Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = 8-Oxo-guanine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1809 KiB  
Perspective
Specific Low/Endogenous Replication Stress Response Protects Genomic Stability via Controlled ROS Production in an Adaptive Way and Is Dysregulated in Transformed Cells
by Bernard S. Lopez
Cells 2025, 14(15), 1183; https://doi.org/10.3390/cells14151183 - 31 Jul 2025
Viewed by 182
Abstract
Cells are assaulted daily by stresses that jeopardize genome integrity. Primary human cells adapt their response to the intensity of replication stress (RS) in a diphasic manner: below a stress threshold, the canonical DNA damage response (cDDR) is not activated, but a noncanonical [...] Read more.
Cells are assaulted daily by stresses that jeopardize genome integrity. Primary human cells adapt their response to the intensity of replication stress (RS) in a diphasic manner: below a stress threshold, the canonical DNA damage response (cDDR) is not activated, but a noncanonical cellular response, low-level stress-DDR (LoL-DDR), has recently been described. LoL-DDR prevents the accumulation of premutagenic oxidized bases (8-oxoguanine) through the production of ROS in an adaptive way. The production of RS-induced ROS (RIR) is tightly controlled: RIR are excluded from the nucleus and are produced by the NADPH oxidases DUOX1/DUOX2, which are controlled by NF-κB and PARP1; then, RIR activate the FOXO1-detoxifying pathway. Increasing the intensity of RS suppresses RIR via p53 and ATM. Notably, LoL-DDR is dysregulated in cancer cell lines, in which RIR are not produced by NADPH oxidases, are not detoxified under high-level stress, and favor the accumulation of 8-oxoguanine. LoL-DDR dysregulation occurred at an early stage of cancer progression in an in vitro model. Since, conversely, ROS trigger RS, this establishes a vicious cycle that continuously jeopardizes genome integrity, fueling tumorigenesis. These data reveal a novel type of ROS-controlled DNA damage response and demonstrate the fine-tuning of the cellular response to stress. The effects on genomic stability and carcinogenesis are discussed here. Full article
Show Figures

Figure 1

8 pages, 374 KiB  
Communication
Analyzing 8-Oxoguanine in Exhaled Breath Condensate: A Novel Within-Subject Laboratory Experimental Study on Waterpipe Smokers
by Natasha Shaukat, Tarana Ferdous, Simanta Roy, Sharika Ferdous, Sreshtha Chowdhury, Leonardo Maya, Anthony Paul DeCaprio, Wasim Maziak and Taghrid Asfar
Antioxidants 2025, 14(8), 929; https://doi.org/10.3390/antiox14080929 - 29 Jul 2025
Viewed by 216
Abstract
Introduction: This study aimed to analyze exhaled breath condensate (EBC) for 8-oxoguanine (8-oxoGua), an oxidative stress biomarker among waterpipe (WP) smokers. Methods: In a within-subject pre-post exposure design, thirty waterpipe smokers completed two 45 min laboratory sessions. EBC was analyzed for 8-oxoGua before [...] Read more.
Introduction: This study aimed to analyze exhaled breath condensate (EBC) for 8-oxoguanine (8-oxoGua), an oxidative stress biomarker among waterpipe (WP) smokers. Methods: In a within-subject pre-post exposure design, thirty waterpipe smokers completed two 45 min laboratory sessions. EBC was analyzed for 8-oxoGua before and after WP smoking. Median differences between time points (pre vs. post) were assessed using the Wilcoxon sign rank test, with significance defined as p < 0.05. Results: The analysis included 59 WP smoking sessions. Participants had a median age of 24 years (IQR: 21–25), with 62.1% being female. Most had a bachelor’s degree or less (62.1%), and over half were students (55.2%), while 34.5% were employed. The average age for first WP use was 18.6 years, with participants reporting a median of three WP smoking sessions per month. Results indicate a median increase in 8-oxoGua among participants from 5.4 ng/mL (IQR: 8.8) before the smoking session to 7.6 ng/mL after (IQR: 15.7; p < 0.001). Conclusions: This study is the first to examine 8-oxoGua in EBC. Findings provide strong evidence of WP smoking’s contribution to oxidative stress in the airways. It justifies the use of EBC to study the exposure to markers of oxidative stress with emerging tobacco use methods such as the waterpipe. Full article
(This article belongs to the Special Issue Cigarette Smoke and Oxidative Stress)
Show Figures

