Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = ABA membrane transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14572 KiB  
Article
Genome-Wide Investigation of CPK-Related Kinase (CRK) Gene Family in Arabidopsis thaliana
by Shiquan Yang, Yuan Fang, Xianming Fang, Jingwen He and Kai He
Int. J. Mol. Sci. 2025, 26(7), 3297; https://doi.org/10.3390/ijms26073297 - 2 Apr 2025
Viewed by 689
Abstract
Calcium-dependent protein kinase (CPK), representing a group of typical Ca2+ sensors in plants, has been well characterized in plants. CPK is capable of binding to Ca2+, which sequentially activates CPK. CPK-related kinase (CRK) shows protein structures similar to CPK but [...] Read more.
Calcium-dependent protein kinase (CPK), representing a group of typical Ca2+ sensors in plants, has been well characterized in plants. CPK is capable of binding to Ca2+, which sequentially activates CPK. CPK-related kinase (CRK) shows protein structures similar to CPK but only contains degenerative EF-hands, which likely makes the activation of CRK Ca2+ independent. Compared with CPK, CRK is barely functionally analyzed. In this study, we systematically investigated CRK genes in the Arabidopsis genome. We found that CRK appeared to emerge in land plants, suggesting CPK and CRK are divided at very early stages during plant evolution. In Arabidopsis, the detailed analysis of the calmodulin-like domain of CRK indicated the substitutions of key amino acid residues in its EF-hands result in disrupted Ca2+ association. Next, by using a YFP tag, we found that all Arabidopsis CRK proteins were localized at the plasma membrane. After cloning the promoters of all eight CRK genes, we found that CRKs were widely expressed at all stages of Arabidopsis by using GUS staining. Furthermore, the kinase activity of CRK was examined by using phospho-antibody and Pro-Q staining. CRK was shown to possess high autophosphorylation, which was not affected by the presence of Ca2+. Moreover, we analyzed the cis-elements of CRK promoters and discovered that stress signals potentially regulate the expression of CRK genes. Consistently, by using quantitative real-time PCR (qPCR), we found a number of CRK genes were regulated by a variety of biotic and abiotic treatments such as flg22, ABA, drought, salt, and high and low temperatures. Furthermore, by utilizing proteomic approaches, we identified more than 100 proteins that interacted with CRK5 in planta. Notably, RLK and channels/transporters were found in CRK5-containing complexes, suggesting they function upstream and downstream of CRK, respectively. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 6656 KiB  
Article
Genome-Wide Analysis of Aquaporins Gene Family in Populus euphratica and Its Expression Patterns in Response to Drought, Salt Stress, and Phytohormones
by Boniface Ndayambaza, Jianhua Si, Dongmeng Zhou, Xue Bai, Bing Jia, Xiaohui He, Chunlin Wang, Jie Qin, Xinglin Zhu, Zijin Liu and Boyang Wang
Int. J. Mol. Sci. 2024, 25(18), 10185; https://doi.org/10.3390/ijms251810185 - 23 Sep 2024
Cited by 3 | Viewed by 1872
Abstract
Aquaporins (AQPs) play an essential role in membrane water transport during plant responses to water stresses centered on conventional upstream signals. Phytohormones (PHs) regulate plant growth and yield, working with transcription factors to help plants withstand environmental challenges and regulate physiological and chemical [...] Read more.
Aquaporins (AQPs) play an essential role in membrane water transport during plant responses to water stresses centered on conventional upstream signals. Phytohormones (PHs) regulate plant growth and yield, working with transcription factors to help plants withstand environmental challenges and regulate physiological and chemical processes. The AQP gene family is important, so researchers have studied its function and regulatory system in numerous species. Yet, there is a critical gap the understanding of many of their molecular features, thus our full knowledge of AQPs is far-off. In this study, we undertook a broad examination of the AQP family gene in Populus euphratica via bioinformatics tools and analyzed the expression patterns of certain members in response to drought, salt, and hormone stress. A total of 22 AQP genes were examined in P. euphratica, and were categorized into four main groups, including TIPs, PIPs, SIPs, and NIPs based on phylogenetic analysis. Comparable exon–intron gene structures were found by gene structure examination, and similarities in motif number and pattern within the same subgroup was determined by motif analysis. The PeuAQP gene family has numerous duplications, and there is a distinct disparity in how the members of the PeuAQP family react to post-translational modifications. Abiotic stress and hormone responses may be mediated by AQPs, as indicated by the abundance of stress response elements found in 22 AQP genes, as revealed by the promoter’s cis-elements prediction. Expression pattern analysis reveals that selected six AQP genes from the PIP subgroup were all expressed in the leaves, stem, and roots with varying expression levels. Moreover, qRT-PCR analysis discovered that the majority of the selected AQP members were up- or down-regulated in response to hormone treatment and abiotic stress. Remarkably, PeuAQP14 and PeuAQP15 appeared to be highly responsive to drought stress and PeuAQP15 exhibited a high response to salt stress. The foliar application of the phytohormones (SA, IAA, GA3, MeJA, and ABA) were found to either activate or inhibit PeuAQP, suggesting that they may mitigate the effects of water shortage of poplar water stress. The present work enhances our knowledge of the practical roles of AQPs in stress reactions and offers fundamental information for the AQP genes in poplar species. It also highlights a direction for producing new varieties of poplar species with drought, salt, and hormone tolerance and holds substantial scientific and ecological importance, offering a potential contribution to the conservation of poplar species in arid regions. Full article
(This article belongs to the Special Issue New Insights in Plant Abiotic Stress)
Show Figures

