Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = AIE-active fluorescent probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1628 KB  
Communication
Synthesis and Photochromic Properties of Diarylethene Derivatives with Aggregation-Induced Emission (AIE) Behavior
by Jiaxin Guo, Haoyuan Yu and Yuhua Jin
Materials 2025, 18(11), 2520; https://doi.org/10.3390/ma18112520 - 27 May 2025
Viewed by 717
Abstract
Photochromic materials have attracted widespread attention due to their potential applications in optical information storage, optoelectronic devices, and fluorescence probes. As a typical photochromic system, diarylethene derivatives are considered one of the most promising photochromic materials due to their outstanding photostability and significant [...] Read more.
Photochromic materials have attracted widespread attention due to their potential applications in optical information storage, optoelectronic devices, and fluorescence probes. As a typical photochromic system, diarylethene derivatives are considered one of the most promising photochromic materials due to their outstanding photostability and significant bistable properties. Based on an aggregation-induced emission (AIE) mechanism, this study employed a molecular structural engineering strategy to design and synthesize a series of diarylethene derivatives containing ethyl benzoate substituents. A systematic investigation of the structure–activity relationship between their photochromic behavior and AIE characteristics revealed a dual-state light response mechanism in the solid and solution states. This study demonstrates that the target compounds exhibited significant photochromic responses under UV–visible light irradiation, with enhanced emission in the solid state compared to the solution state, confirming the remarkable enhancement effect of AIE on aggregation. Structural characterization techniques such as nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (H RMS) were employed to elucidate the correlation between molecular conformation and photophysical properties. Furthermore, these materials demonstrated potential for multi-level anti-counterfeiting, high-density optical storage, and bioimaging applications, providing experimental foundations for the development of novel multifunctional photochromic materials. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

37 pages, 6833 KB  
Review
Recent Advances in Aggregation-Induced Emission (AIE) Fluorescent Sensors for Biomolecule Detection
by Kavya S. Keremane, M. Gururaj Acharya, Praveen Naik, Chandi C. Malakar, Kai Wang and Bed Poudel
Chemosensors 2025, 13(5), 174; https://doi.org/10.3390/chemosensors13050174 - 9 May 2025
Cited by 1 | Viewed by 1606
Abstract
Fluorescent sensors are indispensable tools in fields such as molecular biology, clinical diagnostics, biotechnology, and environmental monitoring, due to their high sensitivity, selectivity, biocompatibility, rapid response, and ease of use. However, conventional fluorophores often suffer from aggregation-caused quenching (ACQ), leading to diminished fluorescence [...] Read more.
Fluorescent sensors are indispensable tools in fields such as molecular biology, clinical diagnostics, biotechnology, and environmental monitoring, due to their high sensitivity, selectivity, biocompatibility, rapid response, and ease of use. However, conventional fluorophores often suffer from aggregation-caused quenching (ACQ), leading to diminished fluorescence in the aggregated state. The advent of aggregation-induced emission (AIE) luminogens, which exhibit enhanced fluorescence upon aggregation, offers a powerful solution to this limitation. Their unique photophysical properties have made AIE-based materials highly valuable for diverse applications, including biomedical imaging, optoelectronics, stimuli-responsive systems, drug delivery, and chemical sensing. Notably, AIE-based fluorescent probes are emerging as attractive alternatives to traditional analytical methods owing to their low cost, fast detection, and high selectivity. Over the past two decades, considerable progress has been made in the rational design and development of AIE-active small-molecule fluorescent probes for detecting a wide variety of analytes, such as biologically relevant molecules, drug compounds, volatile organic compounds (VOCs), explosives, and contaminants associated with forensic and food safety analysis. This review highlights recent advances in organic AIE-based fluorescent probes, beginning with the fundamentals of AIE and typical “turn-on” sensing mechanisms, and concluding with a discussion of current challenges and future opportunities in this rapidly evolving research area. Full article
Show Figures