Figure 1

11 pages, 1288 KiB  
Article
Accurate DNA Synthesis Across 8-Oxoadenine by Human PrimPol
by Elizaveta O. Boldinova, Alexander A. Kruchinin, Polina N. Kamzeeva, Andrey V. Aralov and Alena V. Makarova
Int. J. Mol. Sci. 2025, 26(14), 6796; https://doi.org/10.3390/ijms26146796 - 16 Jul 2025
Viewed by 241
Abstract
PrimPol is a human DNA primase and DNA polymerase involved in DNA damage tolerance in both nuclei and mitochondria. PrimPol restarts stalled replication forks by synthesizing DNA primers de novo and also possesses DNA translesion activity (TLS activity). PrimPol efficiently and relatively accurately [...] Read more.
PrimPol is a human DNA primase and DNA polymerase involved in DNA damage tolerance in both nuclei and mitochondria. PrimPol restarts stalled replication forks by synthesizing DNA primers de novo and also possesses DNA translesion activity (TLS activity). PrimPol efficiently and relatively accurately bypasses several DNA lesions including 8-oxoguanine, thymine glycol and 5-formyluracil. In this work, we showed that PrimPol possesses efficient and accurate TLS activity across 8-oxoadenine, another common DNA lesion caused by oxidative stress. The accuracy of PrimPol on DNA with 8-oxoA was significantly higher compared to DNA containing 8-oxoG. Replacement of Mg2+ ions with Mn2+ stimulated activity of PrimPol on DNA with 8-oxoA and 8-oxoG as well as undamaged A in a sequence-dependent manner by the lesion skipping (or template scrunching) mechanism. Altogether, our data support the idea that PrimPol possesses efficient TLS activity across a wide range of DNA lesions caused by oxidative stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 1034 KiB  
Article
OGG1 Preserves Endothelial-Dependent Vasodilation and Regulates the Frequency and Spatial Area of Endothelial Calcium Signals
by Takreem Aziz, Larysa Yuzefovych, Lyudmila Rachek, Mark S. Taylor and Christopher M. Francis
Biomolecules 2025, 15(6), 790; https://doi.org/10.3390/biom15060790 - 29 May 2025
Viewed by 434
Abstract
Endothelial calcium dysregulation underlies impairments in endothelial-dependent vasodilation (EDV), contributing to vascular disease progression. Repletion of 8-oxoguanine DNA glycosylase (OGG1), an enzyme involved in base excision repair, has been shown to forestall vascular disease progression. However, the role of OGG1 in regulating endothelial [...] Read more.
Endothelial calcium dysregulation underlies impairments in endothelial-dependent vasodilation (EDV), contributing to vascular disease progression. Repletion of 8-oxoguanine DNA glycosylase (OGG1), an enzyme involved in base excision repair, has been shown to forestall vascular disease progression. However, the role of OGG1 in regulating endothelial calcium dynamics and in preserving EDV is unknown. Here, calcium imaging via high-speed confocal microscopy and automated analytics was used to quantify the spatial and temporal parameters of endothelial calcium signals in the excised carotid arteries of male and female C57BL6J/FVBNJ mice aged 4–7 months with normal endogenous levels of OGG1, in mice lacking OGG1, and in mice with repleted human OGG1 targeted to the mitochondria. Mice lacking OGG1 exhibited an anomalous calcium phenotype characterized by a substantial increase in the basal tissue-wide frequency and spatial area of the endothelial calcium signals. Mitochondrial repletion of hOGG1 restored the calcium phenotype under unstimulated and acetylcholine-stimulated conditions. EDV was assessed using pressure myography. Mice lacking OGG1 exhibited significant impairments in EDV in response to acetylcholine, and the mitochondrial repletion of OGG1 rescued EDV. These findings highlight a novel role for OGG1 in endothelial signaling and suggest its importance in vascular homeostasis. Full article
(This article belongs to the Special Issue Calcium Signaling in Cell Function and Dysfunction)
Show Figures

