Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer
Abstract
:1. Introduction
2. Molecular Profile of Alpha-1 Antitrypsin
2.1. Protein Structure of Alpha-1 Antitrypsin
2.2. Molecular Function of Alpha-1 Antitrypsin in Normal State
2.3. Mutation of Alpha-1 Antitrypsin
3. Regulation of Inflammatory Responses by Alpha-1 Antitrypsin
3.1. Inhibition of Proteases
3.2. Effect on Cytokine Production
3.3. Regulation of Apoptosis
3.4. Interactions with the Complement System
4. Influence of Alpha-1 Antitrypsin on Tumor Microenvironment
4.1. AAT Can Help Regulate the Activity of Neutrophils in TME
4.2. AAT May Promote a Stronger Anti-Tumor Immune Response by Polarizing Macrophages Toward an M2 Phenotype
4.3. Influence of AAT on T Cells
4.4. AAT Effect on Inflammatory Mediators Can Influence the Angiogenic Process
4.5. AAT Can Affect Tumor Cells by Regulating the Extracellular Matrix (ECM) Within the TME
5. Clinical Implications of AAT for Cancer
5.1. Biomarker for Cancer Diagnosis and Prognosis
5.2. Potential Target for Therapeutic Intervention
6. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strnad, P.; McElvaney, N.G.; Lomas, D.A. Alpha1-antitrypsin deficiency. N. Engl. J. Med. 2020, 382, 1443–1455. [Google Scholar] [CrossRef]
- Silverman, E.K.; Sandhaus, R.A. Alpha1-antitrypsin deficiency. N. Engl. J. Med. 2009, 360, 2749–2757. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, P.; Eden, E.; Pillai, M.; Campos, M.; McElvaney, N.G.; Foronjy, R.F. α1-Antitrypsin activates protein phosphatase 2A to counter lung inflammatory responses. Am. J. Respir. Crit. Care Med. 2014, 190, 1229–1242. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.; Mills, P.B.; Clayton, P.T.; Mian, N.; Johnson, A.W.; Winchester, B.G. The underglycosylation of plasma α1-antitrypsin in congenital disorders of glycosylation type I is not random. Glycobiology 2003, 13, 73–85. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.; Saldova, R.; Wormald, M.R.; Rudd, P.M.; McElvaney, N.G.; Reeves, E.P. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions. J. Proteome Res. 2014, 13, 3131–3143. [Google Scholar] [CrossRef]
- Brantly, M.; Nukiwa, T.; Crystal, R.G. Molecular basis of alpha-1-antitrypsin deficiency. Am. J. Med. 1988, 84, 13–31. [Google Scholar] [CrossRef]
- Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev. 2010, 62, 726–759. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zhao, J.; Kim, H.; Xu, S.; Chen, M.; Bai, X.; Toba, H.; Cho, H.-R.; Zhang, H.; Keshavjeel, S.; et al. α1-Antitrypsin inhibits ischemia reperfusion-induced lung injury by reducing inflammatory response and cell death. J. Heart Lung Transplant. 2014, 33, 309–315. [Google Scholar] [CrossRef]
- McCarthy, C.; Dunlea, D.M.; Saldova, R.; Henry, M.; Meleady, P.; McElvaney, O.J.; Marsh, B.; Rudd, P.M.; Reeves, E.P.; McElvaney, N.G. Glycosylation repurposes alpha-1 antitrypsin for resolution of community-acquired pneumonia. Am. J. Respir. Crit. Care Med. 2018, 197, 1346–1349. [Google Scholar] [CrossRef]
- Fromme, M.; Hamesch, K.; Schneider, C.V.; Mandorfer, M.; Pons, M.; Thorhauge, K.H.; Pereira, V.; Sperl, J.; Frankova, S.; Reichert, M.C.; et al. Alpha-1 Antitrypsin Augmentation and the Liver Phenotype of Adults With Alpha-1 Antitrypsin Deficiency (Genotype Pi∗ ZZ). Clin. Gastroenterol. Hepatol. 2024, 22, 283–294.e5. [Google Scholar] [CrossRef]
- Stoller, J.K.; Aboussouan, L.S. A review of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 2012, 185, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Stoller, J.K.; Aboussouan, L.S. α1-antitrypsin deficiency. Lancet 2005, 365, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Karatas, E.; Bouchecareilh, M. Alpha 1-antitrypsin deficiency: A disorder of proteostasis-mediated protein folding and trafficking pathways. Int. J. Mol. Sci. 2020, 21, 1493. [Google Scholar] [CrossRef]
