Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = AAT deficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 941 KiB  
Article
Bioanalytical Method Validations of Three Alpha1-Antitrypsin Measurement Methods Required for Clinical Sample Analysis
by Andrea Engelmaier, Martin Zimmermann, Harald A. Butterweck and Alfred Weber
Pharmaceuticals 2025, 18(8), 1165; https://doi.org/10.3390/ph18081165 - 6 Aug 2025
Abstract
Background/Objectives: The quality of clinical studies is largely determined by the bioanalytical methods used for testing study samples. Rigorous assay validation following defined criteria, for example, the European Medicines Agency guideline for bioanalytical method validation, is a prerequisite for such assays. Alpha1-antitrypsin [...] Read more.
Background/Objectives: The quality of clinical studies is largely determined by the bioanalytical methods used for testing study samples. Rigorous assay validation following defined criteria, for example, the European Medicines Agency guideline for bioanalytical method validation, is a prerequisite for such assays. Alpha1-antitrypsin (AAT) measurement, i.e., the specific measurement of AAT protein and its associated elastase-inhibitory activity, is an integral part of assay panels for clinical studies addressing AAT deficiency. Specifically, AAT must be measured in the matrix of citrated human plasma as well as in diluted solutions with high salt concentrations obtained through bronchoalveolar lavage (BAL). Sensitive and selective measurement methods are required, as BAL has a low level of AAT. Methods: We present the validation data obtained for three AAT measurement methods. Two of them, nephelometry and the enzyme-linked immunosorbent assay, which clearly differ in their sensitivity, provide AAT protein concentrations. The third is the highly sensitive, newly developed elastase complex formation immunosorbent assay that specifically measures the inhibitory activity of AAT against its pivotal target, protease neutrophil elastase. Using samples with relevant AAT concentrations, we addressed the assays’ characteristics: accuracy, precision, linearity, selectivity, specificity, limit of quantification and short-term analyte stability Results: Overall, the three methods demonstrated low total errors, a combined measure reflecting accuracy and precision, even at low analyte concentrations of less than 0.5 µg/mL; adequate linearity over the required assay range; and acceptable selectivity and specificity. Furthermore, the short-time stability of the analyte was also demonstrated. Conclusions: All three AAT measurement methods met the acceptance criteria defined by the guidelines on bioanalytical assay validation, qualifying these methods for clinical sample analysis. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

17 pages, 1722 KiB  
Article
Effect of Alpha-1 Antitrypsin Deficiency on Zinc Homeostasis Gene Regulation and Interaction with Endoplasmic Reticulum Stress Response-Associated Genes
by Juan P. Liuzzi, Samantha Gonzales, Manuel A. Barbieri, Rebecca Vidal and Changwon Yoo
Nutrients 2025, 17(11), 1913; https://doi.org/10.3390/nu17111913 - 2 Jun 2025
Viewed by 823
Abstract
Background: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder caused by mutations in the SERPINA1 gene, leading to reduced levels or impaired alpha-1 antitrypsin (AAT) function. This condition predominantly affects the lungs and liver. The Z allele, a specific mutation in the SERPINA1 [...] Read more.
Background: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder caused by mutations in the SERPINA1 gene, leading to reduced levels or impaired alpha-1 antitrypsin (AAT) function. This condition predominantly affects the lungs and liver. The Z allele, a specific mutation in the SERPINA1 gene, is the most severe form and results in the production of misfolded AAT proteins. The misfolded proteins accumulate in the endoplasmic reticulum (ER) of liver cells, triggering ER stress and activating the unfolded protein response (UPR), a cellular mechanism designed to restore ER homeostasis. Currently, there is limited knowledge regarding specific nutritional recommendations for patients with AATD. The liver is essential for the regulation of zinc homeostasis, with zinc widely recognized for its hepatoprotective properties. However, the effects of AATD on zinc metabolism remain poorly understood. Similarly, the potential benefits of zinc supplementation for individuals with AATD have not been thoroughly investigated. Objective: This study explored the relationship between AATD and zinc metabolism through a combination of in vitro experiments and computational analysis. Results: The expression of the mutant Z variant of ATT (ATZ) in cultured mouse hepatocytes was associated with decreased labile zinc levels in cells and dysregulation of zinc homeostasis genes. Analysis of two data series from the Gene Expression Omnibus (GEO) revealed that mice expressing ATZ (PiZ mice), a murine model of AATD, exhibited significant differences in mRNA levels related to zinc homeostasis and UPR when compared to wildtype mice. Bayesian network analysis of GEO data uncovered novel gene-to-gene interactions among zinc transporters, as well as between zinc homeostasis, UPR, and other associated genes. Conclusions: The findings provide valuable insights into the role of zinc homeostasis genes in UPR processes linked to AATD. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