Figure 1

13 pages, 2053 KiB  
Article
Proteomic Analysis of Bifidobacterium animalis AR668 and AR668-R1 Under Aerobic Culture
by Yaping Liu, Xiaoxiao Zhao, Miao Yang, Xin Song, Guangqiang Wang, Yongjun Xia, Liang Zhao, Zhiqiang Xiong and Lianzhong Ai
Foods 2025, 14(10), 1766; https://doi.org/10.3390/foods14101766 - 16 May 2025
Viewed by 416
Abstract
Bifidobacterium animalis is a widely used probiotic with significant health benefits, but its application is limited by oxygen sensitivity. Our laboratory previously developed an oxygen-tolerant B. animalis AR668-R1 using adaptive laboratory evolution under aerobic culture, but the molecular mechanism remains unclear. In this [...] Read more.
Bifidobacterium animalis is a widely used probiotic with significant health benefits, but its application is limited by oxygen sensitivity. Our laboratory previously developed an oxygen-tolerant B. animalis AR668-R1 using adaptive laboratory evolution under aerobic culture, but the molecular mechanism remains unclear. In this work, compared to the wild-type parental strain B. animalis AR668, 212 upregulated and 390 downregulated proteins were identified in AR668-R1 under aerobic conditions through comparative proteomic analysis. Enrichment analysis of the differentially expressed proteins between AR668 and AR668-R1 identified the potential oxygen-tolerant related pathways, including the translation process, transmembrane transport system, and carbohydrate metabolism. Furthermore, five potential oxygen-tolerance proteins (DapE, Mth2, MutT, Eno, and MsrAB) were validated by RT-qPCR that may contribute to the aerobic growth of AR668-R1. Through gene overexpression validation, Mth2 (7,8-dihydro-8-oxoguanine triphosphatase) was found to enhance the growth of AR668-R1 by 19.8% compared to the empty plasmid control under aerobic conditions. Our finding provides valuable insights into the oxygen-tolerant mechanisms of B. animalis at the protein level. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

31 pages, 4276 KiB  
Review
RNA–DNA Differences: Mechanisms, Oxidative Stress, Transcriptional Fidelity, and Health Implications
by Viktor Stolc, Ondrej Preto, Miloslav Karhanek, Friedemann Freund, Yuri Griko, David J. Loftus and Maurice M. Ohayon
Antioxidants 2025, 14(5), 544; https://doi.org/10.3390/antiox14050544 - 30 Apr 2025
Cited by 1 | Viewed by 1164
Abstract
RNA–DNA differences (RDDs) challenge the traditional view of RNA as a faithful copy of DNA, arising through RNA editing, transcriptional errors, and oxidative damage. Reactive oxygen species (ROS) play a central role, inducing lesions like 8-oxo-guanine that compromise transcription and translation, leading to [...] Read more.
RNA–DNA differences (RDDs) challenge the traditional view of RNA as a faithful copy of DNA, arising through RNA editing, transcriptional errors, and oxidative damage. Reactive oxygen species (ROS) play a central role, inducing lesions like 8-oxo-guanine that compromise transcription and translation, leading to dysfunctional proteins. This review explores the biochemical basis of RDDs, their exacerbation under oxidative stress, and their dual roles in cellular adaptation and disease. RDDs contribute to genomic instability and are implicated in cancers, neurodegenerative disorders, and autoimmune diseases, while also driving phenotypic diversity. Drawing on terrestrial and spaceflight studies, we highlight the intersection of oxidative stress, RDD formation, and cellular dysfunction, proposing innovative mitigation approaches. Advancements in RDD detection and quantification, along with ROS management therapies, offer new avenues to restore cellular homeostasis and promote resilience. By positioning RDDs as a hallmark of genomic entropy, this review underscores the limits of biological adaptation. Furthermore, the prevalence of guanine-rich codons in antioxidant genes increases their susceptibility to ROS-induced oxidative lesions, linking redox stress, genomic instability, and constrained adaptation. These insights have profound implications for understanding aging, disease progression, and adaptive mechanisms in both terrestrial and space environments. Full article
(This article belongs to the Special Issue Redox Biology and Genomic Integrity)
Show Figures