- Lomas, D.A.; Li-Evans, D.; Finch, J.T.; Carrell, R.W. The mechanism of Z α 1-antitrypsin accumulation in the liver. Nature 1992, 357, 605–607. [Google Scholar] [CrossRef] [PubMed]
- Law, R.H.P.; Zhang, Q.; McGowan, S.; Buckle, A.M.; Silverman, G.A.; Wong, W.; Rosado, C.J.; Langendorf, C.G.; Pike, R.N.; Bird, P.I.; et al. An overview of the serpin superfamily. Genome Biol. 2006, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Hurley, K.; Lacey, N.; O’dwyer, C.A.; Bergin, D.A.; McElvaney, O.J.; O’brien, M.E.; McElvaney, O.F.; Reeves, E.P.; McElvaney, N.G. Alpha-1 antitrypsin augmentation therapy corrects accelerated neutrophil apoptosis in deficient individuals. J. Immunol. 2014, 193, 3978–3991. [Google Scholar] [CrossRef]
- Carroll, T.P.; Greene, C.M.; O’connor, C.A.; Nolan, A.M.; O’neill, S.J.; McElvaney, N.G. Evidence for unfolded protein response activation in monocytes from individuals with α-1 antitrypsin deficiency. J. Immunol. 2010, 184, 4538–4546. [Google Scholar] [CrossRef] [PubMed]
- Lomas, D.A.; Evans, D.L.; Stone, S.R.; Chang, W.S.W.; Carrell, R.W. Effect of the Z mutation on the physical and inhibitory properties of. alpha. 1-antitrypsin. Biochemistry 1993, 32, 500–508. [Google Scholar] [CrossRef]
- Stoller, J.K.; Snider, G.L.; Brantly, M.L.; Fallat, R.J.; Stockley, R.A.; Turino, G.M.; Konietzko, N.; Dirksen, A.; Eden, E.; Luisetti, M.; et al. American Thoracic Society/European Respiratory Society statement: Standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 2003, 168, 818–900. [Google Scholar]
- Torres-Durán, M.; Lopez-Campos, J.L.; Barrecheguren, M.; Miravitlles, M.; Martinez-Delgado, B.; Castillo, S.; Escribano, A.; Baloira, A.; Navarro-Garcia, M.M.; Pellicer, D.; et al. Alpha-1 antitrypsin deficiency: Outstanding questions and future directions. Orphanet J. Rare Dis. 2018, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Deng, J.; Wu, S.; Cao, Y.; Chen, H.; Tang, H.; Zou, C.; Zhu, H.; Qi, L. Alpha-1 antitrypsin targeted neutrophil elastase protects against sepsis-induced inflammation and coagulation in mice via inhibiting neutrophil extracellular trap formation. Life Sci. 2024, 353, 122923. [Google Scholar] [CrossRef] [PubMed]
- Tuder, R.M.; Janciauskiene, S.M.; Petrache, I. Lung disease associated with alpha1-antitrypsin deficiency. Proc. Am. Thorac. Soc. 2010, 7, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Mikosz, A.; Ni, K.; Gally, F.; Pratte, K.A.; Winfree, S.; Lin, Q.; Echelman, I.; Wetmore, B.; Cao, D.; Justice, M.J.; et al. Alpha-1 antitrypsin inhibits fractalkine-mediated monocyte-lung endothelial cell interactions. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023, 325, L711–L725. [Google Scholar] [CrossRef]
- Churg, A.; Wang, X.; Wang, R.D.; Meixner, S.C.; Pryzdial, E.L.; Wright, J.L. α1-Antitrypsin suppresses TNF-α and MMP-12 production by cigarette smoke–stimulated macrophages. Am. J. Respir. Cell Mol. Biol. 2007, 37, 144–151. [Google Scholar] [CrossRef]
- Janciauskiene, S.; Larsson, S.; Larsson, P.; Virtala, R.; Jansson, L.; Stevens, T. Inhibition of lipopolysaccharide-mediated human monocyte activation, in vitro, by α1-antitrypsin. Biochem. Biophys. Res. Commun. 2004, 321, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Herr, C.; Mang, S.; Mozafari, B.; Guenther, K.; Speer, T.; Seibert, M.; Srikakulam, S.K.; Beisswenger, C.; Ritzmann, F.; Keller, A.; et al. Distinct patterns of blood cytokines beyond a cytokine storm predict mortality in COVID-19. J. Inflamm. Res. 2021, 2021, 4651–4667. [Google Scholar] [CrossRef]
