Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = AISI 316 SS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3535 KB  
Article
TiN-Ag Multilayer Protective Coatings for Surface Modification of AISI 316 Stainless Steel Medical Implants
by Božana Petrović, Dijana Mitić, Minja Miličić Lazić, Miloš Lazarević, Anka Trajkovska Petkoska, Ilija Nasov, Slavoljub Živković and Vukoman Jokanović
Coatings 2025, 15(7), 820; https://doi.org/10.3390/coatings15070820 - 14 Jul 2025
Cited by 2 | Viewed by 1060
Abstract
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film [...] Read more.
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film consisting of titanium nitride and silver layers (TiN-Ag film). TiN-Ag films were deposited on the surface of AISI 316 SS substrate by a combination of cathodic arc evaporation and DC magnetron sputtering. SS substrate was analyzed by TEM, while deposited coatings were analyzed by SEM, EDS and wettability measurements. Also, mitochondrial activity assay, and osteogenic and chondrogenic differentiation were performed on dental pulp stem cells (DPSCs). SEM and EDS revealed excellent adhesion between coatings’ layers, with the top layer predominantly composed of Ag, which is responsible for antibacterial properties. TiN-Ag film exhibited moderately hydrophilic behaviour which is desirable for orthopedic implant applications. Biological assays revealed significantly higher mitochondrial activity and enhanced osteogenic and chondrogenic differentiation of DPSC on TiN-Ag films compared to TiN films. The newly designed TiN-Ag coatings showed a great potential for the surface modification of SS implants, and further detailed investigations will explore their suitability for application in clinical practice. Full article
Show Figures

Figure 1

21 pages, 23836 KB  
Article
Electron Beam Welding of Dissimilar Stainless Steel and Maraging Steel Joints
by Matúš Geľatko, Radoslav Vandžura, František Botko and Michal Hatala
Materials 2024, 17(23), 5769; https://doi.org/10.3390/ma17235769 - 25 Nov 2024
Cited by 6 | Viewed by 1803
Abstract
The incorporation of additive manufactured (AM) metal parts to real assemblies is a crucial issue for the increasing of their industrial utilization. The presented research is devoted to the electron beam welding (EBW) of dissimilar steel joints. Dissimilarity is defined by the various [...] Read more.
The incorporation of additive manufactured (AM) metal parts to real assemblies is a crucial issue for the increasing of their industrial utilization. The presented research is devoted to the electron beam welding (EBW) of dissimilar steel joints. Dissimilarity is defined by the various types of steel and manufacturing processes used for the creation of specimens. Conventional AISI 316 stainless steel, selective laser melted (SLM) SS 316L stainless steel, and SLM M300 maraging steel were welded at variable parameters in the form of a welding current and a welding velocity. EBW joints were evaluated considering the macroscopic and microscopic characteristics, as well as a reached microhardness. The obtained preliminary results represent important input data for the follow-up experiments focused on the setting of optimal EBW parameters of welding the dissimilar joints including SLM products, with the consideration of their basic macroscopical and microscopical characteristics, mechanical properties, and residual stresses. Full article
Show Figures