Figure 1

14 pages, 17589 KiB  
Article
Oxidative Stress Regulates CDH3 Expression in Lung Cancer Cells via OGG1-Mediated SP1 Binding
by Ying Ma, Jiarong Guo, Shichu Xu, Yanjun Hou, Feiyan Pan and Zhigang Guo
Antioxidants 2025, 14(3), 332; https://doi.org/10.3390/antiox14030332 - 11 Mar 2025
Cited by 1 | Viewed by 1010
Abstract
Oxidative stress, resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, plays a crucial role in tumor development. Tumor cells often experience elevated oxidative stress due to rapid proliferation and unstable metabolism, leading to DNA damage. The enzyme 8-oxoguanine [...] Read more.
Oxidative stress, resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, plays a crucial role in tumor development. Tumor cells often experience elevated oxidative stress due to rapid proliferation and unstable metabolism, leading to DNA damage. The enzyme 8-oxoguanine DNA glycosidase (OGG1) is central to repairing oxidative DNA damage, thereby maintaining genomic stability. In addition to its DNA repair function, OGG1 also plays a role in gene expression under oxidative stress. This study examined the expression pattern of cadherin-3 (CDH3), a cell adhesion protein associated with cancer metastasis and poor prognosis, under oxidative stress. Our findings showed that oxidative stress upregulated CDH3 expression, with OGG1 playing a pivotal role. Analysis of the CDH3 promoter revealed SP1 binding sites, and ChIP-qPCR assays confirmed OGG1’s involvement in modulating SP1 binding. These results provided new insights into the regulation of CDH3 under oxidative stress and suggested potential therapeutic strategies targeting CDH3 in cancer treatment. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

15 pages, 1121 KiB  
Article
Gene Expression and Activity of Selected Antioxidant and DNA Repair Enzymes in the Prefrontal Cortex of Sheep as Affected by Kynurenic Acid
by Elżbieta Marciniak, Bartosz Osuch, Patrycja Młotkowska, Paweł Kowalczyk, Katarzyna Roszkowicz-Ostrowska and Tomasz Misztal
Int. J. Mol. Sci. 2025, 26(6), 2381; https://doi.org/10.3390/ijms26062381 - 7 Mar 2025
Viewed by 883
Abstract
The prefrontal cortex (PCx) is involved in many higher-order cognitive processes, including decision making, reasoning, personality expression, and social cognition. These functions are associated with high energy demand and the production of harmful oxygen radicals. Recent studies indicate that kynurenic acid (KYNA) exerts [...] Read more.
The prefrontal cortex (PCx) is involved in many higher-order cognitive processes, including decision making, reasoning, personality expression, and social cognition. These functions are associated with high energy demand and the production of harmful oxygen radicals. Recent studies indicate that kynurenic acid (KYNA) exerts neuroprotective effects, largely due to its anti-inflammatory and antioxidant properties. To further evaluate the antioxidant potential of this compound, we tested the hypothesis that increasing KYNA levels in the sheep cerebroventricular circulation would positively affect the mRNA expression and activity of selected antioxidant and DNA repair enzymes in the distal part of the brain, i.e., the PCx. Anestrous sheep were infused intracerebroventricularly with a series of two KYNA doses: lower (4 × 5 μg/60 μL/30 min) and higher (4 × 25 μg/60 μL/30 min) at 30 min intervals. The results demonstrated that KYNA exerted significant dose-dependent stimulatory effects on the activity of superoxide dismutase 2, catalase, and glutathione peroxidase 1 while inhibiting their transcription in a similar manner. In addition, KYNA was also found to dose-dependently activate the base excision repair pathway, as determined by the increased transcript levels of glycosylases: N-methylpurine DNA glycosylase, thymine-DNA glycosylase, 8-oxoguanine DNA glycosylase-1, and apurinic/apyrimidinic endonuclease 1. The excision efficiency of damaged nucleobases, such as εA, εC and 8-oxoG, by these enzymes was also increased in response to central KYNA infusion. These findings expand the knowledge on KYNA as a potential protective factor against oxidative stress in the central nervous system. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

