A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Synthesis and Characterization of TCFISE Probe
2.3. General Procedures for the Detection of CaE
2.4. Limit of Detection (LOD) for TCFISE toward Addition of CaE
2.5. Cell Culture and Cell Viability
2.6. Cell Imaging
3. Results and Discussion
3.1. AIE Characteristics of the TCFISE Probe and TCFIS
3.2. Response of TCFISE Probe to CaE
3.3. CaE Measurement in Diluted Serum Samples
3.4. Cell Cytotoxicity
3.5. Cell Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245–1255. [Google Scholar] [CrossRef]
- World Health Organization. Cancer; Retrieved 24 May 2007; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Zhang, J.; Chen, G.; Zhang, P.; Zhang, J.; Li, X.; Gan, D.; Cao, X.; Han, M.; Du, H.; Ye, Y. The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0228857. [Google Scholar] [CrossRef] [PubMed]
- Colli, A.; Fraquelli, M.; Casazza, G.; Massironi, S.; Colucci, A.; Conte, D.; Duca, P. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: A systematic review. Am. J. Gastroenterol. 2006, 101, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, Z.L.; Dong, J.S.; Wei, P.; Hu, R.J.; Zhou, C.C.; Sun, N.; Luo, M.; Yang, W.J.; Yao, R.; et al. Folate receptor-positive circulating tumor cells as a novel diagnostic biomarker in non-small cell lung cancer. Transl. Oncol. 2013, 6, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristina, T.; Joseph, O.; Nicole, E.R.; Neehar, D.P.; Jorge, A.M.; Adam, Y.; Akbar, W.; Amit, G.S. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. Gastroenterology 2018, 154, 1706–1718. [Google Scholar]
- Cong, M.; Ou, X.J.; Huang, J.; Long, J.; Li, T.; Liu, X.E.; Wang, Y.H.; Wu, X.N.; Zhou, J.L.; Sun, Y.M.; et al. A predictive model using N-glycan biosignatures for clinical diagnosis of early hepatocellular carcinoma related to hepatitis B virus. Omics 2020, 24, 55–63. [Google Scholar] [CrossRef]
- Kisiel, J.B.; Dukek, B.A.; Kanipakam, R.V.S.R.; Ghoz, H.M.; Yab, T.C.; Berger, C.K.; Taylor, W.R.; Foote, P.H.; Giama, N.H.; Onyirioha, K.; et al. Hepatocellular carcinoma detection by plasma methylated DNA: Discovery, phase I pilot, and phase II clinical validation. Hepatology 2019, 69, 1180–1192. [Google Scholar] [CrossRef]
- Fan, P.L.; Xia, H.S.; Ding, H.; Dong, Y.; Chen, L.L.; Wang, W.P. Characterization of early hepatocellular carcinoma and high-grade dysplastic nodules on contrast-enhanced ultrasound correlation with histopathologic findings. J. Ultrasound Med. 2020, 39, 1799–1808. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Nolsøe, C.P.; Barr, R.G.; Berzigotti, A.; Burns, P.N.; Cantisani, V.; Chammas, M.C.; Chaubal, N.; Choi, B.I.; Clevert, D.A.; et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver—Update 2020 WFUMB in cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultrasound Med. Biol. 2020, 46, 2579–2604. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.H.; Hu, P.P.; Wan, Q.S.; Han, F.L.; Zhou, J.M.; Huang, D.Q.; Lv, N.H. Combination of dual serum fluorescence, AFP and hepatic function tests is valuable to identify HCC in AFP-elevated liver diseases. Oncotarget 2017, 8, 97758–97768. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.F.; Su, L.; Qian, C. Circulating tumor DNA: A promising biomarker in the liquid biopsy of cancer. Oncotarget 2016, 7, 48832–48841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Sun, L.; Pu, Y.; Yu, J.; Feng, W.; Dong, C.; Zhou, B.; Du, D.; Zhang, Y.; Chen, Y.; et al. Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma. ACS Cent. Sci. 2021, 7, 2049–2062. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xu, M.; Cao, Z.; Li, W.; Chen, L.; Xie, X.; Wang, W.; Liu, J. Ultrasound-assisted miR-122-loaded polymeric nanodroplets for hepatocellular carcinoma gene therapy. Mol. Pharm. 