Figure 1

31 pages, 8462 KB  
Article
Laser Weld Aspect Optimization of Thin AISI 316 SS Using RSM in Relation with Welding Parameters and Sulfur Content
by Kamel Touileb, Elawady Attia, Rachid Djoudjou, Abdallah Benselama, Albaijan Ibrahim, Sahbi Boubaker, Jose Ponnore and Mohamed M. Z. Ahmed
Metals 2023, 13(7), 1202; https://doi.org/10.3390/met13071202 - 28 Jun 2023
Cited by 6 | Viewed by 2473
Abstract
A quantitative and qualitative study of the effect of laser (light amplification by stimulated emissions of radiation) welding parameters, such as focus point, welding speed, power beam and shield gas on bead profile in relation with microchemistry compositions differences of two thin AISI [...] Read more.
A quantitative and qualitative study of the effect of laser (light amplification by stimulated emissions of radiation) welding parameters, such as focus point, welding speed, power beam and shield gas on bead profile in relation with microchemistry compositions differences of two thin AISI 316 industrial stainless steel casts have been studied. One cast contains 60 ppm (0.006%) of sulfur considered as high sulfur content and the other one contains 10 ppm (0.001 %) sulfur which can be considered as low sulfur content. A set of 27 tests were carried out by combining three welding speeds (1500, 3000, and 4500 mm/min), three shield gases (helium (He), mixture of 40% helium and 60% argon (Ar) and mixture of 70% helium and 30% argon) with flow rate of 15 L/min, and three focal lengths (+2, +7, and +12 mm). The depth, aspect ratio (the ratio between the penetration depth weld and the weld width) and the bead cross section profile are investigated using response surface methodology (RSM). Linear and quadratic polynomial models for predicting the weld bead geometry were developed. The results of the preliminary validation indicated that the proposed models predict the responses adequately. The geometry of the welded area was analyzed using optical microscopy, and correlations between weld morphology (depth, weld aspect parameter and weld area) and welding parameters were performed. For the cast 316 HS (high sulfur content), the main input factor influencing the depth weld (Yd) is the focus point with a contribution up to 19.32. On the other hand, the main input factor affecting the depth weld (Yd) of the cast 316 LS (low sulfur content) is the combination effect of focus point and power input energy with contribution up to 10.65%. Sulfur as the surfactant element contributes to determining the laser weld bead shape up to 71% when the welds are partially penetrated and diminishes to 50% when the welds are fully penetrated with the occurrence of the keyhole mechanism. Full article
(This article belongs to the Special Issue Laser Welding Technology)
Show Figures

Figure 1

15 pages, 23925 KB  
Article
Effects of Micro-Shot Peening on the Stress Corrosion Cracking of Austenitic Stainless Steel Welds
by Chia-Ying Kang, Tai-Cheng Chen and Leu-Wen Tsay
Metals 2023, 13(1), 69; https://doi.org/10.3390/met13010069 - 26 Dec 2022
Cited by 19 | Viewed by 3501
Abstract
Micro-shot peening on AISI 304 and 316 stainless steel (SS) laser welds was performed to evaluate its effect on the susceptibility to stress corrosion cracking (SCC) in a salt spray containing 10% NaCl at 80 °C. The cracking susceptibility of the welds was [...] Read more.
Micro-shot peening on AISI 304 and 316 stainless steel (SS) laser welds was performed to evaluate its effect on the susceptibility to stress corrosion cracking (SCC) in a salt spray containing 10% NaCl at 80 °C. The cracking susceptibility of the welds was disclosed by testing U-bend specimens in a salt spray. Micro-shot peening caused an intense but narrow deformed layer with a nanocrystal structure and residual compressive stress. Austenite to martensite transformation occurred heavily on the top surface of the micro-shot peened welds. SCC microcracks were more likely to be initiated at the fusion boundary (FB) of the non-peened welds. However, fine pits were formed more easily on the micro-shot peened 304 fusion zone (FZ), which was attributed to the extensive formation of strain-induced martensite. The nanograined structure and induced residual compressive stress in the micro-shot peened layer suppressed microcrack initiation in the 304 and 316 welds in a salt spray. Compared with the other zones in the welds in a salt spray, the high local strain at the FB was the cause of the high cracking susceptibility and could be mitigated by the micro-shot peening treatment. Full article
(This article belongs to the Topic Laser Welding of Metallic Materials)
Show Figures

