly affected by the thickness, particularly at maximum applied stress (0.9% UTS), meaning that similar thicknesses achieve a greater fatigue life than unequal thicknesses. Conversely, the fatigue life of the dissimilar joint reached the greatest extent when an unequal thickness combination was used. The ductile failure of similar Ti and ASS welded joints was demonstrated by the scanning electron microscopy (SEM) examination of fatigue-fractured surfaces under the high-cycle fatigue (HCF) regime, in contrast to the brittle failure noticed in the low-cycle fatigue (LCF) regime. Brittle failure was confirmed by the SEM fatigue of dissimilar joint fractured surfaces due to interfacial failure. The Ti and ASS fractured surfaces presented river-like cleavage facets. On the Ti side, tiny elongated dimples suggest ductile failure before fracture. The topography results showed that the roughness topography parameters of similar and dissimilar fractured specimens made from Ti grade 2 and AISI 304 for the HCF regime were lower than those of the fractured specimens with LCF. The current study is expected to have practical benefits for the aerospace and automotive industries, particularly the manufacturing of body components with an improved strength-to-weight ratio. Full article
Show Figures

Figure 1

17 pages, 1266 KiB  
Article
Analysis of the Surface Quality Characteristics in Hard Turning Under a Minimal Cutting Fluid Environment
by Sandip Mane, Rajkumar Bhimgonda Patil, Anindita Roy, Pritesh Shah and Ravi Sekhar
Appl. Mech. 2025, 6(1), 5; https://doi.org/10.3390/applmech6010005 - 17 Jan 2025
Cited by 2 | Viewed by 1305
Abstract
This paper analyzes the surface quality characteristics, such as arithmetic average roughness (Ra), maximum peak-to-valley height (Rt), and average peak-to-valley height (Rz), in hard turning of AISI 52100 steel using a (TiN/TiCN/Al2O3) coated carbide insert under a minimal cutting [...] Read more.
This paper analyzes the surface quality characteristics, such as arithmetic average roughness (Ra), maximum peak-to-valley height (Rt), and average peak-to-valley height (Rz), in hard turning of AISI 52100 steel using a (TiN/TiCN/Al2O3) coated carbide insert under a minimal cutting fluid environment (MCFA). MCFA, a sustainable high-velocity pulsed jet technique, reduces harmful effects on human health and the environment while improving machining performance. Taguchi’s L27 orthogonal array was used to conduct the experiments. The findings showed that surface roughness increases with feed rate, identified as the most influential parameter, while the depth of cut shows a negligible effect. The main effects plot of signal-to-noise (S/N) ratios for the combined response of Ra, Rt, and Rz revealed the optimal cutting conditions: cutting speed of 140 m/min, feed rate of 0.05 mm/rev, and depth of cut of 0.3 mm. Feed rate ranked highest in influence, followed by cutting speed and depth of cut. The lower values of surface roughness parameters were observed in the ranges of Ra ≈ 0.248–0.309 µm, Rt ≈ 2.013–2.186 µm, and Rz ≈ 1.566 µm at a feed rate of 0.05–0.07 mm/rev. MCFA-assisted hard turning reduces surface roughness by 35–40% compared to dry hard turning and 10% to 24% when compared to the MQL technique. Moreover, this study emphasizes the significant environmental benefits of MCFA, as it incorporates minimal eco-friendly cutting fluids that minimize ecological impact while enhancing surface finish. Full article
Show Figures