17 pages, 614 KiB  
Review
Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer
by Siyu Xiang, Liu Yang, Yun He, Feng Ding, Shuangying Qiao, Zonghua Su, Zheng Chen, Aiping Lu and Fangfei Li
Cells 2025, 14(2), 88; https://doi.org/10.3390/cells14020088 - 10 Jan 2025
Cited by 4 | Viewed by 2917
Abstract
Alpha-1 antitrypsin (AAT) is a key serine protease inhibitor for regulating proteases such as neutrophil elastase. AAT restrains the pulmonary matrix from enzymatic degradation, and a deficiency in AAT leads to inflammatory tissue damage in the lungs, resulting in chronic obstructive pulmonary disease. [...] Read more.
Alpha-1 antitrypsin (AAT) is a key serine protease inhibitor for regulating proteases such as neutrophil elastase. AAT restrains the pulmonary matrix from enzymatic degradation, and a deficiency in AAT leads to inflammatory tissue damage in the lungs, resulting in chronic obstructive pulmonary disease. Due to the crucial biological function of AAT, the emerging research interest in this protein has shifted to its role in cancer-associated inflammation and the dynamics of the tumor microenvironment. However, the lack of comprehensive reviews in this field hinders our understanding of AAT as an essential immune modulator with great potential in cancer immunotherapy. Therefore, in this review, we have elucidated the pivotal roles of AAT in inflammation and the tumor microenvironment, including the structure and molecular properties of AAT, its molecular functions in the regulation of the inflammatory response and tumor microenvironment, and its clinical implications in cancer including its diagnosis, prognosis, and therapeutic intervention. This review seeks to bridge the gap in the understanding of AAT between inflammatory diseases and cancer, and to foster deeper investigations into its translational potential in cancer immunotherapy in the future. Full article
(This article belongs to the Special Issue Recent Advances in Tumor Immunological Microenvironment Research)
Show Figures

Figure 1

17 pages, 2484 KiB  
Article
Limb Perfusion Delivery of a rAAV1 Alpha-1 Antitrypsin Vector in Non-Human Primates Is Safe but Insufficient for Therapy
by Debora Pires-Ferreira, Darcy Reil, Qiushi Tang, Meghan Blackwood, Thomas Gallagher, Allison M. Keeler, Jessica A. Chichester, Kristin K. Vyhnal, Jane A. Lindborg, Janet Benson, Dongtao Fu, Terence R. Flotte and Alisha M. Gruntman
Genes 2024, 15(9), 1188; https://doi.org/10.3390/genes15091188 - 10 Sep 2024
Viewed by 1628
Abstract
Background/Objectives: α-1 antitrypsin (AAT) deficiency is an inherited, genetic condition characterized by reduced serum levels of AAT and increased risk of developing emphysema and liver disease. AAT is normally synthesized primarily in the liver, but muscle-targeting with a recombinant adeno-associated virus (rAAV) vector [...] Read more.
Background/Objectives: α-1 antitrypsin (AAT) deficiency is an inherited, genetic condition characterized by reduced serum levels of AAT and increased risk of developing emphysema and liver disease. AAT is normally synthesized primarily in the liver, but muscle-targeting with a recombinant adeno-associated virus (rAAV) vector for α-1 antitrypsin (AAT) gene therapy has been used to minimize liver exposure to the virus and hepatotoxicity. Clinical trials of direct intramuscular (IM) administration of rAAV1-hAAT have demonstrated its overall safety and transgene expression for 5 years. However, the failure to reach the therapeutic target level after 100 large-volume (1.5 mL) IM injections of maximally concentrated vector led us to pursue a muscle-targeting approach using isolated limb perfusion. This targets the rAAV to a greater muscle mass and allows for a higher total volume (and thereby a higher dose) than is tolerable by multiple direct IM injections. Limb perfusion has been shown to be feasible in non-human primates using the rAAV1 serotype and a ubiquitous promoter expressing an epitope-tagged AAT matched to the host species. Methods: In this study, we performed a biodistribution and preclinical safety study in non-human primates with a clinical candidate rAAV1-human AAT (hAAT) vector at doses ranging from 3.0 × 1012 to 1.3 × 1013 vg/kg, bracketing those used in our clinical trials. Results: We found that limb perfusion delivery of rAAV1-hAAT was safe and showed a biodistribution pattern similar to previous studies. However, serum levels of AAT obtained with high-dose limb perfusion still reached only ~50% of the target serum levels. Conclusions: Our results suggest that clinically effective AAT gene therapy may ultimately require delivery at doses between 3.5 × 1013–1 × 1014 vg/kg, which is within the dose range used for approved rAAV gene therapies. Muscle-targeting strategies could be incorporated when delivering systemic administration of high-dose rAAV gene therapies to increase transduction of muscle tissues and reduce the burden on the liver, especially in diseases that can present with hepatotoxicity such as AAT deficiency. Full article
(This article belongs to the Special Issue Gene Therapy for Childhood Diseases)
Show Figures