Figure 1

15 pages, 26820 KB  
Article
Evaluating CNC Milling Performance for Machining AISI 316 Stainless Steel with Carbide Cutting Tool Insert
by Azhar Equbal, Md. Asif Equbal, Md. Israr Equbal, Pranav Ravindrannair, Zahid A. Khan, Irfan Anjum Badruddin, Sarfaraz Kamangar, Vineet Tirth, Syed Javed and M. I. Kittur
Materials 2022, 15(22), 8051; https://doi.org/10.3390/ma15228051 - 15 Nov 2022
Cited by 23 | Viewed by 4356
Abstract
The present study investigates the CNC milling performance of the machining of AISI 316 stainless steel using a carbide cutting tool insert. Three critical machining parameters, namely cutting speed (v), feed rate (f) and depth of cut (d), each at three levels, are [...] Read more.
The present study investigates the CNC milling performance of the machining of AISI 316 stainless steel using a carbide cutting tool insert. Three critical machining parameters, namely cutting speed (v), feed rate (f) and depth of cut (d), each at three levels, are chosen as input machining parameters. The face-centred central composite design (FCCCD) of the experiment is based on response surface methodology (RSM), and machining performances are measured in terms of material removal rate (MRR) and surface roughness (SR). Analysis of variance, response graphs, and three-dimensional surface plots are used to analyse experimental results. Multi-response optimization using the data envelopment analysis based ranking (DEAR) approach is used to find the ideal configuration of the machining parameters for milling AISI 316 SS. The variables v = 220 m/min, f = 0.20 mm/rev and d = 1.2 mm were obtained as the optimal machine parameter setting. Study reveals that MRR is affected dominantly by d followed by v. For SR, f is the dominating factor followed by d. SR is found to be almost unaffected by v. Finally, it is important to state that this work made an attempt to successfully machine AISI 316 SS with a carbide cutting tool insert, to investigate the effect of important machining parameters on MRR and SR and also to optimize the multiple output response using DEAR method. Full article
(This article belongs to the Special Issue Machining and Surface Properties of Steel Parts)
Show Figures

Figure 1

30 pages, 7204 KB  
Article
Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals
by Anteneh Teferi Assefa, Gulam Mohammed Sayeed Ahmed, Sagr Alamri, Abhilash Edacherian, Moera Gutu Jiru, Vivek Pandey and Nazia Hossain
Materials 2022, 15(13), 4426; https://doi.org/10.3390/ma15134426 - 23 Jun 2022
Cited by 18 | Viewed by 3641
Abstract
Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters [...] Read more.
Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

15 pages, 7565 KB  
Article
Durability Assessment of a Plasma-Polymerized Coating with Anti-Biofilm Activity against L. monocytogenes Subjected to Repeated Sanitization
by Ignacio Muro-Fraguas, Paula Fernández-Gómez, Rodolfo Múgica-Vidal, Ana Sainz-García, Elisa Sainz-García, Márcia Oliveira, Montserrat González-Raurich, María López, Beatriz Rojo-Bezares, Mercedes López and Fernando Alba-Elías
Foods 2021, 10(11), 2849; https://doi.org/10.3390/foods10112849 - 18 Nov 2021
Cited by 6 | Viewed by 2836
Abstract
Biofilm formation on food-contact surfaces is a matter of major concern causing food safety and spoilage issues to this sector. The aim of this study was to assess the durability of the anti-biofilm capacity of a plasma-polymerized coating composed of a base coating [...] Read more.
Biofilm formation on food-contact surfaces is a matter of major concern causing food safety and spoilage issues to this sector. The aim of this study was to assess the durability of the anti-biofilm capacity of a plasma-polymerized coating composed of a base coating of (3-aminopropyl)triethoxysilane (APTES) and a functional coating of acrylic acid (AcAc). Coated and uncoated AISI 316 stainless steel (SS) plates were subjected to five sanitization cycles with sodium hypochlorite (0.05%) and peracetic acid (0.5%). The effectiveness of the coating for the inhibition of multi-strain Listeria monocytogenes biofilm formation was confirmed using a three-strain cocktail, which was grown on the SS plates at 12 °C for 6 days. Compared to the uncoated SS, relative biofilm productions of 14.6% on the non-sanitized coating, 27.9% on the coating after sanitization with sodium hypochlorite, and 82.3% on the coating after sanitization with peracetic acid were obtained. Morphological and physicochemical characterization of the coatings suggested that the greater anti-biofilm effectiveness after sanitization with sodium hypochlorite was due to the high pH of this solution, which caused a deprotonation of the carboxylic acid groups of the functional coating. This fact conferred it a strong hydrophilicity and negatively charged its surface, which was favorable for preventing bacterial attachment and biofilm formation. Full article
(This article belongs to the Special Issue Advances in the Application of Cold Plasma Technology in Foods)
Show Figures