25 pages, 2033 KiB  
Article
Expression of Neuronal Nicotinic Acetylcholine Receptor and Early Oxidative DNA Damage in Aging Rat Brain—The Effects of Memantine
by Małgorzata Anna Lewandowska, Agata Różycka, Teresa Grzelak, Bartosz Kempisty, Paweł Piotr Jagodziński, Margarita Lianeri and Jolanta Dorszewska
Int. J. Mol. Sci. 2025, 26(4), 1634; https://doi.org/10.3390/ijms26041634 - 14 Feb 2025
Viewed by 1248
Abstract
Aging and age-related neurodegenerative disorders are characterized by the dysfunction or loss of brain nicotinic acetylcholine receptors (nAChRs), and these changes may be related to other senescence markers, such as oxidative stress and DNA repair dysfunction. However, the mechanism of nAChR loss in [...] Read more.
Aging and age-related neurodegenerative disorders are characterized by the dysfunction or loss of brain nicotinic acetylcholine receptors (nAChRs), and these changes may be related to other senescence markers, such as oxidative stress and DNA repair dysfunction. However, the mechanism of nAChR loss in the aging brain and the modification of this process by drugs (e.g., memantine, Mem) are not yet fully understood. To study whether the differences in nAChR expression in the rat brain occur due to aging or oxidative stress and are modulated by Mem, we analyzed nAChR subunits (at RNA and protein levels) and other biomarkers by real-time quantitative polymerase chain reaction (RQ-PCR) and Western blot validation. Twenty-one female Wistar rats were divided into four groups, depending on age, and the oldest group received injections of Mem or water with the use of intragastric catheters. We studied the cerebral grey matter (CGM), subcortical white matter (SCWM), and cerebellum (Ce). Results showed an age-related decrease of α7 nAChR mRNA level in SCWM. The α7 nAChR mRNA loss was accompanied by reduced expression of 8-oxoguanine DNA glycosylase 1 (OGG1) and an increased tumor necrosis factor alpha (TNFα) level. In the water group, we observed a higher level of α7 nAChR protein in the SCWM and Ce. Biomarker levels changed, but to a different extent depending on the brain area. Importantly, the dysfunction in antioxidative status was stopped and even regressed under Mem treatment. After two weeks of treatment, an increase in TP53 protein level and a decrease in 8-oxo-2′deoxyguanosine (8-oxo-2′dG) level were observed. We conclude that Mem administration may be protective against the senescence process by antioxidative mechanisms. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Health and Disease)
Show Figures

Figure 1

16 pages, 6880 KiB  
Review
Targeting the 8-oxodG Base Excision Repair Pathway for Cancer Therapy
by Anna Piscone, Francesca Gorini, Susanna Ambrosio, Anna Noviello, Giovanni Scala, Barbara Majello and Stefano Amente
Cells 2025, 14(2), 112; https://doi.org/10.3390/cells14020112 - 14 Jan 2025
Cited by 3 | Viewed by 1782
Abstract
Genomic integrity is critical for cellular homeostasis, preventing the accumulation of mutations that can drive diseases such as cancer. Among the mechanisms safeguarding genomic stability, the Base Excision Repair (BER) pathway plays a pivotal role in counteracting oxidative DNA damage caused by reactive [...] Read more.
Genomic integrity is critical for cellular homeostasis, preventing the accumulation of mutations that can drive diseases such as cancer. Among the mechanisms safeguarding genomic stability, the Base Excision Repair (BER) pathway plays a pivotal role in counteracting oxidative DNA damage caused by reactive oxygen species. Central to this pathway are enzymes like 8-oxoguanine glycosylase 1 (OGG1), which recognize and excise 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesions, thereby initiating a series of repair processes that restore DNA integrity. BER inhibitors have recently been identified as a promising approach in cancer therapy, increasing the sensitivity of cancer cells to radiotherapy and chemotherapy. By exploiting tumor-specific DNA repair dependencies and synthetic lethal interactions, these inhibitors could be used to selectively target cancer cells while sparing normal cells. This review provides a robust reference for scientific researchers, offering an updated perspective on small-molecule inhibitors targeting the 8-oxodG-BER pathway and highlighting their potential role in expanding cancer treatment strategies. Full article
(This article belongs to the Special Issue DNA Damage and Repair for Targeted Cancer Therapy)
Show Figures