Figure 1

22 pages, 3832 KiB  
Review
Abscisic Acid: Metabolism, Signaling, and Crosstalk with Other Phytohormones under Heavy Metal Stress
by Ambreen Bano, Kratika Singh, Surendra Pratap Singh and Pooja Sharma
Stresses 2023, 3(4), 665-686; https://doi.org/10.3390/stresses3040046 - 22 Sep 2023
Cited by 6 | Viewed by 3378
Abstract
Heavy metal (HM) stress poses a global risk to crops, ecological systems, and human health. It disrupts cellular ionic equilibrium, cell membrane integrity, metabolic balance, and the activities of enzymes and proteins, severely impacting physiological processes, plant development, and agricultural productivity. Although plants [...] Read more.
Heavy metal (HM) stress poses a global risk to crops, ecological systems, and human health. It disrupts cellular ionic equilibrium, cell membrane integrity, metabolic balance, and the activities of enzymes and proteins, severely impacting physiological processes, plant development, and agricultural productivity. Although plants naturally activate defense mechanisms to mitigate the adverse effects of HM stress, they cannot completely prevent them. Phytohormones counter HM toxicity, aiding growth. External application and internal regulation via signaling/biosynthesis genes offer defense against HM-induced damage. A pivotal signaling molecule in plant adaptive responses to environmental stressors, including HM toxicity, is abscisic acid (ABA). Despite ABA’s role in abiotic stress responses such as drought and salinity, its function and crosstalk with other phytohormones under HM stress remain poorly understood. Nonetheless, exogenously applied ABA serves as a strategic approach to enhancing plants’ resistance to HM toxicity by promoting osmolyte accumulation and reinforcing antioxidant activity. ABA significantly regulates various plant growth and metabolic activities under diverse environmental conditions. This review highlights the effects of HM stress on plants and explores ABA involvement in production, signaling, catabolism, and transport within plant tissues. The purpose of this paper is to shed light on the complex interplay between the metabolism of ABA, its signaling, and its interactions with other phytohormones (e.g., auxins, gibberellins, and ethylene) during HM exposure. Furthermore, we delve into the function of ABA to mitigate HM stress and elucidate its interactions with other phytohormones. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants)
Show Figures

Graphical abstract

16 pages, 3865 KiB  
Article
A Cationic Amino Acid Transporter NtCAT1 Promotes Leaf Senescence by the Accumulation of ABA in Nicotiana tabacum
by Songchong Lu, Xuan Ji, Xinshuang Zhang, Hao Wu, Yan Sun, Ying Zhu, Shanshan Su, Shumin Wei and Xin Liu
Agronomy 2023, 13(7), 1691; https://doi.org/10.3390/agronomy13071691 - 24 Jun 2023
Cited by 3 | Viewed by 1736
Abstract
Leaf senescence is a comprehensive process performed by integrating various internal and external signals, followed by nutrient reallocation, especially via organic nitrogen (e.g., amino acids) mobilization. Amino acid (AA) transporters play an important role in crop growth and development by participating in the [...] Read more.
Leaf senescence is a comprehensive process performed by integrating various internal and external signals, followed by nutrient reallocation, especially via organic nitrogen (e.g., amino acids) mobilization. Amino acid (AA) transporters play an important role in crop growth and development by participating in the process of organic nitrogen remobilization. However, the biological functions and downstream effectors of amino acid transporters involved in leaf senescence are still poorly understood. In the present study, we cloned and characterized a cationic amino acid transporter gene, NtCAT1, from tobacco (K326). We found that NtCAT1 transcript levels were induced by age and abscisic acid (ABA). The NtCAT1 protein was highly localized in the plasma membrane. The overexpressing NtCAT1 line (OECAT1) showed early leaf senescence, accompanied with increased reactive oxygen species (ROS) and ABA content. By contrast, the NtCAT1 mutant (ntcat1-36) generated by the CRSPR/Cas9 system, showed a delayed-senescence phenotype with a decreased accumulation of ROS and ABA. Moreover, we discovered that the overexpression of NtCAT1 could downregulate the expression of the target of rapamycin (TOR) kinase gene and upregulate the transcript levels of ABA-related genes during leaf senescence compared with wild type (WT), while the expression of these genes in ntcat1-36 plants exhibited inverse trends. Furthermore, an analysis of the amino acid concentration demonstrated that NtCAT1 transgenic plants displayed dramatic changes in the amino acid profile during leaf senescence. In summary, our results suggest that NtCAT1 could promote leaf senescence via the increased biosynthesis of ABA, and our study provides new insights into the molecular mechanism of leaf senescence. Full article
(This article belongs to the Special Issue Emerging Topics in Tobacco Genomics)
Show Figures