- Pott, G.B.; Chan, E.D.; A Dinarello, C.; Shapiro, L. α-1-Antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood. J. Leucoc. Biol. 2009, 85, 886–895. [Google Scholar] [CrossRef]
- Gou, W.; Wang, J.; Song, L.; Kim, D.-S.; Cui, W.; Strange, C.; Wang, H. Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation. Am. J. Transplant. 2021, 21, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Aldonyte, R.; Hutchinson, E.T.; Jin, B.; Brantly, M.; Block, E.; Patel, J.; Zhang, J. Endothelial alpha-1-antitrypsin attenuates cigarette smoke induced apoptosis in vitro. COPD J. Chronic Obstr. Pulm. Dis. 2008, 5, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Petrache, I.; Fijalkowska, I.; Medler, T.R.; Skirball, J.; Cruz, P.; Zhen, L.; Petrache, H.I.; Flotte, T.R.; Tuder, R.M. α-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol. 2006, 169, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.E.; Fee, L.; Browne, N.; Carroll, T.P.; Meleady, P.; Henry, M.; McQuillan, K.; Murphy, M.P.; Logan, M.; McCarthy, C.; et al. Activation of complement component 3 is associated with airways disease and pulmonary emphysema in alpha-1 antitrypsin deficiency. Thorax 2020, 75, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Zelvyte, I.; Stevens, T.; Westin, U.; Janciauskiene, S. α1-antitrypsin and its C-terminal fragment attenuate effects of degranulated neutrophil-conditioned medium on lung cancer HCC cells, in vitro. Cancer Cell Int. 2004, 4, 7. [Google Scholar] [CrossRef]
- Schuster, R.; Motola-Kalay, N.; Baranovski, B.M.; Bar, L.; Tov, N.; Stein, M.; Lewis, E.C.; Ayalon, M.; Sagiv, Y. Distinct anti-inflammatory properties of alpha1-antitrypsin and corticosteroids reveal unique underlying mechanisms of action. Cell. Immunol. 2020, 356, 104177. [Google Scholar] [CrossRef] [PubMed]
- Jonigk, D.; Al-Omari, M.; Maegel, L.; Müller, M.; Izykowski, N.; Hong, J.; Hong, K.; Kim, S.-H.; Dorsch, M.; Mahadeva, R.; et al. Anti-inflammatory and immunomodulatory properties of α1-antitrypsin without inhibition of elastase. Proc. Natl. Acad. Sci. USA 2013, 110, 15007–15012. [Google Scholar] [CrossRef] [PubMed]
- Kaneva, M.K.; Muley, M.M.; Krustev, E.; Reid, A.R.; Souza, P.R.; Dell’accio, F.; McDougall, J.J.; Perretti, M. Alpha-1-antitrypsin reduces inflammation and exerts chondroprotection in arthritis. FASEB J. 2021, 35, e21472. [Google Scholar] [CrossRef]
- Bai, X.; Bai, A.; Tomasicchio, M.; Hagman, J.R.; Buckle, A.M.; Gupta, A.; Kadiyala, V.; Bevers, S.; Serban, K.A.; Kim, K.; et al. α1-Antitrypsin binds to the glucocorticoid receptor with anti-inflammatory and antimycobacterial significance in macrophages. J. Immunol. 2022, 209, 1746–1759. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Hong, K.; Hong, J.; Bae, S.; Choi, J.; Jhun, H.; Kwak, A.; Kim, E.; Jo, S.; et al. Effect of Recombinant α 1-Antitrypsin Fc-Fused (AAT-Fc) Protein on the Inhibition of Inflammatory Cytokine Production and Streptozotocin-Induced Diabetes. Mol. Med. 2013, 19, 65–71. [Google Scholar] [CrossRef]
- Petrache, I.; Fijalkowska, I.; Zhen, L.; Medler, T.R.; Brown, E.; Cruz, P.; Choe, K.H.; Taraseviciene-Stewart, L.; Scerbavicius, R.; Shapiro, L.; et al. A novel antiapoptotic role for α1-antitrypsin in the prevention of pulmonary emphysema. Am. J. Respir. Crit. Care Med. 2006, 173, 1222–1228. [Google Scholar] [CrossRef]