Figure 1

10 pages, 2812 KB  
Article
Austenitic Stainless-Steel Reinforcement for Seawater Sea Sand Concrete: Investigation of Stress Corrosion Cracking
by Xiang Yu, Saad Al-Saadi, Isha Kohli, Xiao-Ling Zhao and R. K. Singh Raman
Metals 2021, 11(3), 500; https://doi.org/10.3390/met11030500 - 17 Mar 2021
Cited by 10 | Viewed by 3756
Abstract
Seawater and sea sand concrete (SWSSC) is a highly attractive alternative to normal concrete (NC) that requires huge amounts of fresh water and river sand. However, reinforcements of stainless steel (instead of mild steel that is used in NC) may be required for [...] Read more.
Seawater and sea sand concrete (SWSSC) is a highly attractive alternative to normal concrete (NC) that requires huge amounts of fresh water and river sand. However, reinforcements of stainless steel (instead of mild steel that is used in NC) may be required for SWSSC. This article reports investigation of stress corrosion cracking (SCC) of AISI 316 stainless steel (SS) in simulated SWSSC and NC environments, with and without addition of silica to SWSSC and NC, employing slow strain rate testing (SSRT) at 25 and 60 °C. For the purpose of comparison, SCC of SS was also investigated in simulated seawater (SW) solution. SS showed no SCC at 25 °C in any of the test solutions. Indications of SCC were seen in SW at 60 °C, but no features of SCC in SWSSC and NC at 60 °C, as suggested by scanning electron microscopy (SEM) fractographs. While the absence of SCC in SWSSC and NC is attributed to the highly passivating alkaline condition, its absence in SWSSC also indicates the role of alkalinity to predominate the deleterious role of chloride content of SWSSC. However, the addition of silicate to SWSSC or NC triggers transgranular SCC to SS at 60 °C, as evidenced by the fractography. Full article
(This article belongs to the Special Issue Environmentally Assisted Cracking)
Show Figures

Figure 1

17 pages, 4373 KB  
Article
Efficacy of Synthetic Furanones on Listeria monocytogenes Biofilm Formation
by Pedro Rodríguez-López, Andrea Emparanza Barrenengoa, Sergio Pascual-Sáez and Marta López Cabo
Foods 2019, 8(12), 647; https://doi.org/10.3390/foods8120647 - 5 Dec 2019
Cited by 13 | Viewed by 3964
Abstract
Furanones are analogues of acylated homoserine lactones with proven antifouling activity in both Gram-positive and Gram-negative bacteria though the interference of various quorum sensing pathways. In an attempt to find new strategies to prevent and control Listeria monocytogenes biofilm formation on stainless steel [...] Read more.
Furanones are analogues of acylated homoserine lactones with proven antifouling activity in both Gram-positive and Gram-negative bacteria though the interference of various quorum sensing pathways. In an attempt to find new strategies to prevent and control Listeria monocytogenes biofilm formation on stainless steel (SS) surfaces, different concentrations of six synthetic furanones were applied on biofilms formed by strains isolated from food, environmental, and clinical sources grown onto AISI 316 SS coupons. Among the furanones tested, (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone and 3,4-Dichloro-2(5H)-furanone significantly (p < 0.05) reduced the adhesion capacity (>1 log CFU cm−2) in 24 h treated biofilms. Moreover, individually conducted experiments demonstrated that (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone was able to not only significantly (p < 0.05) prevent L. monocytogenes adhesion but also to reduce the growth rate of planktonic cells up to 48 h in a dose-dependent manner. LIVE/DEAD staining followed by epifluorescence microscopy visualisation confirmed these results show an alteration of the structure of the biofilm in furanone-treated samples. Additionally, it was demonstrated that 20 µmol L−1 of 3,4-Dichloro-2(5H)-furanone dosed at 0, 24 and 96 h was able to maintain a lower level of adhered cells (>1 log CFU cm−2; p < 0.05). Since furanones do not pose a selective pressure on bacteria, these results represent an appealing novel strategy for the prevention of L. monocytogenes biofilm grown onto SS. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

Back to TopTop