Figure 1

16 pages, 5551 KiB  
Article
Determination of Diffusion Coefficients of Nickel and Vanadium into Stainless and Duplex Steel and Titanium
by Šárka Vávrová, Martin Švec, Jaromír Moravec and Daniel Klápště
Metals 2025, 15(1), 8; https://doi.org/10.3390/met15010008 - 27 Dec 2024
Viewed by 846
Abstract
When heterogeneous joints are created, problems with the formation of intermetallic phases arise. There are various ways to reduce the formation of intermetallics. One of the ways that is discussed in this article is to use a suitable interlayer of appropriate thickness when [...] Read more.
When heterogeneous joints are created, problems with the formation of intermetallic phases arise. There are various ways to reduce the formation of intermetallics. One of the ways that is discussed in this article is to use a suitable interlayer of appropriate thickness when forming the joint. A too-thin interlayer does not protect against the formation of brittle intermetallic phases. On the other hand, a too-thick interlayer increases the heterogeneity of the joint and, thus, decreases its useful properties. Within this paper, the formation of diffusion joints between the base material (AISI 304 steel, duplex steel, AISI 316L steel, or titanium grade 2) and the 0.2 mm thick intermediate layer (nickel or vanadium) was studied. Initial diffusion joints were prepared in a Gleeble 3500 machine, and samples for the study of diffusion kinetics were subsequently heat-treated in a vacuum furnace. The result of the research was the determination of specific diffusion parameters of nickel and vanadium into all four tested base materials. The initial diffusion depth (simple heating to the target temperature without holding at this temperature) of nickel was 4.46 µm into duplex steel and 5.48 µm into Ti Gr. 2 at 950 °C. At the same temperature, the initial diffusion depth of vanadium was 14.54 µm into duplex steel and 14.32 µm into Ti Gr. 2. In addition, general equations for the calculation of diffusion coefficients for the mentioned materials in the temperature range of 850 to 1150 °C were established. Full article
Show Figures

Figure 1

18 pages, 18179 KiB  
Article
Improving the Wear and Corrosion Resistance of Titanium Alloy Parts via the Deposition of DLC Coatings
by Alexander Metel, Catherine Sotova, Sergey Fyodorov, Valery Zhylinski, Vadzim Chayeuski, Filipp Milovich, Anton Seleznev, Yuri Bublikov, Kirill Makarevich and Alexey Vereschaka
C 2024, 10(4), 106; https://doi.org/10.3390/c10040106 - 16 Dec 2024
Cited by 4 | Viewed by 2029
Abstract
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, [...] Read more.
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, ensuring the formation of a chromium-saturated diffusion surface layer in the substrate. A Si-DLC layer followed by a pure DLC layer was then deposited. The hardness of the coatings, their surface morphology, fracture strength in the scratch test, and tribological properties and wear resistance in the pin-on-disk test in contact with Al2O3 and steel indenters were investigated. The structure of the DLC coating was studied using transmission electron microscopy, and its corrosion resistance in an environment simulating blood plasma was also investigated. In the pin-on-disk test in contact with Al2O3 and AISI 52100 indenters, the DLC-coated sample demonstrates a much lower friction coefficient and significantly better wear resistance compared to the nitride-coated and uncoated samples. Both nitride coatings—(Zr,Hf)N and ZrN—and the DLC coating slow down the corrosive dissolution of the base compared to the uncoated sample. The corrosion currents of the (Zr,Hf)N-coated samples are 37.01 nA/cm2, 20% higher than those of the ZrN-coated samples. The application of (Zr,Hf)N, ZrN, and DLC coatings on the Ti-6Al-4V alloy significantly inhibits dissolution currents (by 30–40%) and increases polarization resistance 1.5–2.0-fold compared to the uncoated alloy in 0.9% NaCl at 40 °C. Thus, the DLC coating of the described structure simultaneously provides effective wear and corrosion resistance in an environment simulating blood plasma. This coating can be considered in the manufacture of medical products (in particular, implants) from titanium alloys, including those functioning in the human body and subject to mechanical wear (e.g., knee joint endoprostheses). Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites)
Show Figures