Figure 1

16 pages, 3412 KiB  
Article
PIP2;10 Enhances Drought Tolerance via Promoting Water-Retaining Capacity in Populus
by Xiao-Qian Yu, Wanlong Su, Chao Liu, Hou-Ling Wang, Weilun Yin and Xinli Xia
Forests 2023, 14(4), 696; https://doi.org/10.3390/f14040696 - 28 Mar 2023
Cited by 2 | Viewed by 1920
Abstract
Drought is an adverse environmental factor for plant growth and development. Aquaporins play an influential role in water uptake and transport in plants. However, the function of PagPIP2;10 in response to drought stress remains largely unclear. Here, we report that the plasma membrane [...] Read more.
Drought is an adverse environmental factor for plant growth and development. Aquaporins play an influential role in water uptake and transport in plants. However, the function of PagPIP2;10 in response to drought stress remains largely unclear. Here, we report that the plasma membrane intrinsic protein PagPIP2;10 was in the cell membrane and induced by dehydration in the poplar 84K hybrids. The overexpression of PagPIP2;10 in poplars enhanced drought tolerance. The PagPIP2;10ox lines maintained a higher water retention content, photosynthetic rate, and proline content. Meanwhile, a lower content of MDA and transpiration and stomatal conductance were observed under drought stress than in that of the WT plants. A further analysis found that the PagPIP2;10ox lines decreased the stomatal aperture and accumulated more ROS in guard cells compared with WT after ABA treatment with the exception that the root hydraulic conductance of the PagPIP2;10ox lines was higher than that of the WT plants. These results imply that PagPIP2;10 played a positive role in enhancing drought stress via enhancing water-retaining capacity under drought stress. Full article
(This article belongs to the Special Issue Abiotic Stress in Tree Species)
Show Figures

Figure 1

23 pages, 6696 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Ammonium Transporter Family Genes in Soybean
by Wei Yang, Xiaoxu Dong, Zhanxin Yuan, Yan Zhang, Xia Li and Youning Wang
Int. J. Mol. Sci. 2023, 24(4), 3991; https://doi.org/10.3390/ijms24043991 - 16 Feb 2023
Cited by 14 | Viewed by 3185
Abstract
Ammonium transporters (AMTs) are responsible for ammonium absorption and utilization in plants. As a high-nitrogen-demand crop and a legume, soybean can also obtain ammonium from symbiotic root nodules in which nitrogen-fixing rhizobia convert atmospheric nitrogen (N2) into ammonium. Although increasing evidence [...] Read more.
Ammonium transporters (AMTs) are responsible for ammonium absorption and utilization in plants. As a high-nitrogen-demand crop and a legume, soybean can also obtain ammonium from symbiotic root nodules in which nitrogen-fixing rhizobia convert atmospheric nitrogen (N2) into ammonium. Although increasing evidence implicates vital roles of ammonium transport in soybean, no systematic analyses of AMTs in soybean (named GmAMTs) or functional analyses of GmAMTs are available. In this study, we aimed to identify all GmAMT family genes and gain a better understanding of the characteristics of GmAMT genes in soybean. Here, due to the improved genome assembly and annotation of soybean, we tried to generate a phylogenetic tree of 16 GmAMTs based on new information. Consistent with reported data, GmAMT family members can be divided into two subfamilies of GmAMT1 (6 genes) and GmAMT2 (10 genes). Interestingly, unlike Arabidopsis, which has only one AMT2, soybean has substantially increased the number of GmAMT2s, suggesting enhanced demand for ammonium transport. These genes were distributed on nine chromosomes, of which GmAMT1.3, GmAMT1.4, and GmAMT1.5 were three tandem repeat genes. The gene structures and conserved protein motifs of the GmAMT1 and GmAMT2 subfamilies were different. All the GmAMTs were membrane proteins with varying numbers of transmembrane domains ranging from 4 to 11. Promoter analysis found that these GmAMT genes have phytohormone-, circadian control-, and organ expression-related cis-elements in their promoters, and notably, there were nodulation-specific and nitrogen-responsive elements in the promoters of the GmAMT1 and GmAMT2 genes. Further expression data showed that these GmAMT family genes exhibited different spatiotemporal expression patterns across tissues and organs. In addition, GmAMT1.1, GmAMT1.2, GmAMT2.2, and GmAMT2.3 were responsive to nitrogen treatment, while GmAMT1.2, GmAMT1.3, GmAMT1.4, GmAMT1.5, GmAMT1.6, GmAMT2.1, GmAMT2.2, GmAMT2.3, GmAMT3.1, and GmAMT4.6 showed circadian rhythms in transcription. RT-qPCR validated the expression patterns of GmAMTs in response to different forms of nitrogen and exogenous ABA treatments. Gene expression analysis also confirmed that GmAMTs are regulated by key nodulation gene GmNINa, indicating a role of GmAMTs in symbiosis. Together, these data indicate that GmAMTs may differentially and/or redundantly regulate ammonium transport during plant development and in response to environmental factors. These findings provide a basis for future research on the functions of GmAMTs and the mechanisms through which GmAMTs regulate ammonium metabolism and nodulation in soybean. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Yield Enhancement)
Show Figures