- Janciauskiene, S.; Wrenger, S.; Günzel, S.; Gründing, A.R.; Golpon, H.; Welte, T. Potential roles of acute phase proteins in cancer: Why do cancer cells produce or take up exogenous acute phase protein alpha1-antitrypsin? Front. Oncol. 2021, 11, 622076. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, N.; Tumpara, S.; Wrenger, S.; Ercetin, E.; Hamacher, J.; Welte, T.; Janciauskiene, S. Alpha1-antitrypsin protects lung cancer cells from staurosporine-induced apoptosis: The role of bacterial lipopolysaccharide. Sci. Rep. 2020, 10, 9563. [Google Scholar] [CrossRef]
- Al-Omari, M.; Al-Omari, T.; Batainah, N.; Al-Qauod, K.; Olejnicka, B.; Janciauskiene, S. Beneficial effects of alpha-1 antitrypsin therapy in a mouse model of colitis-associated colon cancer. BMC Cancer 2023, 23, 722. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, J.; Han, J.; Pan, X.; Cao, Y.; Guo, H.; Pan, Y.; An, Y.; Li, X. Curcumin inhibits tumor proliferation induced by neutrophil elastase through the upregulation of α1-antitrypsin in lung cancer. Mol. Oncol. 2012, 6, 405–417. [Google Scholar] [CrossRef]
- Bergin, D.A.; Reeves, E.P.; Meleady, P.; Henry, M.; McElvaney, O.J.; Carroll, T.P.; Condron, C.; Chotirmall, S.H.; Clynes, M.; O’neill, S.J.; et al. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J. Clin. Investig. 2010, 120, 4236–4250. [Google Scholar] [CrossRef]
- Yang, L.; Sheng, Y.; Qiao, S.; Hu, D.; Chowdhury, D.; Yip, H.F.; Chen, Z.; He, Y.; Lu, A.; Li, F. Inflammatory gene-based subtyping of osteosarcoma patients reveals the association of inflammation in tumor microenvironment with better survival. Cancer Res. 2024, 84 (Suppl. 6), 5459. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, Y.; Guan, Y.; Xiao, R.; Cai, J.; Chen, W.; Zheng, M.; Sun, K.; Chen, C.; Huang, G.; et al. Seven genes associated with lymphatic metastasis in thyroid cancer that is linked to tumor immune cell infiltration. Front. Oncol. 2022, 11, 756246. [Google Scholar] [CrossRef] [PubMed]
- Läubli, H.; Borsig, L. Altered cell adhesion and glycosylation promote cancer immune suppression and metastasis. Front. Immunol. 2019, 10, 2120. [Google Scholar] [CrossRef]
- Higashiyama, M.; Doi, O.; Kodama, K.; Yokouchi, H.; Tateishi, R. An evaluation of the prognostic significance of alpha-1-antitrypsin expression in adenocarcinomas of the lung: An immunohistochemical analysis. Br. J. Cancer 1992, 65, 300–302. [Google Scholar] [CrossRef]
- Li, Y.; Krowka, M.J.; Qi, Y.; Katzmann, J.A.; Song, Y.; Li, Y.; Mandrekar, S.J.; Yang, P. Alpha1-antitrypsin deficiency carriers, serum alpha 1-antitrypsin concentration, and non-small cell lung cancer survival. J. Thorac. Oncol. 2011, 6, 291–295. [Google Scholar] [CrossRef]
- Guttman, O.; Freixo-Lima, G.S.; Kaner, Z.; Lior, Y.; Rider, P.; Lewis, E.C. Context-specific and immune cell-dependent antitumor activities of α1-antitrypsin. Front. Immunol. 2016, 7, 559. [Google Scholar] [CrossRef]
- Lewis, E.C.; Shapiro, L.; Bowers, O.J.; Dinarello, C.A. α1-antitrypsin monotherapy prolongs islet allograft survival in mice. Proc. Natl. Acad. Sci. USA 2005, 102, 12153–12158. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Pittet, M.J.; Gorelik, L.; Flavell, R.A.; Weissleder, R.; Von Boehmer, H.; Khazaie, K. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 419–424. [Google Scholar] [CrossRef]
- Guttman, O.; Freixo-Lima, G.S.; Lewis, E.C. Alpha1-antitrypsin, an endogenous immunoregulatory molecule: Distinction between local and systemic effects on tumor immunology. Integr. Cancer Sci. Therap. 2015, 2, 272–280. [Google Scholar] [CrossRef]