Figure 1

17 pages, 16276 KiB  
Article
Effect of Counterbody Material on the Boundary Lubrication Behavior of Commercially Pure Titanium in a Motor Oil
by Yizhao Liu, Mohammed Al-Shan, Richard Bailey and Yong Sun
Lubricants 2024, 12(12), 439; https://doi.org/10.3390/lubricants12120439 - 10 Dec 2024
Cited by 1 | Viewed by 1313
Abstract
Titanium possesses many useful properties and is a technologically important material in engineering. However, lubrication of titanium has long been a problem that has prevented titanium from being more widely used. This is due to its poor tribological properties, deriving from its high [...] Read more.
Titanium possesses many useful properties and is a technologically important material in engineering. However, lubrication of titanium has long been a problem that has prevented titanium from being more widely used. This is due to its poor tribological properties, deriving from its high tendency towards adhesive wear, material transfer, and abrasive wear. Lubrication is a system engineering which involves material combinations, material surfaces, lubricants, and operating conditions as a system. In this work, the boundary lubrication behavior of commercially pure titanium (CP-Ti) sliding against various counterbody materials in a motor oil (0W-30) was investigated under ball-on-plate reciprocating sliding conditions. The counterbody materials (balls) include CP-Ti, ceramic (Al2O3), steel (AISI 52100), and polymer (nylon). The results show that depending on material combination, the lubricating behavior can be divided into three categories, i.e., (1) lubrication failure (Ti-Ti), (2) improved lubrication but with friction instability (Ti-Al2O3), and (3) effective lubrication (Ti–steel and Ti–nylon). Lubrication failure of the Ti-Ti pair leads to high and unstable friction and severe wear from both the plate and ball, while friction instability of the Ti-Al2O3 pair leads to friction spikes and high wear rates. Effective lubrication of the Ti–steel pair results in low and smooth friction and much-reduced wear rates of the Ti plate by nearly 10,000 times. However, there is a load-dependence of the lubrication effectiveness of the Ti–steel pair. Although the Ti–nylon pair is effectively lubricated in terms of much-reduced friction, the nylon ball suffers from severe wear. The friction and wear mechanisms of the various sliding pairs are discussed in this paper. Full article
Show Figures

Figure 1

17 pages, 11260 KiB  
Article
Surface Cladding of Mild Steel Coated with Ni Containing TiO2 Nanoparticles Using a High-Temperature Arc from TIG Welding
by Kavian O. Cooke, Ayesha Mirza, Junlin Chen and Alaa Al Hausone
Crystals 2024, 14(12), 1048; https://doi.org/10.3390/cryst14121048 - 30 Nov 2024
Viewed by 1012
Abstract
This study explores the use of a high-temperature arc generated during tungsten inert gas (TIG) welding to enhance the mechanical properties of the surface of AISI 1020 steel. An innovative two-step process involves using the high-temperature arc as an energy source to fuse [...] Read more.
This study explores the use of a high-temperature arc generated during tungsten inert gas (TIG) welding to enhance the mechanical properties of the surface of AISI 1020 steel. An innovative two-step process involves using the high-temperature arc as an energy source to fuse a previously electrodeposited Ni/TiO2 coating to the surface of the substrate. The cladded surface is characterised by a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), an optical microscope (O.M.) equipped with laser-induced breakdown spectroscopy (LIBS), Vicker’s microhardness testing, and pin-on-plate wear testing. The treated surface exhibits a unique amalgamation of hardening mechanisms, including nanoparticle dispersion strengthening, grain size reduction, and solid solution strengthening. The thickness of the electrodeposited layer appears to strongly influence the hardness variation across the width of the treated layer. The hardness of the treated layer when the Ni coating contains 30 nm TiO2 particles was found to be 451 VHN, validating an impressive 2.7-fold increase in material hardness compared to the untreated substrate (165 VHN). Similarly, the treated surface exhibits a twofold improvement in wear resistance (9.0 × 102 µm3/s), making it substantially more durable in abrasive environments than the untreated surface. Microstructural and EDS analysis reveal a significant reduction in grain size and the presence of high concentrations of Ni and TiO2 within the treated region, providing clear evidence for the activation of several strengthening mechanisms. Full article
(This article belongs to the Special Issue Advances in Surface Modifications of Metallic Materials)
Show Figures