Figure 1

9 pages, 513 KiB  
Article
Prevalence of Alpha-1 Antitrypsin Deficiency Alleles in a Lithuanian Cohort of Wheezing Small Children
by Edita Poluzioroviene, Joanna Chorostowska-Wynimko, Sigita Petraitiene, Arunas Strumila, Adriana Rozy, Aneta Zdral and Arunas Valiulis
Adv. Respir. Med. 2024, 92(4), 291-299; https://doi.org/10.3390/arm92040028 - 5 Aug 2024
Viewed by 1573
Abstract
Severe inherited alpha-1 antitrypsin deficiency (AATD) is an autosomal genetic condition linked to chronic obstructive pulmonary disease (COPD). The significance of heterozygous, milder deficiency variants (PiSZ, PiMZ, PiMS) is less clear. We studied AATD genotypes in 145 children (up to 72 months old) [...] Read more.
Severe inherited alpha-1 antitrypsin deficiency (AATD) is an autosomal genetic condition linked to chronic obstructive pulmonary disease (COPD). The significance of heterozygous, milder deficiency variants (PiSZ, PiMZ, PiMS) is less clear. We studied AATD genotypes in 145 children (up to 72 months old) with assessed wheezing severity using the Pediatric Respiratory Assessment Measure (BCCH PRAM score). A control group of 74 children without airway obstruction was included. AAT concentration and Pi phenotype were determined from dry blood spot samples using nephelometry and real-time PCR; PiS and PiZ alleles were identified by isoelectrofocusing. Among the wheezers, the Pi*S allele incidence was 2.07% (3 cases) and the Pi*Z allele was 6.9% (10 cases). The Pi*Z allele frequency was higher in wheezers compared to controls (44.8% vs. 20.27%) and the general Lithuanian population (44.8% vs. 13.6%) and was similar to adult COPD patients in Lithuania: Pi*S 10.3% vs. 15.8% and Pi*Z 44.8% vs. 46.1%. No association was found between AAT genotypes and wheezing severity. Finding that wheezer children exhibit a frequency of Z* and S* alleles like that found in adults with COPD suggests a potential genetic predisposition that links early wheezing in children to the development of COPD in adulthood. Larger cohort studies are needed to confirm this finding. Full article
Show Figures