Figure 1

14 pages, 2862 KiB  
Article
Molecular Regulatory Mechanism of the Iron-Ion-Promoted Asexual Sporulation of Antrodia cinnamomea in Submerged Fermentation Revealed by Comparative Transcriptomics
by Huaxiang Li, Jianing Dai, Yu Shi, Xiaoyan Zhu, Luqiang Jia and Zhenquan Yang
J. Fungi 2023, 9(2), 235; https://doi.org/10.3390/jof9020235 - 10 Feb 2023
Cited by 6 | Viewed by 2150
Abstract
Antrodia cinnamomea is a precious edible and medicinal fungus with activities of antitumor, antivirus, and immunoregulation. Fe2+ was found to promote the asexual sporulation of A. cinnamomea markedly, but the molecular regulatory mechanism of the effect is unclear. In the present study, [...] Read more.
Antrodia cinnamomea is a precious edible and medicinal fungus with activities of antitumor, antivirus, and immunoregulation. Fe2+ was found to promote the asexual sporulation of A. cinnamomea markedly, but the molecular regulatory mechanism of the effect is unclear. In the present study, comparative transcriptomics analysis using RNA sequencing (RNA-seq) and real time quantitative PCR (RT-qPCR) were conducted on A. cinnamomea mycelia cultured in the presence or absence of Fe2+ to reveal the molecular regulatory mechanisms underlying iron-ion-promoted asexual sporulation. The obtained mechanism is as follows: A. cinnamomea acquires iron ions through reductive iron assimilation (RIA) and siderophore-mediated iron assimilation (SIA). In RIA, ferrous iron ions are directly transported into cells by the high-affinity protein complex formed by a ferroxidase (FetC) and an Fe transporter permease (FtrA). In SIA, siderophores are secreted externally to chelate the iron in the extracellular environment. Then, the chelates are transported into cells through the siderophore channels (Sit1/MirB) on the cell membrane and hydrolyzed by a hydrolase (EstB) in the cell to release iron ions. The O-methyltransferase TpcA and the regulatory protein URBS1 promote the synthesis of siderophores. HapX and SreA respond to and maintain the balance of the intercellular concentration of iron ions. Furthermore, HapX and SreA promote the expression of flbD and abaA, respectively. In addition, iron ions promote the expression of relevant genes in the cell wall integrity signaling pathway, thereby accelerating the cell wall synthesis and maturation of spores. This study contributes to the rational adjustment and control of the sporulation of A. cinnamomea and thereby improves the efficiency of the preparation of inoculum for submerged fermentation. Full article
Show Figures