2020, 17, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shao, D.; Chang, Z.; Lu, M.; Wang, Y.; Yue, J.; Yang, D.; Li, M.; Xu, Q.; Dong, W. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano 2017, 11, 12732–12741. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Xu, Y.; Guo, R.; Wen, S.; Huang, Y.; Liu, W.; Shen, M.; Zhao, J.; Zhang, G.; et al. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl. Mater. Inter. 2014, 6, 6944–6953. [Google Scholar] [CrossRef]
- Ye, Q.W.; Ling, S.B.; Zheng, S.S.; Xu, X. Liquid biopsy in hepatocellular carcinoma: Circulating tumor cells and circulating tumor DNA. Mol. Cancer 2019, 18, 114. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhu, W.P.; Li, C.B.; Zhang, P.F.; Jiang, G.Y.; Niu, G.L.; Tang, B.Z. Mitochondria-targeting NIR fluorescent probe for rapid, highly sensitive and selective visualization of nitroxyl in live cells, tissues and mice. Sci. China Chem. 2020, 63, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.T.; Guo, Y.; Zhu, W.C.; Havener, K.; Zheng, X.J. Recent advances in 1,8-naphthalimide-based small-molecule fluorescent probes for organelles imaging and tracking in living cells. Coord. Chem. Rev. 2021, 444, 214019. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Chen, Q.; Li, H.; Zhou, L.; Jiang, X.; Shi, M.; Zhang, P.; Jiang, G.; Tang, B.Z. An easily available ratiometric reaction-based AIE probe for carbon monoxide light-up imaging. Anal. Chem. 2019, 91, 9388–9392. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Chen, Y.; Shao, B.H.; Cheng, J.; Li, X. Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front. Chem. Sci. Eng. 2021, 16, 34–63. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Wang, X.; Zhang, W.; Tang, B.; Li, P. Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo. Front. Chem. Sci. Eng. 2022, 16, 4–33. [Google Scholar] [CrossRef]
- Wu, Q.; Cai, M.J.; Gao, J.; Zhao, T.; Xu, H.J.; Yan, Q.Y.; Jing, Y.Y.; Shi, Y.; Kang, C.Q.; Liu, Y.; et al. Developing substrate-based small molecule fluorescent probes for super-resolution fluorescent imaging of various membrane transporters. Nanoscale Horiz. 2020, 5, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.A.; Kim, J.J.; Lee, J.; Lee, J.H.J.; Srikanta, S.H.; Kwon, H.Y.; Park, S.J.; Jang, S.Y.; Lee, J.S.; Wang, Z.X.; et al. Identification of tumor initiating cells with a small-molecule fluorescent probe by using vimentin as a biomarker. Angew. Chem. Int. Ed. 2018, 57, 2851–2854. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, C.; Chen, Q.; Zhang, P.; Wang, D.; Kang, M.; Jiang, G.; Wang, J. Lysosome-targeting red-emitting aggregation-induced emission probe with large stokes shift for light-up in situ visualization of β-N-acetylhexosaminidase. Anal. Chem. 2019, 91, 12611–12614. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Li, C.; Liu, L.; Wang, Z.; Chen, Z.; Yu, J.; Ji, W.; Jiang, G.; Zhang, P.; Wang, J. Acceptor planarization and donor rotation: A facile strategy for realizing synergistic cancer phototherapy via type I PDT and PTT. ACS Nano 2022, 16, 4162–4174. [Google Scholar] [CrossRef]
- Wang, J.G.; Chen, Q.Q.; Tian, N.; Zhu, W.P.; Zou, H.; Wang, X.S.; Li, X.K.; Fan, X.L.; Jiang, G.Y.; Tang, B.Z. A fast responsive, highly selective and light-up fluorescent probe for the two-photon imaging of carboxylesterase in living cells. J. Mater. Chem. B 2018, 6, 1595–1599. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, Y.J.; Kang, J.S.; Kim, I.Y.; Choi, K.S.; Kim, H.M. Carboxylesterase-2-selective two-photon ratiometric probe reveals decreased carboxylesterase-2 activity in breast cancer cells. Anal. Chem. 2018, 90, 9465–9471. [Google Scholar] [CrossRef]