Figure 1

19 pages, 13056 KiB  
Article
Comparative Analysis of Liquid Steel Fluid Dynamics, Including Spillage and Spreading on the Bottom of a Three-Strand Tundish Between Two Turbulence Inhibitors at the Start of the Casting Sequence
by Octavio Flores Jazmín, Maria del Carmen Coronado Rivera, Rodolfo Morales Davila, Javier Guarneros, Jafeth Rodriguez, Alfonso Nájera-Bastida and Rumualdo Servín Castañeda
Metals 2024, 14(12), 1370; https://doi.org/10.3390/met14121370 - 30 Nov 2024
Cited by 2 | Viewed by 910
Abstract
Casting AISI 52100 steel represents a challenge, particularly at the start of the casting sequence, due to its low melting point. The steel spilling over the tundish bottom cools down rapidly and freezes in the stopper rods, obliging the closure of a strand. [...] Read more.
Casting AISI 52100 steel represents a challenge, particularly at the start of the casting sequence, due to its low melting point. The steel spilling over the tundish bottom cools down rapidly and freezes in the stopper rods, obliging the closure of a strand. Therefore, an additional function of turbulence inhibitors is to induce steel masses at a slow cooling rate. This paper deals with the physical and mathematical modeling of unsteady state-flows using two turbulence inhibitors (TIs) during the sequence start. One of the TIs makes steel spill forming thin layers of liquid on the tundish bottom, while the other forms a thicker layer. Based on the Flow of Volume Model, the mathematical simulation was satisfactorily replicated in the water model. Full article
Show Figures

Figure 1

18 pages, 6430 KiB  
Article
Analysis of Wear Mechanisms Under Cutting Parameters: Influence of Double Layer TiAlN/TiN PVD and TiCN/Al2O3 Chemical Vapor Deposition-Coated Tools on Milling of AISI D2 Steel
by Gustavo M. Minquiz, N. E. González-Sierra, Javier Flores Méndez, Ana C. Piñón Reyes, Mario Moreno Moreno, Alfredo Morales-Sánchez, José Alberto Luna López, Zaira Jocelyn Hernandez-Simon and Claudia Denicia Carral
Coatings 2024, 14(12), 1491; https://doi.org/10.3390/coatings14121491 - 27 Nov 2024
Cited by 2 | Viewed by 1506
Abstract
Tool selection is relevant because a wide variety of materials exhibit different machinability behaviors. Tool life during manufacturing is commonly associated with productivity. Insert developers have been using coatings on cutting tools to enhance their performance, with chemical vapor deposition (CVD) and physical [...] Read more.
Tool selection is relevant because a wide variety of materials exhibit different machinability behaviors. Tool life during manufacturing is commonly associated with productivity. Insert developers have been using coatings on cutting tools to enhance their performance, with chemical vapor deposition (CVD) and physical vapor deposition (PVD) being the two most used techniques. This study analyzed the cutting tool wear mechanism by machining AISI D2 steel using two different inserts of TiAlN/TiN PVD and TiCN/Al2O3 CVD as layers deposited on a carbide substrate. The two inserts were tested at three different cutting speeds, namely, low, medium, and high; these values were below the data suggested by the supplier catalog. The flank wear and rake face were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDX). The adhesion material, edge deformation, and abrasion were the main wear mechanisms before catastrophic damage occurred at the three different cutting speeds in the PVD cutting tool. Nevertheless, increasing the cutting speed reduced the tool life from 84% to 61% at high values compared to the medium values of PVD and CVD, respectively, where the medium value resulted in a balance between the material removal rate and tool life. The wear mechanism of the CVD tool was BUE and chipping; nevertheless, its craters were larger than those of the PVD. Compared to those configured for PVD, the CVD insert demonstrated the ability to machine D2 steel at twice the cutting speed with a workpiece surface roughness of 0.3 µm, in contrast to a variation of 0.6 to 0.15 µm with the PVD tool. Full article
Show Figures

Figure 1

Back to TopTop