Figure 1

16 pages, 5313 KiB  
Article
Genome-Wide Analysis of the Rab Gene Family in Melilotus albus Reveals Their Role in Salt Tolerance
by Caibin Zhang, Fan Wu, Qi Yan, Zhen Duan, Shengsheng Wang, Bao Ao, Yangyang Han and Jiyu Zhang
Int. J. Mol. Sci. 2023, 24(1), 126; https://doi.org/10.3390/ijms24010126 - 21 Dec 2022
Cited by 11 | Viewed by 2611
Abstract
Melilotus albus is a high-quality forage, due to its high protein content, and aboveground biomass and salt tolerance. Rab (Ras-related protein in the brain) proteins are the largest GTPase family which play a key role in intracellular membrane transport, and many Rab genes [...] Read more.
Melilotus albus is a high-quality forage, due to its high protein content, and aboveground biomass and salt tolerance. Rab (Ras-related protein in the brain) proteins are the largest GTPase family which play a key role in intracellular membrane transport, and many Rab genes have been identified in eukaryotes. The growth and distribution of M. albus are severely hampered by soil salinization. However, little is known about candidate genes for salt tolerance in M. albus. In this study, 27 Rab family genes were identified for the first time from M. albus, and divided into eight groups (Groups A-H). The number of introns in MaRabs ranged from one to seven, with most genes containing one intron. In addition, most MaRab proteins showed similarities in motif composition. Phylogenetic analysis and structural-domain comparison indicated that Rab family genes were highly conserved in M. albus. Members of the MaRab gene family were distributed across all eight chromosomes, with the largest distribution on chromosome 1. Prediction of the protein interaction network showed that 24 Rab proteins exhibited protein–protein interactions. Analysis of the promoter cis-acting elements showed that MaRab-gene family members are extensively involved in abiotic stress responses. RNA-seq data analysis of the MaRab-gene-expression patterns suggested that the Rab gene family possesses differentially expressed members in five organs and under salt stress, drought stress, and ABA (Abscisic Acid) treatment. Differentially expressed genes under drought stress, salt stress and ABA stress were validated by quantitative real-time PCR. Furthermore, heterologous expression in yeast was used to characterize the functions of MaRab1 and MaRab17, which were upregulated in reaction to salt stress. In summary, this study provided valuable information for further research into the molecular mechanism of the response of M. albus to saline stress, as well as the possibility of developing cultivars with high salt-resistance characteristics. Full article
(This article belongs to the Special Issue The Comparative Genomics and Functional Genomics Analyses in Plants)
Show Figures

Figure 1

13 pages, 2528 KiB  
Article
An ABCG-Type Transporter Facilitates ABA Influx and Regulates Camptothecin Biosynthesis in Camptotheca acuminata
by Yanyan Wang, Yang Wang, Hefei Bai, Yuqian Han and Fang Yu
Int. J. Mol. Sci. 2022, 23(24), 16120; https://doi.org/10.3390/ijms232416120 - 17 Dec 2022
Cited by 4 | Viewed by 2020
Abstract
Camptothecin (CPT) and its derivatives from Camptotheca acuminata have antitumor effects as a DNA topoisomerase I inhibitor. Previous studies have shown that application of exogenous abscisic acid (ABA) significantly promoted the accumulation level of CPT and induced the expression of CPT biosynthetic genes, [...] Read more.
Camptothecin (CPT) and its derivatives from Camptotheca acuminata have antitumor effects as a DNA topoisomerase I inhibitor. Previous studies have shown that application of exogenous abscisic acid (ABA) significantly promoted the accumulation level of CPT and induced the expression of CPT biosynthetic genes, which revealed that ABA signaling is effectively involved in regulating CPT biosynthesis in C. acuminata. In this study, an ABA transporter, CaABAT, which encodes a plasma membrane protein belonging to the ABCG subfamily, was identified in C. acuminata, and its ABA import activity was confirmed by transport assay in yeast cells. Real-time PCR analysis showed that CaABAT was predominately expressed in C. acuminata leaves and its expression could be significantly upregulated by exogenous ABA treatment. Silencing of CaABAT down-regulated the expression of ABA response genes, which indicated that translocation of ABA by CaABAT should initiate changes in plant physiological status in response to ABA signaling, thus leading to decreased expression of CPT biosynthesis pathway genes and low accumulation levels of CPT in C. acuminata. Full article
(This article belongs to the Special Issue Advanced Research of Plant Secondary Metabolism)
Show Figures