Figure 1

20 pages, 4675 KB  
Review
Organelle Targeting Self-Assembled Fluorescent Probe for Anticancer Treatment
by Md Sajid Hasan, Sangpil Kim, Chaelyeong Lim, Jaeeun Lee, Min-Seok Seu and Ja-Hyoung Ryu
Chemosensors 2024, 12(7), 138; https://doi.org/10.3390/chemosensors12070138 - 11 Jul 2024
Cited by 1 | Viewed by 3178
Abstract
Organic fluorescent probes have attracted attention for bioimaging due to their advantages, including high sensitivity, biocompatibility, and multi-functionality. However, some limitations related to low signal-to-background ratio and false positive and negative signals make them difficult for in situ target detection. Recently, organelle targeting [...] Read more.
Organic fluorescent probes have attracted attention for bioimaging due to their advantages, including high sensitivity, biocompatibility, and multi-functionality. However, some limitations related to low signal-to-background ratio and false positive and negative signals make them difficult for in situ target detection. Recently, organelle targeting self-assembled fluorescent probes have been studied to meet this demand. Most of the dye molecules suffer from a quenching effect, but, specifically, some dyes like Pyrene, Near-Infrared (NIR), Nitrobenzoxadiazole (NBD), Fluorescein isothiocyanate (FITC), Naphthalenediimides (NDI), and Aggregation induced emission (AIE) show unique characteristics when they undergo self-assembly or aggregation. Therefore, in this review, we classified the molecules according to the dye type and provided an overview of the organelle-targeting strategy with an emphasis on the construction of fluorescent nanostructures within complex cellular environments. Results demonstrated that fluorescent probes effectively target and localized inside the organelles (mitochondria, lysosome, and golgi body) and undergo self-assembly to form various nanostructures that possess bio-functionality with long retention time, organelles membrane disruption/ROS generation/enzyme activity suppression ability, and enhanced photodynamic properties for anticancer treatment. Furthermore, we systematically discussed the challenges that remain to be resolved for the high performance of these probes and mentioned some of the future directions for the design of molecules. Full article
Show Figures

Graphical abstract

13 pages, 6746 KB  
Article
An AIE-Active NIR Fluorescent Probe with Good Water Solubility for the Detection of Aβ1–42 Aggregates in Alzheimer’s Disease
by Yan-Ming Ji, Min Hou, Wei Zhou, Zhang-Wei Ning, Yuan Zhang and Guo-Wen Xing
Molecules 2023, 28(13), 5110; https://doi.org/10.3390/molecules28135110 - 29 Jun 2023
Cited by 9 | Viewed by 2245
Abstract
Alzheimer’s disease (AD), an amyloid-related disease, seriously endangers the health of elderly individuals. According to current research, its main pathogenic factor is the amyloid protein, which is a kind of fibrillar aggregate formed by noncovalent self-assembly of proteins. Based on the characteristics of [...] Read more.
Alzheimer’s disease (AD), an amyloid-related disease, seriously endangers the health of elderly individuals. According to current research, its main pathogenic factor is the amyloid protein, which is a kind of fibrillar aggregate formed by noncovalent self-assembly of proteins. Based on the characteristics of aggregation-induced emission (AIE), a bislactosyl-decorated tetraphenylethylene (TPE) molecule TMNL (TPE + malononitrile + lactose), bearing two malononitrile substituents, was designed and synthesized in this work. The amphiphilic TMNL could self-assemble into fluorescent organic nanoparticles (FONs) with near-infrared (NIR) fluorescence emission in physiological PBS (phosphate buffered saline), achieving excellent fluorescent enhancement (47-fold) upon its combination with Aβ1–42 fibrils. TMNL was successfully applied to image Aβ1–42 plaques in the brain tissue of AD transgenic mice, and due to the AIE properties of TMNL, no additional rinsing process was necessary. It is believed that the probe reported in this work should be useful for the sensitive detection and accurate localization mapping of Aβ1–42 aggregates related to Alzheimer’s disease. Full article
Show Figures