- Tian, Z.; Ding, L.; Li, K.; Song, Y.; Dou, T.; Hou, J.; Tian, X.; Feng, L.; Ge, G.; Cui, J. Rational design of a long-wavelength fluorescent probe for highly selective sensing of carboxylesterase 1 in living systems. Anal. Chem. 2019, 91, 5638–5645. [Google Scholar] [CrossRef]
- Jin, Q.; Feng, L.; Wang, D.-D.; Dai, Z.-R.; Wang, P.; Zou, L.-W.; Liu, Z.-H.; Wang, J.-Y.; Yu, Y.; Ge, G.-B.; et al. A two-photon ratiometric fluorescent probe for imaging carboxylesterase 2 in living cells and tissues. ACS Appl. Mater. Inter. 2015, 7, 28474–28481. [Google Scholar] [CrossRef]
- Dai, J.; Hou, Y.; Wu, J.; Shen, B. A minireview of recent reported carboxylesterase fluorescent probes: Design and biological applications. ChemistrySelect 2020, 5, 11185–11196. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Li, J.; Ding, K.; Lv, Z.; Yang, Y.; Chen, H.; Li, X. A fluorogenic probe with aggregation-induced emission characteristics for carboxylesterase assay through formation of supramolecular microfibers. Chem. Asian J. 2014, 9, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yan, F.; Zheng, J.; Cui, X.; Feng, L.; Li, S.; Jin, L.; James, T.D.; Ma, X. Endoplasmic reticulum targeting ratiometric fluorescent probe for carboxylesterase 2 detection in drug-induced acute liver injury. Anal. Chem. 2019, 91, 15840–15845. [Google Scholar] [CrossRef]
- Jin, Q.; Feng, L.; Wang, D.D.; Wu, J.J.; Hou, J.; Dai, Z.R.; Sun, S.G.; Wang, J.Y.; Ge, G.B.; Cui, J.N.; et al. A highly selective near-infrared fluorescent probe for carboxylesterase 2 and its bioimaging applications in living cells and animals. Biosens. Bioelectron. 2016, 83, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.D.; Zou, L.W.; Jin, Q.; Guan, X.Q.; Yu, Y.; Zhu, Y.D.; Huang, J.; Gao, P.; Wang, P.; Ge, G.B.; et al. Bioluminescent sensor reveals that carboxylesterase 1A is a novel endoplasmic reticulum-derived serologic indicator for hepatocyte injury. ACS Sens. 2020, 5, 1987–1995. [Google Scholar] [CrossRef] [PubMed]
- Kailass, K.; Sadovski, O.; Capello, M.; Kang, Y.A.; Fleming, J.B.; Hanash, S.M.; Beharry, A.A. Measuring human carboxylesterase 2 activity in pancreatic cancer patient-derived xenografts using a ratiometric fluorescent chemosensor. Chem. Sci. 2019, 10, 8428–8437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.M.; Feng, L.; Hou, J.; Lv, X.; Ning, J.; Ge, G.B.; Wang, K.W.; Cui, J.N.; Yang, L. A ratiometric fluorescent sensor for highly selective detection of human carboxylesterase 2 and its application in living cells. Sens. Actuat. B -Chem. 2014, 205, 151–157. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, C.; Zheng, X.; Ju, M.; Fu, Y.; Zhang, X.; Shen, B. A red emission multiple detection site probe for detecting carboxylesterase 1 based on BODIPY fluorophore. J. Photoch. Photobio. A 2021, 421, 113516. [Google Scholar] [CrossRef]
- Zhou, H.; Tang, J.B.; Zhang, J.; Chen, B.C.; Kan, J.F.; Zhang, W.F.; Zhou, J.; Ma, H.M. A red lysosome-targeted fluorescent probe for carboxylesterase detection and bioimaging. J. Mater. Chem. B 2019, 7, 2989–2996. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.T.; Liang, J.H.; Tian, X.G.; Zhang, B.J.; Huang, H.L.; Ma, X.C.; Feng, L.; Sun, C.P. A highly selective near infrared fluorescent probe for carboxylesterase 2 and its biological applications. J. Mater. Chem. B 2020, 9, 2457–2461. [Google Scholar] [CrossRef]