Figure 1

18 pages, 7727 KiB  
Article
Physiological and Transcriptomic Analyses Uncover the Reason for the Inhibition of Photosynthesis by Phosphate Deficiency in Cucumis melo L.
by Pengli Li, Jing Yu, Ningxiao Feng, Jinyang Weng, Asad Rehman, Jinyang Huang, Song Tu and Qingliang Niu
Int. J. Mol. Sci. 2022, 23(20), 12073; https://doi.org/10.3390/ijms232012073 - 11 Oct 2022
Cited by 12 | Viewed by 2279
Abstract
Phosphate (Pi) deficiency is a common phenomenon in agricultural production and limits plant growth. Recent work showed that long-term Pi deficiency caused the inhibition of photosynthesis and inefficient electron transport. However, the underlying mechanisms are still unknown. In this study, we used the [...] Read more.
Phosphate (Pi) deficiency is a common phenomenon in agricultural production and limits plant growth. Recent work showed that long-term Pi deficiency caused the inhibition of photosynthesis and inefficient electron transport. However, the underlying mechanisms are still unknown. In this study, we used the physiological, histochemical, and transcriptomic methods to investigate the effect of low-Pi stress on photosynthetic gas exchange parameters, cell membrane lipid, chloroplast ultrastructure, and transcriptional regulation of key genes in melon seedlings. The results showed that Pi deficiency significantly downregulated the expression of aquaporin genes, induced an increase in ABA levels, and reduced the water content and free water content of melon leaves, which caused physiological drought in melon leaves. Therefore, gas exchange was disturbed. Pi deficiency also reduced the phospholipid contents in leaf cell membranes, caused the peroxidation of membrane lipids, and destroyed the ultrastructure of chloroplasts. The transcriptomic analysis showed that 822 differentially expressed genes (DEGs) were upregulated and 1254 downregulated by Pi deficiency in leaves. GO and KEGG enrichment analysis showed that DEGs significantly enriched in chloroplast thylakoid membrane composition (GO:0009535), photosynthesis-antenna proteins (map00196), and photosynthesis pathways (map00195) were downregulated by Pi deficiency. It indicated that Pi deficiency regulated photosynthesis-related genes at the transcriptional level, thereby affecting the histochemical properties and physiological functions, and consequently causing the reduced light assimilation ability and photosynthesis efficiency. It enriches the mechanism of photosynthesis inhibition by Pi deficiency. Full article
Show Figures

Figure 1

17 pages, 3244 KiB  
Article
The Role of Ergosterol and Sphingolipids in the Localization and Activity of Candida albicans’ Multidrug Transporter Cdr1p and Plasma Membrane ATPase Pma1p
by Aneta K. Urbanek, Jakub Muraszko, Daria Derkacz, Marcin Łukaszewicz, Przemysław Bernat and Anna Krasowska
Int. J. Mol. Sci. 2022, 23(17), 9975; https://doi.org/10.3390/ijms23179975 - 1 Sep 2022
Cited by 13 | Viewed by 2912
Abstract
Opportunistic pathogen Candida albicans causes systemic infections named candidiasis. Due to the increasing number of multi-drug resistant clinical isolates of Candida sp., currently employed antifungals (e.g., azoles) are insufficient for combating fungal infection. One of the resistance mechanisms toward azoles is increased expression [...] Read more.
Opportunistic pathogen Candida albicans causes systemic infections named candidiasis. Due to the increasing number of multi-drug resistant clinical isolates of Candida sp., currently employed antifungals (e.g., azoles) are insufficient for combating fungal infection. One of the resistance mechanisms toward azoles is increased expression of plasma membrane (PM) transporters (e.g., Cdr1p), and such an effect was observed in C. albicans clinical isolates. At the same time, it has been proven that a decrease in PMs sphingolipids (SLs) content correlates with altered sensitivity to azoles and diminished Cdr1p levels. This indicates an important role for SL in maintaining the properties of PM and gaining resistance to antifungal agents. Here, we prove using a novel spot variation fluorescence correlation spectroscopy (svFCS) technique that CaCdr1p localizes in detergent resistant microdomains (DRMs). Immunoblot analysis confirmed the localization of CaCdr1p in DRMs fraction in both the C. albicans WT and erg11Δ/Δ strains after 14 and 24 h of culture. We also show that the C. albicanserg11Δ/Δ strain is more sensitive to the inhibitor of SLs synthesis; aureobasidin A (AbA). AbA treatment leads to a diminished amount of SLs in C. albicans WT and erg11Δ/Δ PM, while, for C. albicanserg11Δ/Δ, the general levels of mannose-inositol-P-ceramide and inositol-P-ceramide are significantly lower than for the C. albicans WT strain. Simultaneously, the level of ergosterol in the C. albicans WT strain after adding of AbA remains unchanged, compared to the control conditions. Analysis of PM permeabilization revealed that treatment with AbA correlates with the disruption of PM integrity in C. albicanserg11Δ/Δ but not in the C. albicans WT strain. Additionally, in the C. albicans WT strain, we observed lower activity of H+-ATPase, correlated with the delocalization of both CaCdr1p and CaPma1p. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Fungal Pathogenesis and Antifungal Resistance)
Show Figures