Figure 1

10 pages, 214 KiB  
Article
Alpha-1-Antitrypsin Deficiency in Children—Unmet Needs Concerning the Liver Manifestation
by Joelle Lemke, Alexander Weigert, Soyhan Bagci, Mark Born, Rainer Ganschow and David Katzer
Children 2024, 11(6), 694; https://doi.org/10.3390/children11060694 - 6 Jun 2024
Viewed by 1580
Abstract
Objectives: This study aimed to analyse the clinical course of 45 children with severe alpha-1-antitrypsin deficiency (AATD) registered in our clinic to detect possible predictors of poor outcomes. Methods: The clinical and biological data of 45 patients with homozygous or compound heterozygous AATD [...] Read more.
Objectives: This study aimed to analyse the clinical course of 45 children with severe alpha-1-antitrypsin deficiency (AATD) registered in our clinic to detect possible predictors of poor outcomes. Methods: The clinical and biological data of 45 patients with homozygous or compound heterozygous AATD were analysed. The data were collected retrospectively going back to 2005 and prospectively from May 2020 until October 2021. It was based on questionnaires, laboratory values, sonography, and biopsy findings. Liver disease was classified into four grades depending on the grade of liver disease: mild or no liver disease, moderate disease, severe disease, and liver transplantation. Results: Thirty-nine patients (86.7%) had a Pi*ZZ and five (11.1%) a Pi*SZ genotype. One patient showed a new, not-yet-described compound heterozygous genotype (Pi*Z + Asp95Asn). A total of 66.7% of the cohort showed mild or no liver disease, 20% moderate, and 13.3% severe. AATD was diagnosed in most cases because of liver abnormalities, such as the elevation of transaminases (42.2%). A total of 29.4% of the patients with neonatal icterus prolongatus developed severe liver disease, and 25.7% were born small for their gestational age (SGA). Diseases of the atopic type were reported in 47.4% of the cases. Conclusions: The presence of neonatal icterus prolongatus in the first weeks of life was significantly more likely in severe courses of liver disease (r = 0.371, p = 0.012). A tendency toward atopic comorbidity in AAT-deficient children needs to be further evaluated. Full article
(This article belongs to the Special Issue Chronic Liver Diseases in Children)
23 pages, 11195 KiB  
Article
Technoeconomic Analysis of Intensified PEGylated Biopharmaceutical Recombinant Protein Production: Alpha Antitrypsin as a Model Case
by Salem Alkanaimsh, Abdullah M. Alsalal and Hesham El-Touney
Processes 2024, 12(5), 979; https://doi.org/10.3390/pr12050979 - 10 May 2024
Viewed by 2737
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder characterized by the insufficient production of the AAT protein. Due to availability limitations, not all AATD patients receive protein therapy treatment. In this study, the technoeconomic analysis of different processes (conventional and intensified) producing 200 [...] Read more.
Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder characterized by the insufficient production of the AAT protein. Due to availability limitations, not all AATD patients receive protein therapy treatment. In this study, the technoeconomic analysis of different processes (conventional and intensified) producing 200 kg/year of PEGylated recombinant AAT (PEG-AAT) using a Chinese hamster ovary cell line was investigated. All bioprocesses consist of upstream, downstream, and PEGylation sections. A base-case model (process A) of the conventional fed-batch production bioreactor was developed using SuperPro Designer software (Version 13) to evaluate the economic feasibility of the process. The cost of goods (COG) was estimated to be approximately USD 387.6/g. Furthermore, an intensified process (B) was modeled and evaluated to reduce the COG. Process intensification was implemented in the process (N-1 perfusion bioreactor). The specific operating COG for process B was found to be 10% less than that of process A. Scenario analysis was performed to assess the impact of process capacity (100–1000 kg/year) and cell-specific productivity (30–90 pg/cell/day). With an increase in process capacity, the specific operating COG was reduced for all processes. Increasing cell-specific productivity decreases the specific operating COG at different rates for each process, depending on the titer level. Future investigations into the PEGylation section are required since it has the highest COG of all the sections. Full article
Show Figures