- Yi, L.; Cao, L.; Liu, L.L.; Xi, Z. FRET-based fluorescence probes for hydrolysis study and pig liver esterase activity. Tetrahedron 2008, 64, 8947–8951. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Chen, W.; Yang, X. Imaging and detection of carboxylesterase in living cells and zebrafish pretreated with pesticides by a new near-infrared fluorescence off-on probe. J. Agric. Food Chem. 2017, 65, 4209–4215. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741. [Google Scholar] [CrossRef]
- Gu, X.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. AIEgens for biological process monitoring and disease theranostics. Biomaterials 2017, 146, 115–135. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Feng, H.T.; Yuan, Y.X.; Xiong, J.B.; Zheng, Y.S.; Tang, B.Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452–7476. [Google Scholar] [CrossRef]
- Wang, H.; Ma, K.; Xu, B.; Tian, W.J. Tunable supramolecular interactions of aggregation-induced emission probe and graphene oxide with biomolecules: An approach toward ultrasensitive label-free and “turn-on” DNA sensing. Small 2016, 12, 6613–6622. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, G.X.; Zhang, D.Q. A new gelator based on tetraphenylethylene and diphenylalanine: Gel formation and reversible fluorescence tuning. Chin. Sci. Bull. 2012, 57, 4284–4288. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Liu, J.K.; Liu, F.; Nie, H.; Zeng, J.J.; Lin, G.W.; Qin, A.J.; Tu, M.; He, Z.K.; Sung, H.H.Y.; et al. Tailoring the molecular properties with isomerism effect of AIEgens. Adv. Funct. Mater. 2019, 29, 1903834. [Google Scholar] [CrossRef]
- Peng, H.Q.; Liu, B.; Liu, J.; Wei, P.; Tang, B.Z. “Seeing” and controlling photoisomerization by (Z)-/(E)-isomers with aggregation-induced emission characteristics. ACS Nano 2019, 13, 12120–12126. [Google Scholar] [CrossRef]
- Gon, M.; Tanaka, K.; Chujo, Y. A highly efficient near-infrared-emissive copolymer with a N=N double-bond π-conjugated system based on a fused azobenzene–boron complex. Angew. Chem. Int. Ed. 2018, 130, 6656–6661. [Google Scholar] [CrossRef]
- Song, Y.C.; Zong, L.Y.; Zhang, L.Y.; Li, Z. To form AIE product with the target analyte: A new strategy for excellent fluorescent probes, and convenient detection of hydrazine in seconds with test strips. Sci. China Chem. 2017, 60, 1596–1601. [Google Scholar] [CrossRef]
- Chen, C.; Ni, X.; Tian, H.W.; Liu, Q.; Guo, D.S.; Ding, D. Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew. Chem. Int. Ed. 2020, 59, 10008–10012. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Gao, H.Q.; Zhang, Y.W.; Yan, H.Y.; Si, J.H.; Mi, X.Y.; Xia, S.; Feng, X.Q.; Liu, D.B.; Kong, D.L.; et al. Highly bright AIE nanoparticles by regulating the substituent of rhodanine for precise early detection of atherosclerosis and drug screening. Adv. Mater. 2022, 34, 2106994. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Su, H.F.; Kwok, R.T.K.; Shan, G.G.; Leung, A.C.S.; Lee, M.M.S.; Sung, H.H.Y.; Williams, I.D.; Lam, J.W.Y.; Tang, B.Z. Facile synthesis of red/NIR AIE luminogens with simple structures, bright emissions, and high photostabilities, and their applications for specific imaging of lipid droplets and image-guided photodynamic therapy. Adv. Funct. Mater. 2017, 27, 1704039. [Google Scholar] [CrossRef]
- Li, M.; Wen, H.F.; Li, H.X.; Yan, Z.C.; Li, Y.; Wang, L.; Wang, D.; Tang, B.Z. AIEgen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection. Biomaterials 2021, 276, 121007. [Google Scholar] [CrossRef]
- Wang, D.; Lee, M.M.S.; Shan, G.G.; Kwok, R.T.K.; Lam, J.W.Y.; Su, H.F.; Cai, Y.C.; Tang, B.Z. Highly efficient photosensitizers with far-red/Near-infrared aggregation-induced emission for in vitro and in vivo cancer theranostics. Adv. Mater. 2018, 30, 1802105. [Google Scholar] [CrossRef]