Figure 1

28 pages, 5097 KiB  
Article
Silicon-Induced Tolerance against Arsenic Toxicity by Activating Physiological, Anatomical and Biochemical Regulation in Phoenix dactylifera (Date Palm)
by Taimoor Khan, Saqib Bilal, Sajjad Asaf, Safiya Salim Alamri, Muhammad Imran, Abdul Latif Khan, Ahmed Al-Rawahi, In-Jung Lee and Ahmed Al-Harrasi
Plants 2022, 11(17), 2263; https://doi.org/10.3390/plants11172263 - 31 Aug 2022
Cited by 15 | Viewed by 3336
Abstract
Arsenic is a toxic metal abundantly present in agricultural, industrial, and pesticide effluents. To overcome arsenic toxicity and ensure safety for plant growth, silicon (Si) can play a significant role in its mitigation. Here, we aim to investigate the influence of silicon on [...] Read more.
Arsenic is a toxic metal abundantly present in agricultural, industrial, and pesticide effluents. To overcome arsenic toxicity and ensure safety for plant growth, silicon (Si) can play a significant role in its mitigation. Here, we aim to investigate the influence of silicon on date palm under arsenic toxicity by screening antioxidants accumulation, hormonal modulation, and the expression profile of abiotic stress-related genes. The results showed that arsenic exposure (As: 1.0 mM) significantly retarded growth attributes (shoot length, root length, fresh weight), reduced photosynthetic pigments, and raised reactive species levels. Contrarily, exogenous application of Si (Na2SiO3) to date palm roots strongly influenced stress mitigation by limiting the translocation of arsenic into roots and shoots as compared with the arsenic sole application. Furthermore, an enhanced accumulation of polyphenols (48%) and increased antioxidant activities (POD: 50%, PPO: 75%, GSH: 26.1%, CAT: 51%) resulted in a significant decrease in superoxide anion (O2•−: 58%) and lipid peroxidation (MDA: 1.7-fold), in silicon-treated plants, compared with control and arsenic-treated plants. The Si application also reduced the endogenous abscisic acid (ABA: 38%) under normal conditions, and salicylic acid (SA: 52%) and jasmonic acid levels (JA: 62%) under stress conditions as compared with control and arsenic. Interestingly, the genes; zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED-1) involved in ABA biosynthesis were upregulated by silicon under arsenic stress. Likewise, Si application also upregulated gene expression of plant plasma membrane ATPase (PMMA-4), aluminum-activated malate transporter (ALMT) responsible for maintaining cellular physiology, stomatal conductance, and short-chain dehydrogenases/reductases (SDR) involved in nutrients translocation. Hence, the study demonstrates the remarkable role of silicon in supporting growth and inducing arsenic tolerance by increasing antioxidant activities and endogenous hormones in date palm. The outcomes of our study can be employed in further studies to better understand arsenic tolerance and decode mechanism. Full article
Show Figures

Graphical abstract

25 pages, 5715 KiB  
Article
Using the Maize Nested Association Mapping (NAM) Population to Partition Arbuscular Mycorrhizal Effects on Drought Stress Tolerance into Hormonal and Hydraulic Components
by Juan Manuel Ruiz-Lozano, Gabriela Quiroga, Gorka Erice, Jacob Pérez-Tienda, Ángel María Zamarreño, José María García-Mina and Ricardo Aroca
Int. J. Mol. Sci. 2022, 23(17), 9822; https://doi.org/10.3390/ijms23179822 - 29 Aug 2022
Cited by 8 | Viewed by 2775
Abstract
In this study, a first experiment was conducted with the objective of determining how drought stress alters the radial water flow and physiology in the whole maize nested association mapping (NAM) population and to find out which contrasting maize lines should be tested [...] Read more.
In this study, a first experiment was conducted with the objective of determining how drought stress alters the radial water flow and physiology in the whole maize nested association mapping (NAM) population and to find out which contrasting maize lines should be tested in a second experiment for their responses to drought in combination with an arbuscular mycorrhizal (AM) fungus. Emphasis was placed on determining the role of plant aquaporins and phytohormones in the responses of these contrasting maize lines to cope with drought stress. Results showed that both plant aquaporins and hormones are altered by the AM symbiosis and are highly involved in the physiological responses of maize plants to drought stress. The regulation by the AM symbiosis of aquaporins involved in water transport across cell membranes alters radial water transport in host plants. Hormones such as IAA, SA, ABA and jasmonates must be involved in this process either by regulating the own plant-AM fungus interaction and the activity of aquaporins, or by inducing posttranscriptional changes in these aquaporins, which in turns alter their water transport capacity. An intricate relationship between root hydraulic conductivity, aquaporins and phytohormones has been observed, revealing a complex network controlling water transport in maize roots. Full article
(This article belongs to the Special Issue New Advances in Plant Abiotic Stress)
Show Figures