Figure 1

19 pages, 19149 KiB  
Review
Computational Tools to Assist in Analyzing Effects of the SERPINA1 Gene Variation on Alpha-1 Antitrypsin (AAT)
by Jakub Mróz, Magdalena Pelc, Karolina Mitusińska, Joanna Chorostowska-Wynimko and Aleksandra Jezela-Stanek
Genes 2024, 15(3), 340; https://doi.org/10.3390/genes15030340 - 6 Mar 2024
Cited by 1 | Viewed by 2964
Abstract
In the rapidly advancing field of bioinformatics, the development and application of computational tools to predict the effects of single nucleotide variants (SNVs) are shedding light on the molecular mechanisms underlying disorders. Also, they hold promise for guiding therapeutic interventions and personalized medicine [...] Read more.
In the rapidly advancing field of bioinformatics, the development and application of computational tools to predict the effects of single nucleotide variants (SNVs) are shedding light on the molecular mechanisms underlying disorders. Also, they hold promise for guiding therapeutic interventions and personalized medicine strategies in the future. A comprehensive understanding of the impact of SNVs in the SERPINA1 gene on alpha-1 antitrypsin (AAT) protein structure and function requires integrating bioinformatic approaches. Here, we provide a guide for clinicians to navigate through the field of computational analyses which can be applied to describe a novel genetic variant. Predicting the clinical significance of SERPINA1 variation allows clinicians to tailor treatment options for individuals with alpha-1 antitrypsin deficiency (AATD) and related conditions, ultimately improving the patient’s outcome and quality of life. This paper explores the various bioinformatic methodologies and cutting-edge approaches dedicated to the assessment of molecular variants of genes and their product proteins using SERPINA1 and AAT as an example. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 867 KiB  
Article
Detection of Alpha-1 Antitrypsin Levels in Chronic Obstructive Pulmonary Disease in Respiratory Clinics in Spain: Results of the EPOCONSUL 2021 Audit
by Myriam Calle Rubio, Marc Miravitlles, José Luis López-Campos, Juan J. Soler-Cataluña, Bernardino Alcazar Navarrete, Manuel E. Fuentes-Ferrer and Juan Luis Rodriguez Hermosa
J. Clin. Med. 2024, 13(4), 955; https://doi.org/10.3390/jcm13040955 - 7 Feb 2024
Viewed by 1671
Abstract
Background: Alpha-1 antitrypsin deficiency (AATD) is an underdiagnosed condition despite being one of the most common inherited disorders in adults that is associated with an increased risk of developing chronic obstructive pulmonary disease (COPD). The aim was to evaluate the frequency of performing [...] Read more.
Background: Alpha-1 antitrypsin deficiency (AATD) is an underdiagnosed condition despite being one of the most common inherited disorders in adults that is associated with an increased risk of developing chronic obstructive pulmonary disease (COPD). The aim was to evaluate the frequency of performing AAT levels and associated factors in COPD patients in an audit conducted in 2021–2022, as well as to compare with a previous audit conducted in 2014–2015. Methods: EPOCONSUL 2021 is a cross-sectional audit that evaluated the outpatient care provided to COPD patients in respiratory clinics in Spain based on available data from medical registries. Results: 4225 patients with a diagnosis of COPD from 45 centers were audited in 2021. A total of 1670 (39.5%) patients underwent AAT determination. Being treated at a specialized COPD outpatient clinic (OR 1.88, p = 0.007), age ≤ 55 years old (OR 1.84, p = 0.007) and a FEV1 < 50% (OR 1.86, p < 0.001) were associated with a higher likelihood of being tested for AAT, while Charlson index ≥ 3 (OR 0.63, p < 0.001) and genotyping of AATD availability (OR 0.42, p < 0.001) showed a statistically significant negative association. The analysis of cases included in respiratory units that participated in both audits showed an increase in the proportion of cases with AAT serum level testing available (adjusted OR 2.81, p < 0.001). The percentage of individuals with serum AAT levels < 60 mg/dL (a severe AATD) was 4%. Conclusions: Our analysis identifies significant improvements in adherence to the recommendation to test AAT levels in COPD patients, performed in 4 out of 10 patients, being more likely at younger ages and with higher COPD severity, and with a detection of severe AATD of 4% among those tested, suggesting that clinicians still perform AAT testing in COPD patients selectively. Therefore, efforts are still needed to optimize AATD screening and establish new early detection strategies to reduce morbidity and mortality in these patients. Full article
Show Figures