Figure 1

16 pages, 4264 KB  
Article
Mitochondria-Targeted Fluorescent Nanoparticles with Large Stokes Shift for Long-Term BioImaging
by Xiao Li, Tao Zhang, Xuebo Diao, Li Yu, Yue Su, Jiapei Yang, Zibo Shang, Shuai Liu, Jia Zhou, Guolin Li and Huirong Chi
Molecules 2023, 28(9), 3962; https://doi.org/10.3390/molecules28093962 - 8 May 2023
Cited by 5 | Viewed by 2669
Abstract
Mitochondria (MITO) play a significant role in various physiological processes and are a key organelle associated with different human diseases including cancer, diabetes mellitus, atherosclerosis, Alzheimer’s disease, etc. Thus, detecting the activity of MITO in real time is becoming more and more important. [...] Read more.
Mitochondria (MITO) play a significant role in various physiological processes and are a key organelle associated with different human diseases including cancer, diabetes mellitus, atherosclerosis, Alzheimer’s disease, etc. Thus, detecting the activity of MITO in real time is becoming more and more important. Herein, a novel class of amphiphilic aggregation-induced emission (AIE) active probe fluorescence (AC-QC nanoparticles) based on a quinoxalinone scaffold was developed for imaging MITO. AC-QC nanoparticles possess an excellent ability to monitor MITO in real-time. This probe demonstrated the following advantages: (1) lower cytotoxicity; (2) superior photostability; and (3) good performance in long-term imaging in vitro. Each result of these indicates that self-assembled AC-QC nanoparticles can be used as effective and promising MITO-targeted fluorescent probes. Full article
(This article belongs to the Special Issue Aggregation-Induced Emission: From Fundamental to Application)
Show Figures

Figure 1

16 pages, 4112 KB  
Article
Hydrogel-Film-Fabricated Fluorescent Biosensors with Aggregation-Induced Emission for Albumin Detection through the Real-Time Modulation of a Vortex Fluidic Device
by Qi Hu, Xuan Luo, Damian Tohl, Anh Tran Tam Pham, Colin Raston and Youhong Tang
Molecules 2023, 28(7), 3244; https://doi.org/10.3390/molecules28073244 - 5 Apr 2023
Cited by 2 | Viewed by 2530
Abstract
Hydrogels have various promising prospects as a successful platform for detecting biomarkers, and human serum albumin (HSA) is an important biomarker in the diagnosis of kidney diseases. However, the difficult-to-control passive diffusion kinetics of hydrogels is a major factor affecting detection performance. This [...] Read more.
Hydrogels have various promising prospects as a successful platform for detecting biomarkers, and human serum albumin (HSA) is an important biomarker in the diagnosis of kidney diseases. However, the difficult-to-control passive diffusion kinetics of hydrogels is a major factor affecting detection performance. This study focuses on using hydrogels embedded with aggregation-induced emission (AIE) fluorescent probe TC426 to detect HSA in real time. The vortex fluidic device (VFD) technology is used as a rotation strategy to control the reaction kinetics and micromixing during measurement. The results show that the introduction of VFD could significantly accelerate its fluorescence response and effectively improve the diffusion coefficient, while VFD processing could regulate passive diffusion into active diffusion, offering a new method for future sensing research. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Macromolecular Chemistry)
Show Figures

Figure 1

14 pages, 4798 KB  
Article
Quinoline-Malononitrile-Based Aggregation-Induced Emission Probe for Monoamine Oxidase Detection in Living Cells
by Chuthamat Duangkamol, Sirilak Wangngae, Sirawit Wet-osot, Onnicha Khaikate, Kantapat Chansaenpak, Rung-Yi Lai and Anyanee Kamkaew
Molecules 2023, 28(6), 2655; https://doi.org/10.3390/molecules28062655 - 15 Mar 2023
Cited by 10 | Viewed by 2746
Abstract
A quinoline-malononitrile (QM)-based aggregation-induced emission probe was developed to detect MAOs in cells through an enzymatic reaction followed by β-elimination. After being incubated at 37 °C, QM-NH2 responded to the MAO enzymes with great specificity and within just 5 min. This 5 [...] Read more.
A quinoline-malononitrile (QM)-based aggregation-induced emission probe was developed to detect MAOs in cells through an enzymatic reaction followed by β-elimination. After being incubated at 37 °C, QM-NH2 responded to the MAO enzymes with great specificity and within just 5 min. This 5 min responsive mechanism was fast, with the limit of detection (LOD) at 5.49 and 4.76 µg mL−1 for MAO-A and MAO-B, respectively. Moreover, QM-NH2 displayed high enzyme specificity even in the presence of high concentrations of biological interferences, such as oxidizing and reducing agents, biothiols, amino acids, and glucose. Furthermore, QM-NH2 demonstrated biocompatibility as the cells retained more than 70% viability when exposed to QM-NH2 at concentrations of up to 20 µM. As a result, QM-NH2 was used to detect MAO-A and MAO-B in SH-SY5Y and HepG2 cells, respectively. After 1h incubation with QM-NH2, the cells exhibited enhanced fluorescence by about 20-fold. Moreover, the signal from cells was reduced when MAO inhibitors were applied prior to incubating with QM-NH2. Therefore, our research recommends using a QM probe as a generic method for producing recognition moieties for fluorogenic enzyme probes. Full article
(This article belongs to the Special Issue Aggregation-Induced Emission: From Fundamental to Application)
Show Figures