- Bristow, C.L.; Ferrando-Martinez, S.; Ruiz-Mateos, E.; Leal, M.; Winston, R. Development of immature CD4+ CD8+ T cells into mature CD4+ T cells requires alpha-1 antitrypsin as observed by treatment in HIV-1 infected and uninfected controls. Front. Cell Dev. Biol. 2019, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Yue, N.-N.; Xu, H.-M.; Xu, J.; Zhu, M.-Z.; Zhang, Y.; Tian, C.-M.; Nie, Y.-Q.; Yao, J.; Liang, Y.-J.; Li, D.-F.; et al. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol. Ther.-Oncolytics 2023, 30, 193–215. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Li, Y.; Liu, Z.; Zhao, K.; Jia, L.; Wang, X.; Jiang, R.; Tian, Y.; He, X. Integrated analysis of tumor microenvironment features to establish a diagnostic model for papillary thyroid cancer using bulk and single-cell RNA sequencing technology. J. Cancer Res. Clin. Oncol. 2023, 149, 16837–16850. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Vail, E.; Maluf, H.; Chaum, M.; Leong, M.; Lownik, J.; Che, M.; Giuliano, A.; Cao, D.; Dadmanesh, F. Gene expression profiling of fibroepithelial lesions of the breast. Int. J. Mol. Sci. 2023, 24, 9041. [Google Scholar] [CrossRef]
- Giraud, J.; Chalopin, D.; Blanc, J.-F.; Saleh, M. Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front. Immunol. 2021, 12, 655697. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.C. Expanding the clinical indications for α 1-antitrypsin therapy. Mol. Med. 2012, 18, 957–970. [Google Scholar] [CrossRef]
- Tuder, R.M.; Petrache, I. Molecular multitasking in the airspace: α1-antitrypsin takes on thrombin and plasmin. Am. Thorac. Soc. 2007, 37, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Bergin, D.A.; Reeves, E.P.; Hurley, K.; Wolfe, R.; Jameel, R.; Fitzgerald, S.; McElvaney, N.G. The circulating proteinase inhibitor α-1 antitrypsin regulates neutrophil degranulation and autoimmunity. Sci. Transl. Med. 2014, 6, 217ra1. [Google Scholar] [CrossRef]
- Fu, C.; Miao, Y.; Jiao, X.; Fu, J.; Liu, C.; Yu, Z.; Wei, M. Pan-cancer analysis reveals potential for synergy between SERPINA1 molecular targeting and macrophage-related immunotherapy. preprint 2022. [Google Scholar] [CrossRef]
- Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 2016, 19, 20–27. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Zhang, L.-C.; Niu, R.-Z.; Chen, L.; Xia, Q.-J.; Xiong, L.-L.; Wang, T.-H. Predictive potentials of glycosylation-related genes in glioma prognosis and their correlation with immune infiltration. Sci. Rep. 2024, 14, 4478. [Google Scholar] [CrossRef] [PubMed]
- Bristow, C.L.; Winston, R. α1-antitrypsin causing CD8 downregulation during thymocyte differentiation. Trends Immunol. 2021, 42, 177–178. [Google Scholar] [CrossRef]
- Zhu, T.; Sennlaub, F.; Beauchamp, M.H.; Fan, L.; Joyal, J.S.; Checchin, D.; Nim, S.; Lachapelle, P.; Sirinyan, M.; Hou, X.; et al. Proangiogenic effects of protease-activated receptor 2 are tumor necrosis factor-α and consecutively Tie2 dependent. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 744–750. [Google Scholar] [CrossRef]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [PubMed]
- Yue, B. Biology of the extracellular matrix: An overview. J. Glaucoma 2014, 23, S20–S23. [Google Scholar] [CrossRef] [PubMed]
- Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 2010, 10, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Cornillet, M.; Zemack, H.; Jansson, H.; Sparrelid, E.; Ellis, E.; Björkström, N.K. Increased Prevalence of Alpha-1-Antitrypsin Deficiency in Patients with Biliary Tract Cancer and Its Associated Clinicopathological Features. Cells 2023, 12, 1663. [Google Scholar] [CrossRef]
- Li, W.; Tan, R.; Yang, Z. P-167 Identification of peptides inhibitor clade A member 1 as a novel serum biomarker for gastric cancer and promotes liver metastasis. Ann. Oncol. 2022, 33, S309. [Google Scholar] [CrossRef]