Figure 1

15 pages, 3042 KiB  
Article
Altered Serum Alpha1-Antitrypsin Protease Inhibition before and after Clinical Hematopoietic Stem Cell Transplantation: Association with Risk for Non-Relapse Mortality
by Ido Brami, Tsila Zuckerman, Ron Ram, Batia Avni, Galit Peretz, Daniel Ostrovsky, Yotam Lior, Caroline Faour, Oisin McElvaney, Noel G. McElvaney and Eli C. Lewis
Int. J. Mol. Sci. 2024, 25(1), 422; https://doi.org/10.3390/ijms25010422 - 28 Dec 2023
Cited by 3 | Viewed by 1916
Abstract
α1-Antitrypsin (AAT), an acute-phase reactant not unsimilar to C-reactive protein (CRP), is a serine protease inhibitor that harbors tissue-protective and immunomodulatory attributes. Its concentrations appropriately increase during conditions of extensive tissue injury, and it induces immune tolerance, in part, by inhibiting the enzymatic [...] Read more.
α1-Antitrypsin (AAT), an acute-phase reactant not unsimilar to C-reactive protein (CRP), is a serine protease inhibitor that harbors tissue-protective and immunomodulatory attributes. Its concentrations appropriately increase during conditions of extensive tissue injury, and it induces immune tolerance, in part, by inhibiting the enzymatic activity of the inflammatory serine protease, proteinase 3 (PR3). Typically administered to patients with genetic AAT deficiency, AAT treatment was recently shown to improve outcomes in patients with steroid-refractory graft-versus-host disease (GVHD). GVHD represents a grave outcome of allogeneic hematopoietic stem cell transplantation (HSCT), a potentially curative intervention for hematological diseases. The procedure requires radio/chemotherapy conditioning of the prospective marrow recipient, a cytotoxic process that causes vast tissue injury and, in some formats, interferes with liver production of AAT. To date, changes in the functional profile of AAT during allogeneic HSCT, and during the cytotoxic intervention that precedes HSCT, are unknown. The present study followed 53 patients scheduled for allogeneic HSCT (trial registration NCT03188601). Serum samples were tested before and after HSCT for AAT and CRP levels and for intrinsic anti-proteolytic activity. The ex vivo response to clinical-grade AAT was tested on circulating patient leukocytes and on a human epithelial cell line treated with patient sera in a gap closure assay. According to the ex vivo experiments, circulating leukocytes responded to AAT with a favorable immune-regulated profile, and epithelial gap closure was enhanced by AAT in sera from GVHD-free patients but not in sera from patients who developed GVHD. According to serum collected prior to HSCT, non-relapse mortality was reliably predicted by combining three components: AAT and CRP levels and serum anti-proteolytic activity. Taken together, HSCT outcomes are significantly affected by the anti-proteolytic function of circulating AAT, supporting early AAT augmentation therapy for allogeneic HSCT patients. Full article
Show Figures

Figure 1

12 pages, 636 KiB  
Review
Testing Alpha-1 Antitrypsin Deficiency in Black Populations
by Pascale Lafortune, Kanza Zahid, Magdalena Ploszaj, Emilio Awadalla, Tomás P. Carroll and Patrick Geraghty
Adv. Respir. Med. 2024, 92(1), 1-12; https://doi.org/10.3390/arm92010001 - 19 Dec 2023
Viewed by 2441
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is an under-recognized hereditary disorder and a significant cause of chronic obstructive pulmonary disease (COPD), a disease that contributes to global mortality. AAT is encoded by the SERPINA1 gene, and severe mutation variants of this gene increase the [...] Read more.
Alpha-1 antitrypsin (AAT) deficiency (AATD) is an under-recognized hereditary disorder and a significant cause of chronic obstructive pulmonary disease (COPD), a disease that contributes to global mortality. AAT is encoded by the SERPINA1 gene, and severe mutation variants of this gene increase the risk of developing COPD. AATD is more frequently screened for in non-Hispanic White populations. However, AATD is also observed in other ethnic groups and very few studies have documented the mutation frequency in these other ethnic populations. Here, we review the current literature on AATD and allele frequency primarily in Black populations and discuss the possible clinical outcomes of low screening rates in a population that experiences poor health outcomes and whether the low frequency of AATD is related to a lack of screening in this population or a truly low frequency of mutations causing AATD. This review also outlines the harmful SERPINA1 variants, the current epidemiology knowledge of AATD, health inequity in Black populations, AATD prevalence in Black populations, the clinical implications of low screening of AATD in this population, and the possible dangers of not diagnosing or treating AATD. Full article
Show Figures