Graphical abstract

17 pages, 4276 KB  
Review
Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review
by Zheng Wang, Ji Ma, Changlin Li and Haichang Zhang
Biosensors 2023, 13(2), 159; https://doi.org/10.3390/bios13020159 - 19 Jan 2023
Cited by 23 | Viewed by 4660
Abstract
The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent [...] Read more.
The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms’ physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. This field is still in its early infancy, and several open challenges urgently need to be addressed, such as the materials’ biocompatibility, metabolism, and so on. Designing a high-performance AIE material for biofluorescent probes is still challenging. In this review, based on the molecular design concept, various AIE materials with functional groups in the biofluorescent probes are introduced, including tetrastyrene materials, distilbene anthracene materials, triphenylamine materials, and hexaphenylsilole materials. In addition, according to the molecular system design strategy, the donor–acceptor (D-A) system and hydrogen-bonding AIE materials used as biofluorescent probes are reviewed. Finally, the biofluorescent probe design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance AIE biofluorescent probes that can at the same time further the development of the applications of AIE-based biofluorescent probes. Full article
Show Figures

Figure 1

9 pages, 2835 KB  
Article
A Highly Efficient Fluorescent Sensor Based on AIEgen for Detection of Nitrophenolic Explosives
by Dongmi Li, Panpan Lv, Xiao-Wen Han, Zhilei Jia, Min Zheng and Hai-Tao Feng
Molecules 2023, 28(1), 181; https://doi.org/10.3390/molecules28010181 - 25 Dec 2022
Cited by 11 | Viewed by 2711
Abstract
The detection of nitrophenolic explosives is important in counterterrorism and environmental protection, but it is still a challenge to identify the nitroaromatic compounds among those with a similar structure. Herein, a simple tetraphenylethene (TPE) derivative with aggregation-induced emission (AIE) characteristics was synthesized and [...] Read more.
The detection of nitrophenolic explosives is important in counterterrorism and environmental protection, but it is still a challenge to identify the nitroaromatic compounds among those with a similar structure. Herein, a simple tetraphenylethene (TPE) derivative with aggregation-induced emission (AIE) characteristics was synthesized and used as a fluorescent sensor for the detection of nitrophenolic explosives (2, 4, 6-trinitrophenol, TNP and 2, 4-dinitrophenol, DNP) in water solution and in a solid state with a high selectivity. Meanwhile, it was found that only hydroxyl containing nitrophenolic explosives caused obvious fluorescence quenching. The sensing mechanism was investigated by using fluorescence titration and 1H NMR spectra. This simple AIE-active probe can potentially be applied to the construction of portable detection devices for explosives. Full article
Show Figures