- Feng, Z.; Bai, S.Y.; Qi, J.; Sun, C.W.; Zhang, Y.H.; Yu, X.M.; Ni, H.W.; Wu, D.; Fan, X.X.; Xue, D.W.; et al. Biologically excretable aggregation-induced emission dots for visualizing through the marmosets intravitally: Horizons in future clinical nanomedicine. Adv. Mater. 2021, 33, 2008123. [Google Scholar] [CrossRef]
- Fu, W.; Yan, C.; Guo, Z.; Zhang, J.; Zhang, H.; Tian, H.; Zhu, W.H. Rational design of near-infrared aggregation-induced-emission-active probes: In situ mapping of amyloid-β plaques with ultrasensitivity and high-fidelity. J. Am. Chem. Soc. 2019, 141, 3171–3177. [Google Scholar] [CrossRef]
- Feng, H.T.; Zou, S.; Chen, M.; Xiong, F.; Lee, M.H.; Fang, L.; Tang, B.Z. Tuning push–pull electronic effects of AIEgens to boost the theranostic efficacy for colon cancer. J. Am. Chem. Soc. 2020, 142, 11442–11450. [Google Scholar] [CrossRef]
- Jiang, G.Y.; Li, C.B.; Lai, Q.F.; Liu, X.; Chen, Q.Q.; Zhang, P.F.; Wang, J.G.; Tang, B.Z. An easily available ratiometric AIE probe for peroxynitrite in vitro and in vivo imaging. Sens. Actuat. B -Chem. 2021, 329, 129223. [Google Scholar] [CrossRef]
- Dai, J.N.; Zhao, Y.; Hou, Y.D.; Zhong, G.Y.; Gao, R.; Wu, J.C.; Shen, B.X.; Zhang, X. Detection of carboxylesterase 1 and carbamates with a novel fluorescent protein chromophore based probe. Dye. Pigm. 2021, 192, 109444. [Google Scholar] [CrossRef]
- Wu, Y.L.; Huang, S.L.; Zeng, F.; Wang, J.; Yu, C.M.; Huang, J.; Xie, H.T.; Wu, S.Z. A ratiometric fluorescent system for carboxylesterase detection with AIE dots as FRET donors. Chem. Commun. 2015, 51, 12791–12794. [Google Scholar] [CrossRef]
- Qi, J.; Ou, H.; Liu, Q.; Ding, D. Gathering brings strength: How organic aggregates boost disease phototheranostics. Aggregate 2021, 2, 95–113. [Google Scholar] [CrossRef]
- Zhong, K.; Chen, L.; Pan, Y.; Yan, X.; Hou, S.; Tang, Y.; Gao, X.; Li, J.; Tang, L. A colorimetric and near-infrared fluorescent probe for detection of hydrogen sulfide and its real multiple applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 221, 117135. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Li, C.; Xiang, J.; Luo, Y.; Peng, J.; Deng, G.; Wang, J.; Kolemen, S.; Li, H.; Zhang, P.; et al. An easily available lysosomal-targeted ratiometric fluorescent probe with aggregation induced emission characteristics for hydrogen polysulfide visualization in acute ulcerative colitis. Mater. Chem. Front. 2021, 5, 7638–7644. [Google Scholar] [CrossRef]
- Li, C.; Jiang, G.; Liu, X.; Lai, Q.; Kang, M.; Wang, D.; Zhang, P.; Wang, J.; Tang, B.Z. An easily available ratiometric AIE probe for nitroxyl visualization in vitro and in vivo. Mater. Chem. Front. 2021, 5, 1817–1823. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, R.; Wei, Q.; Zhu, C.; Yuan, J.; Gao, F.; Zou, Y. Manipulating molecular aggregation and crystalline behavior of A-DA′D-A type acceptors by side chain engineering in organic solar cells. Aggregate 2022, 3, e183. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, M.; Li, C.; Liu, L.; He, Y.; Li, Y.; Jiang, G.; Wang, J. A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase. Biosensors 2022, 12, 484. https://doi.org/10.3390/bios12070484
Xia M, Li C, Liu L, He Y, Li Y, Jiang G, Wang J. A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase. Biosensors. 2022; 12(7):484. https://doi.org/10.3390/bios12070484
Chicago/Turabian StyleXia, Mengting, Chunbin Li, Lingxiu Liu, Yumao He, Yongdong Li, Guoyu Jiang, and Jianguo Wang. 2022. "A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase" Biosensors 12, no. 7: 484. https://doi.org/10.3390/bios12070484
APA StyleXia, M., Li, C., Liu, L., He, Y., Li, Y., Jiang, G., & Wang, J. (2022). A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase. Biosensors, 12(7), 484. https://doi.org/10.3390/bios12070484