Figure 1

13 pages, 5095 KiB  
Article
Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
by Norika Mikami, Mayu Konya, Shinichi Enoki and Shunji Suzuki
Plants 2022, 11(13), 1694; https://doi.org/10.3390/plants11131694 - 27 Jun 2022
Cited by 7 | Viewed by 3293
Abstract
Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated [...] Read more.
Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated temperature conditions. In this study, we investigated the effects of geraniol on anthocyanin accumulation in grape berry skins of field-grown grapevines and elucidated the molecular mechanisms of the geraniol-triggered anthocyanin accumulation. Geraniol-treated bunches showed enhanced anthocyanin accumulation in berry skins at harvest (50 days after treatment). Geraniol treatment upregulated the transcription of MybA1 and UFGT, which encode the key factors in anthocyanin biosynthesis, in berry skins. Geraniol treatment also improved anthocyanin accumulation in grape cultured cells. We isolated grape ATP-binding cassette transporter G family protein VvABCG40, encoding abscisic acid (ABA) membrane transporter, from geraniol-treated grape cultured cells. VvABCG40 transcription was upregulated in berry skins 40 days after treatment. Geraniol treatment also upregulated the transcription of VvPP2C24, which encodes ABA-responsible type 2C protein phosphatases, in berry skins, but not the transcription of VvNCED1, which encodes a key enzyme in ABA biosynthesis. Taken together, geraniol-triggered anthocyanin accumulation in berry skins is promoted by ABA membrane transport and not by ABA biosynthesis, and geraniol treatment of field-grown grape bunches may contribute to alleviating the poor coloration of berry skin as a novel technique in viticulture. Full article
Show Figures

Figure 1

22 pages, 3406 KiB  
Article
Silicon- and Boron-Induced Physio-Biochemical Alteration and Organic Acid Regulation Mitigates Aluminum Phytotoxicity in Date Palm Seedlings
by Saqib Bilal, Adil Khan, Muhammad Imran, Abdul Latif Khan, Sajjad Asaf, Ahmed Al-Rawahi, Masoud Sulaiman Abood Al-Azri, Ahmed Al-Harrasi and In-Jung Lee
Antioxidants 2022, 11(6), 1063; https://doi.org/10.3390/antiox11061063 - 27 May 2022
Cited by 16 | Viewed by 2974
Abstract
The current study aimed to understand the synergistic impacts of silicon (Si; 1.0 mM) and boron (B; 10 µM) application on modulating physio-molecular responses of date palm to mitigate aluminum (Al3+; 2.0 mM) toxicity. Results revealed that compared to sole Si [...] Read more.
The current study aimed to understand the synergistic impacts of silicon (Si; 1.0 mM) and boron (B; 10 µM) application on modulating physio-molecular responses of date palm to mitigate aluminum (Al3+; 2.0 mM) toxicity. Results revealed that compared to sole Si and B treatments, a combined application significantly improved plant growth, biomass, and photosynthetic pigments during Al toxicity. Interestingly, Si and B resulted in significantly higher exudation of organic acid (malic acids, citric acids, and acetic acid) in the plant’s rhizosphere. This is also correlated with the reduced accumulation and translocation of Al in roots (60%) and shoots (56%) in Si and B treatments during Al toxicity compared to in sole Al3+ treatment. The activation of organic acids by combined Si + B application has significantly regulated the ALMT1, ALMT2 and plasma membrane ATPase; PMMA1 and PMMA3 in roots and shoots. Further, the Si-related transporter Lsi2 gene was upregulated by Si + B application under Al toxicity. This was also validated by the higher uptake and translocation of Si in plants. Al-induced oxidative stress was significantly counteracted by exhibiting lower malondialdehyde and superoxide production in Si + B treatments. Experiencing less oxidative stress was evident from upregulation of CAT and Cyt-Cu/Zn SOD expression; hence, enzymatic activities such as polyphenol oxidase, catalase, peroxidase, and ascorbate peroxidase were significantly activated. In the case of endogenous phytohormones, Si + B application demonstrated the downregulation of the abscisic acid (ABA; NCED1 and NCED6) and salicylic acid (SA; PYL4, PYR1) biosynthesis-related genes. Consequently, we also noticed a lower accumulation of ABA and rising SA levels under Al-stress. The current findings illustrate that the synergistic Si + B application could be an effective strategy for date palm growth and productivity against Al stress and could be further extended in field trails in Al-contaminated fields. Full article
(This article belongs to the Special Issue Antioxidant Mechanisms in Plants)
Show Figures

Figure 1

Back to TopTop