- Komarevtseva, I.O.; Smirnov, S.N.; Ihnatova, A.Y.; Rudenko, I.V.; Balabanova, K.V.; Vyshnitska, I.A.; Komarevtsev, V.N. Alfa-1-Antitrypsin Predicts Severe COVID-19, Gastric and Renal Cancer in Conditions of Hyperglycemia. World Med. Biol. 2023, 19, 100–105. [Google Scholar] [CrossRef]
- Arenas-De Larriva, M.D.S.; Fernández-Vega, A.; Jurado-Gamez, B.; Ortea, I. diaPASEF proteomics and feature selection for the description of sputum proteome profiles in a cohort of different subtypes of lung cancer patients and controls. Int. J. Mol. Sci. 2022, 23, 8737. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-H.; Lee, S.-H.; Liao, I.-C.; Huang, S.-H.; Cheng, H.-C.; Liao, P.-C. Secretomic analysis identifies alpha-1 antitrypsin (A1AT) as a required protein in cancer cell migration, invasion, and pericellular fibronectin assembly for facilitating lung colonization of lung adenocarcinoma cells. Mol. Cell. Proteom. 2012, 11, 1320–1339. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, A.; Shahda, S.; Kays, J.K.; Perkins, S.M.; Cheng, L.; Schloss, K.N.H.; Schloss, D.E.I.; Koniaris, L.G.; Zimmers, T.A. Identification of potential serum protein biomarkers and pathways for pancreatic cancer cachexia using an aptamer-based discovery platform. Cancers 2020, 12, 3787. [Google Scholar] [CrossRef]
- Pérez-Holanda, S.; Blanco, I.; Menéndez, M.; Rodrigo, L. Serum concentration of alpha-1 antitrypsin is significantly higher in colorectal cancer patients than in healthy controls. BMC Cancer 2014, 14, 355. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, Y.; Zhan, L.; Dong, Q.; Wang, Y.; Li, X.; He, L.; Zhang, J. CEBPB-mediated upregulation of SERPINA1 promotes colorectal cancer progression by enhancing STAT3 signaling. Cell Death Discov. 2024, 10, 219. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Y.; Wei, M.; Du, K.; Lin, J.; Wei, L. Comprehensive analysis of CXCL14 uncovers its role during liver metastasis in colon cancer. BMC Gastroenterol. 2023, 23, 273. [Google Scholar] [CrossRef]
- Li, Q.; Dong, X.; Jin, G.; Dong, Y.; Yu, Y.; Jin, C.; Huang, X. Identification of Serpin peptidase inhibitor clade A member 1 (SERPINA1) might be a poor prognosis biomarker promoting the progression of papillary thyroid cancer. Life Sci. 2023, 329, 121938. [Google Scholar] [CrossRef] [PubMed]
- Ljujić, M.; Divac Rankov, A.; Dragoj, M.; Jovanović Stojanov, S. Analysis of alpha-1 antitrypsin expression in multidrug resistant cell lines. In Abstract Book: 5th Congress of the Serbian Association for Cancer Research with International Participation SDIR-5: Translational Potential of Cancer Research in Serbia; 2021 December 3; Virtual Event; Srpsko Društvo Istraživača Raka: Beograd, Serbia, 2021. [Google Scholar]
- Bellei, E.; Caramaschi, S.; Giannico, G.A.; Monari, E.; Martorana, E.; Bonetti, L.R.; Bergamini, S. Research of Prostate Cancer Urinary Diagnostic Biomarkers by Proteomics: The Noteworthy Influence of Inflammation. Diagnostics 2023, 13, 1318. [Google Scholar] [CrossRef] [PubMed]
- Patankar, S.; Gokul, S.; Choudhary, S.; Kamble, P. Salivary Proteome Profiling in Oral Submucous Fibrosis and Oral Cancer. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 132, e33. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Zhang, X.; Yang, T.; Zuo, S.; Fu, C.; Zhang, Y.; Yang, C.; Chen, L. Discovery of bladder cancer biomarkers in paired pre-and postoperative urine samples. Transl. Androl. Urol. 2021, 10, 3402. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Wu, S.; Luo, K.; Cui, X. By using machine learning and in vitro testing, SERPINH1 functions as a novel tumorigenic and immunogenic gene and predicts immunotherapy response in osteosarcoma. Front. Oncol. 2023, 13, 1180191. [Google Scholar] [CrossRef]