Figure 1

15 pages, 3756 KB  
Article
Fabricated AIE-Based Probe to Detect the Resistance to Anoikis of Cancer Cells Detached from Tumor Tissue
by Ya-Nan Chang, Yuelan Liang, Jiayi Wang, Ziteng Chen, Ruyu Yan, Kui Chen, Juan Li, Jiacheng Li, Haojun Liang and Gengmei Xing
Cells 2022, 11(21), 3478; https://doi.org/10.3390/cells11213478 - 3 Nov 2022
Viewed by 2231
Abstract
(1) Background: Resisting anoikis is a vital and necessary characteristic of malignant cancer cells, but there is no existing quantification method. Herein, a sensitive probe for assessing anoikis resistance of cancer cells detached from the extracellular matrix was developed based on the aggregation-induced [...] Read more.
(1) Background: Resisting anoikis is a vital and necessary characteristic of malignant cancer cells, but there is no existing quantification method. Herein, a sensitive probe for assessing anoikis resistance of cancer cells detached from the extracellular matrix was developed based on the aggregation-induced emission (AIE) of AIEgens. It has been reported that detached cancer cell endocytose activated integrin clusters, and in the endosome these clusters recruit and activate phosphorylate focal adhesion kinase (pFAK) in the cytoplasm to induce signaling that supports the growth of detached cancer cells. (2) Methods: We established a lost nest cell model of cancer cells and determined their ability to resist anoikis. The colocalization of the activated integrin, pFAK, and endosomes in model cells was observed and calculated. (3) Results: The fluorescence signal intensity of the probe was significantly higher than that of the integrin antibody in the model cells and the fluorescence signal of probe signal was better overlapped with labeled pFAK by fluorescence in endosomes in model cells. (4) Conclusions: We developed a quantitative multi-parametric image analysis program to calculate fluorescent intensity of the probe and antibodies against pFAK and Rab5 in the areas of colocalization. A positive correlation of fluorescence signal intensity between the probe and pFAK on the endosome was observed. Therefore, the probe was used to quantitatively evaluate resisting anoikis of different cancer cell lines under the lost nest condition. Full article
Show Figures

Figure 1

16 pages, 4678 KB  
Review
AIEgen-Peptide Bioprobes for the Imaging of Organelles
by Bochao Chen, Haotong Yuan, Wei Zhang, Jingjing Hu, Xiaoding Lou and Fan Xia
Biosensors 2022, 12(8), 667; https://doi.org/10.3390/bios12080667 - 22 Aug 2022
Cited by 11 | Viewed by 3145
Abstract
Organelles are important subsystems of cells. The damage and inactivation of organelles are closely related to the occurrence of diseases. Organelles’ functional activity can be observed by fluorescence molecular tools. Nowadays, a series of aggregation-induced emission (AIE) bioprobes with organelles-targeting ability have emerged, [...] Read more.
Organelles are important subsystems of cells. The damage and inactivation of organelles are closely related to the occurrence of diseases. Organelles’ functional activity can be observed by fluorescence molecular tools. Nowadays, a series of aggregation-induced emission (AIE) bioprobes with organelles-targeting ability have emerged, showing great potential in visualizing the interactions between probes and different organelles. Among them, AIE luminogen (AIEgen)-based peptide bioprobes have attracted more and more attention from researchers due to their good biocompatibility and photostability and abundant diversity. In this review, we summarize the progress of AIEgen-peptide bioprobes in targeting organelles, including the cell membrane, nucleus, mitochondria, lysosomes and endoplasmic reticulum, in recent years. The structural characteristics and biological applications of these bioprobes are discussed, and the development prospect of this field is forecasted. It is hoped that this review will provide guidance for the development of AIEgen-peptide bioprobes at the organelles level and provide a reference for related biomedical research. Full article
Show Figures

Figure 1

11 pages, 2040 KB  
Article
A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase
by Mengting Xia, Chunbin Li, Lingxiu Liu, Yumao He, Yongdong Li, Guoyu Jiang and Jianguo Wang
Biosensors 2022, 12(7), 484; https://doi.org/10.3390/bios12070484 - 3 Jul 2022
Cited by 11 | Viewed by 3304
Abstract
Hepatocellular carcinoma (HCC) is associated with a high mortality rate worldwide. The therapeutic outcomes can be significantly improved if diagnosis and treatment are initiated earlier in the disease process. Recently, the carboxylesterase (CaE) activity/level in human plasma was reported to be a novel [...] Read more.
Hepatocellular carcinoma (HCC) is associated with a high mortality rate worldwide. The therapeutic outcomes can be significantly improved if diagnosis and treatment are initiated earlier in the disease process. Recently, the carboxylesterase (CaE) activity/level in human plasma was reported to be a novel serological biomarker candidate for HCC. In this article, we fabricated a new fluorescent probe with AIE characteristics for the rapid detection of CaE with a more reliable ratiometric response mode. The TCFISE probe showed high sensitivity (LOD: 93.0 μU/mL) and selectivity toward CaE. Furthermore, the good pH stability, superior resistance against photobleaching, and low cytotoxicity highlight the high potential of the TCFISE probe for application in the monitoring of CaE activity in complex biological samples and in live cells, tissues, and animals. Full article
Show Figures