Figure 1

10 pages, 686 KiB  
Article
Genotypic Frequencies of Mutations Associated with Alpha-1 Antitrypsin Deficiency in Unrelated Bone Marrow Donors from the Murcia Region Donor Registry in the Southeast of Spain
by Irene Cuenca, Carmen Botella, María Rosa Moya-Quiles, Víctor Jimenez-Coll, José Antonio Galian, Helios Martinez-Banaclocha, Manuel Muro-Pérez, Alfredo Minguela, Isabel Legaz and Manuel Muro
Diagnostics 2023, 13(17), 2845; https://doi.org/10.3390/diagnostics13172845 - 2 Sep 2023
Viewed by 1658
Abstract
Alpha-1 antitrypsin (AAT1) deficiency (AAT1D) is an inherited disease with an increased risk of chronic obstructive pulmonary disease (COPD), liver disease, and skin and blood vessel problems. AAT1D is caused by mutations in the SERPINE1 gene (Serine Protease Inhibitor, group A, member 1). [...] Read more.
Alpha-1 antitrypsin (AAT1) deficiency (AAT1D) is an inherited disease with an increased risk of chronic obstructive pulmonary disease (COPD), liver disease, and skin and blood vessel problems. AAT1D is caused by mutations in the SERPINE1 gene (Serine Protease Inhibitor, group A, member 1). Numerous variants of this gene, the Pi system, have been identified. The most frequent allelic variants are Pi*M, Pi*S, and Pi*Z. The development of COPD requires both a genetic predisposition and the contribution of an environmental factor, smoking being the most important. Studies on this deficiency worldwide are very scarce, and it is currently considered a rare disease because it is underdiagnosed. The aim of this study was to analyze the genotypic frequencies of mutations associated with AAT1 deficiency in unrelated bone marrow donors from the donor registry of the Region of Murcia in southeastern Spain due to the high risk of presenting with different pathologies and underdiagnosis in the population. A total of 112 DNA-healthy voluntary unrelated bone marrow donors from different parts of the Region of Murcia were analyzed retrospectively. AAT1 deficiency patient testing involved an automated biochemical screening routine. The three main variants, Pi*M, Pi*Z, and Pi*S, were analyzed in the SERPINE1 gene. Our results showed a frequency of 3.12% of the Pi*Z (K342) mutation in over 224 alleles tested in the healthy population. The frequency of Pi*S (V264) was 11.1%. The frequency of the haplotype with the most dangerous mutation, EK342 EE264, was 4.46%, and the frequency of EK342 EV264 was 1.78% in the healthy population. Frequencies of other EE342 EV264-mutated haplotypes accounted for 18.7%. As for the EE342 VV264 haplotype, 0.89% of the total healthy population presented heterozygous for the EV264 mutation and one individual presented homozygous for the VV264 mutation. In conclusion, the frequencies of Pi mutations in the healthy population of the Region of Murcia were not remarkably different from the few studies reported in Spain. The genotype and haplotype frequencies followed the usual pattern. Health authorities should be aware of this high prevalence of the Pi*S allelic variant and pathological genotypes such as Pi*MZ and Pi*SZ in the healthy population if they consider screening the smoking population. Full article
(This article belongs to the Special Issue Genetics and Cytopathology Testing in Disease Diagnosis)
Show Figures

Figure 1

19 pages, 3741 KiB  
Article
Could the Oxidation of α1-Antitrypsin Prevent the Binding of Human Neutrophil Elastase in COVID-19 Patients?
by Maura D’Amato, Monica Campagnoli, Paolo Iadarola, Paola Margherita Bignami, Marco Fumagalli, Laurent Roberto Chiarelli, Giovanni Stelitano, Federica Meloni, Pasquale Linciano, Simona Collina, Giampiero Pietrocola, Valentina Vertui, Anna Aliberti, Tommaso Fossali and Simona Viglio
Int. J. Mol. Sci. 2023, 24(17), 13533; https://doi.org/10.3390/ijms241713533 - 31 Aug 2023
Cited by 2 | Viewed by 1765
Abstract
Human neutrophil elastase (HNE) is involved in SARS-CoV-2 virulence and plays a pivotal role in lung infection of patients infected by COVID-19. In healthy individuals, HNE activity is balanced by α1-antitrypsin (AAT). This is a 52 kDa glycoprotein, mainly produced and secreted by [...] Read more.
Human neutrophil elastase (HNE) is involved in SARS-CoV-2 virulence and plays a pivotal role in lung infection of patients infected by COVID-19. In healthy individuals, HNE activity is balanced by α1-antitrypsin (AAT). This is a 52 kDa glycoprotein, mainly produced and secreted by hepatocytes, that specifically inhibits HNE by blocking its activity through the formation of a stable complex (HNE–AAT) in which the two proteins are covalently bound. The lack of this complex, together with the detection of HNE activity in BALf/plasma samples of COVID-19 patients, leads us to hypothesize that potential functional deficiencies should necessarily be attributed to possible structural modifications of AAT. These could greatly diminish its ability to inhibit neutrophil elastase, thus reducing lung protection. The aim of this work was to explore the oxidation state of AAT in BALf/plasma samples from these patients so as to understand whether the deficient inhibitory activity of AAT was somehow related to possible conformational changes caused by the presence of abnormally oxidized residues. Full article
(This article belongs to the Special Issue New Pathogenic Mechanism of Proteases in Inflammatory Lung Diseases)
Show Figures