- Dong, S.; Xia, Q.; Pan, J.; Du, X.L.; Wu, Y.J.; Xie, X.J. Application of HPAA-RGD/si-circICA1 in the treatment of invasive thyroid cancer through targeting of the miR-486-3p/SERPINA1 axis. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Luo, L.; Zheng, W.; Chen, C.; Sun, S. Searching for essential genes and drug discovery in breast cancer and periodontitis via text mining and bioinformatics analysis. Anti-Cancer Drugs 2021, 32, 1038–1045. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Li, Y.; Cao, Y.; Zhou, J.; Sun, Z.; Wu, W.; Tan, X.; Shao, Y.; Xie, K.; et al. Profiling analysis reveals the crucial role of the endogenous peptides in bladder cancer progression. OncoTargets Ther. 2020, 2020, 12443–12455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Z.; Skrzypczynska, K.M.; Fang, Q.; Zhang, W.; O’brien, S.A.; He, Y.; Wang, L.; Zhang, Q.; Kim, A.; et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 2020, 181, 442–459.e29. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-M.; Liu, T.; Deng, S.-H.; Han, R.; Zhang, T.; Li, J.; Xu, Y. Alpha-1 antitrypsin induces epithelial-to-mesenchymal transition, endothelial-to-mesenchymal transition, and drug resistance in lung cancer cells. OncoTargets Ther. 2020, 13, 3751–3763. [Google Scholar] [CrossRef] [PubMed]
Modes of Action | Mechanism | |
---|---|---|
Inhibition of proteases | Neutrophil elastase (NE) |
|
Protein Phosphatase 2A |
| |
Endothelial sheddases, thrombin and plasmin | ||
Effect on cytokine production |
| |
Regulation of apoptosis | Immune cells anti-apoptotic |
|
Apoptosis of cancer cells |
| |
Interactions with the complement system |
|
The Components | Mechanism (SERPINA1, Encoded AAT) |
---|---|
Neutrophils | AAT can help regulate the activity of neutrophils in TME
|
Macrophages | AAT may promote a more anti-tumor immune response by polarizing macrophages toward an M2 phenotype
|
T cells | AAT can modulate the immune system in various immune disorders that depend on T-cells.
|
Endothelial cell | AAT influences angiogenesis, which affects protease activity and inflammatory responses, key factors in the angiogenic process
|
Extracellular matrix | AAT can affect the remodeling of ECM and cooperate with its components to drive the migration and growth of cancer cells and affect further progression. |
Type | Reference |
---|---|
Gastric cancer | [71,72] |
Lung cancer | [73,74] |
Pancreatic cancer | [75] |
Colorectal cancer | [76,77,78] |
Papillary thyroid carcinoma | [79] |
Human glioblastoma | [80] |
Kidney cancer | [72] |
Prostate cancer | [81] |
Oral cancer | [82] |
Bladder cancer | [83] |
Osteosarcoma | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, S.; Yang, L.; He, Y.; Ding, F.; Qiao, S.; Su, Z.; Chen, Z.; Lu, A.; Li, F. Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer. Cells 2025, 14, 88. https://doi.org/10.3390/cells14020088
Xiang S, Yang L, He Y, Ding F, Qiao S, Su Z, Chen Z, Lu A, Li F. Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer. Cells. 2025; 14(2):88. https://doi.org/10.3390/cells14020088
Chicago/Turabian StyleXiang, Siyu, Liu Yang, Yun He, Feng Ding, Shuangying Qiao, Zonghua Su, Zheng Chen, Aiping Lu, and Fangfei Li. 2025. "Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer" Cells 14, no. 2: 88. https://doi.org/10.3390/cells14020088
APA StyleXiang, S., Yang, L., He, Y., Ding, F., Qiao, S., Su, Z., Chen, Z., Lu, A., & Li, F. (2025). Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer. Cells, 14(2), 88. https://doi.org/10.3390/cells14020088