Figure 1

10 pages, 3977 KB  
Article
Peptide-Conjugated Aggregation-Induced Emission Fluorogenic Probe for Glypican-3 Protein Detection and Hepatocellular Carcinoma Cells Imaging
by Song Zhang, Jiangbo Jing, Lingchen Meng, Bin Xu, Xibo Ma and Wenjing Tian
Chemosensors 2022, 10(5), 195; https://doi.org/10.3390/chemosensors10050195 - 23 May 2022
Cited by 4 | Viewed by 3161
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality on a global scale, and the development of accurate detection and imaging methods for HCC cells is urgently needed. Herein, by connecting peptide L5, which can specifically bind to the overexpressed [...] Read more.
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality on a global scale, and the development of accurate detection and imaging methods for HCC cells is urgently needed. Herein, by connecting peptide L5, which can specifically bind to the overexpressed Glypican-3 (GPC-3) protein of HCC cells with aggregation-induced emission (AIE) moiety ammonium cation-functionalized 9,10-distyrylanthracene (NDSA) via the “click” reaction, we synthesized a fluorescent probe NDSA-L5. In an aqueous solution, the probe shows weak emission, whereas, in the presence of the GPC-3 protein, bright fluorescence can be obtained since NDSA-L5 binds to the GPC-3 protein, leading to the restricted intramolecular movement of AIE-active NDSA-L5. The imaging and flow cytometry experiments demonstrate that the NDSA-L5 probe can rapidly accumulate in the subcutaneous HCC cells and liver tumor tissue and shows a potential application in early detection and surgical navigation for HCC cancer. Full article
Show Figures

Graphical abstract

24 pages, 3174 KB  
Article
Visualising the Emerging Platform of Using Microalgae as a Sustainable Bio-Factory for Healthy Lipid Production through Biocompatible AIE Probes
by AHM Mohsinul Reza, Sharmin Ferdewsi Rakhi, Xiaochen Zhu, Youhong Tang and Jianguang Qin
Biosensors 2022, 12(4), 208; https://doi.org/10.3390/bios12040208 - 31 Mar 2022
Cited by 8 | Viewed by 3008
Abstract
Nowadays, a particular focus is using microalgae to get high-valued health beneficiary lipids. The precise localisation of the lipid droplets (LDs) and biochemical changes are crucial to portray the lipid production strategy in algae, but it requires an in vivo tool to rapidly [...] Read more.
Nowadays, a particular focus is using microalgae to get high-valued health beneficiary lipids. The precise localisation of the lipid droplets (LDs) and biochemical changes are crucial to portray the lipid production strategy in algae, but it requires an in vivo tool to rapidly visualise LD distribution. As a novel strategy, this study focuses on detecting lipid bioaccumulation in a green microalga, Chlamydomonas reinhardtii using the aggregation-induced emission (AIE) based probe, 2-DPAN (C24H18N2O). As the messenger molecule and stress biomarker, hydrogen peroxide (H2O2) activity was detected in lipid synthesis with the AIE probe, TPE-BO (C38H42B2O4). Distinctive LDs labelled with 2-DPAN have elucidated the lipid inducing conditions, where more health beneficiary α-linolenic acid has been produced. TPE-BO labelled H2O2 have clarified the involvement of H2O2 during lipid biogenesis. The co-staining procedure with traditional green BODIPY dye and red chlorophyll indicates that 2-DPAN is suitable for multicolour LD imaging. Compared with BODIPY, 2-DPAN was an efficient sample preparation technique without the washing procedure. Thus, 2-DPAN could improve traditional fluorescent probes currently used for lipid imaging. In addition, the rapid, wash-free, multicolour AIE-based in vivo probe in the study of LDs with 2-DPAN could advance the research of lipid production in microalgae. Full article
Show Figures

Figure 1

Back to TopTop