Figure 1

9 pages, 871 KiB  
Article
Utility of the Serum Protein Electrophoresis in the Opportunistic Screening for the Deficiency of Alpha-1 Antitrypsin
by Beatriz Fernández-Gomez, Sebastian Menao-Guillén, Ayla Fernandez Gonzalez, Maria Arruebo Muñio, Monica Ramos Alvarez, Mercedes Inda Landaluce, Maria Angeles Castillo Arce and Miguel Ángel Torralba-Cabeza
Diagnostics 2023, 13(17), 2778; https://doi.org/10.3390/diagnostics13172778 - 28 Aug 2023
Cited by 3 | Viewed by 2388
Abstract
Background: A deficiency in alpha-1 antitrypsin (AAT1) is a rare disorder that represents a significant health threat and early diagnostic priority issue. We investigated the usefulness of the serum protein electrophoresis (SPE) as an opportunistic screening tool for AAT1 deficiency. Methods: For 6 [...] Read more.
Background: A deficiency in alpha-1 antitrypsin (AAT1) is a rare disorder that represents a significant health threat and early diagnostic priority issue. We investigated the usefulness of the serum protein electrophoresis (SPE) as an opportunistic screening tool for AAT1 deficiency. Methods: For 6 months, all SPE carried out for any reasons were evaluated in our center. In those with less than 3% of alpha-1 globulins, AAT1 concentrations were studied. The SERPINA1 gene was subsequently sequenced in those patients displaying concentrations below 100 mg/dL. Results: Out of the total, 14 patients (0.3%) were identified with low AAT1 concentrations, with 11 of them agreeing to enter the study. Of those, mutations in the SERPINA1 gene were discovered in 10 patients (91%). Heterozygous mutations were detected in seven patients; three had the c.1096G>A mutation (p.Glu366Lys; Pi*Z), two had the c.863A>T mutation (p.Glu288Val; Pi*S), one had the c.221_223delTCT mutation (p.Phe76del; Pi*Malton), and the last one had the c.1066G>A (p.Ala356Thr) mutation, which was not previously described. Finally, one patient had the c.863A>T mutation in homozygosis, whereas two double heterozygous patients c.863A>T/c.1096G>A were detected. Conclusions: An altered result in the concentration of AAT1 anticipates a mutation in the SERPINA1 gene in a manner close to 91%. The relationship between a decrease in the alpha-1 globulin band of the SPE and an alteration in the AAT1 concentration is direct in basal states of health. The SPE is presented as a highly sensitive test for opportunistic screening of AAT1 deficiency. Full article
(This article belongs to the Special Issue Genetics and Cytopathology Testing in Disease Diagnosis)
Show Figures

Figure 1

17 pages, 3206 KiB  
Article
Quantitative Lipid Profiling Reveals Major Differences between Liver Organoids with Normal Pi*M and Deficient Pi*Z Variants of Alpha-1-antitrypsin
by Sara Pérez-Luz, Jaanam Lalchandani, Nerea Matamala, Maria Jose Barrero, Sara Gil-Martín, Sheila Ramos-Del Saz, Sarai Varona, Sara Monzón, Isabel Cuesta, Iago Justo, Alberto Marcacuzco, Loreto Hierro, Cristina Garfia, Gema Gomez-Mariano, Sabina Janciauskiene and Beatriz Martínez-Delgado
Int. J. Mol. Sci. 2023, 24(15), 12472; https://doi.org/10.3390/ijms241512472 - 5 Aug 2023
Cited by 8 | Viewed by 3090
Abstract
Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic [...] Read more.
Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene. Full article
(This article belongs to the Special Issue Genetic, Genomic and Metabolomic Investigation of Rare Diseases)
Show Figures

Graphical abstract

Back to TopTop