Figure 1

15 pages, 1764 KiB  
Article
Mitochondria-Targeted DNA Repair Glycosylase hOGG1 Protects Against HFD-Induced Liver Oxidative Mitochondrial DNA Damage and Insulin Resistance in OGG1-Deficient Mice
by Larysa V. Yuzefovych, Hye Lim Noh, Sujin Suk, Anne Michele Schuler, Madhuri S. Mulekar, Viktor M. Pastukh, Jason K. Kim and Lyudmila I. Rachek
Int. J. Mol. Sci. 2024, 25(22), 12168; https://doi.org/10.3390/ijms252212168 - 13 Nov 2024
Cited by 1 | Viewed by 1443
Abstract
8-oxoguanine DNA glycosylase-1 (OGG1) is a DNA glycosylase mediating the first step in base excision repair which removes 7,8-dihydro-8-oxoguanine (8-oxoG) and repairs oxidized nuclear and mitochondrial DNA. Previous studies showed that OGG1 deficiency results in an increased susceptibility to high-fat diet (HFD)-induced obesity [...] Read more.
8-oxoguanine DNA glycosylase-1 (OGG1) is a DNA glycosylase mediating the first step in base excision repair which removes 7,8-dihydro-8-oxoguanine (8-oxoG) and repairs oxidized nuclear and mitochondrial DNA. Previous studies showed that OGG1 deficiency results in an increased susceptibility to high-fat diet (HFD)-induced obesity and metabolic dysfunction in mice, suggesting a crucial role of OGG1 in metabolism. However, the tissue-specific mechanisms of how OGG1 deficiency leads to insulin resistance is unknown. Thus, in the current study, we used a hyperinsulinemic-euglycemic clamp to evaluate in-depth glucose metabolism in male wild-type (WT) mice and Ogg1−/− (Ogg1-KO) mice fed an HFD. Ogg1-KO mice fed HFD were more obese, with significantly lower hepatic insulin action compared to WT/HFD mice. Targeting human OGG1 to mitochondria protected against HFD-induced obesity, insulin resistance, oxidative mitochondrial DNA damage in the liver and showed decreased expression of liver gluconeogenic genes in Ogg1-KO mice, suggesting a putative protective mechanism. Additionally, several subunits of oxidative phosphorylation protein levels were noticeably increased in Ogg1-KO/Tg compared to Ogg1-KO mice fed an HFD which was associated with improved insulin signaling. Our findings demonstrate the crucial role of mitochondrial hOGG1 in HFD-induced insulin resistance and propose several protective mechanisms which can further direct the development of therapeutic treatment. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

11 pages, 1535 KiB  
Article
The Human 8-oxoG DNA Glycosylase 1 (OGG1) Ser326Cys Polymorphism in Infertile Men
by César Antonio González-Díaz, María Antonieta Suárez-Souto, Elvia Pérez-Soto, Modesto Gómez-López, Jacobo Esteban Munguía-Cervantes, Nadia Mabel Pérez-Vielma and Virginia Sánchez-Monroy
Biomedicines 2024, 12(10), 2286; https://doi.org/10.3390/biomedicines12102286 - 9 Oct 2024
Cited by 3 | Viewed by 1638
Abstract
Background/Objectives: 8-hydroxy-2′-deoxyguanosine (8-OHdG) is a form of oxidative DNA damage caused by oxidative stress (OS), which is considered a major factor in male infertility. The cellular defense system against 8-OHdG involves base excision repair (BER) with the enzyme 8-Oxoguanine DNA glycosylase 1 (OGG1). [...] Read more.
Background/Objectives: 8-hydroxy-2′-deoxyguanosine (8-OHdG) is a form of oxidative DNA damage caused by oxidative stress (OS), which is considered a major factor in male infertility. The cellular defense system against 8-OHdG involves base excision repair (BER) with the enzyme 8-Oxoguanine DNA glycosylase 1 (OGG1). However, studies on the single-nucleotide polymorphism (SNP) OGG1 Ser326Cys have demonstrated that the Cys326Cys genotype could be the cause of an increment in oxidative DNA damage. In this study, the OGG1 Ser326Cys polymorphism and its effect on DNA oxidation were evaluated in 118 infertile men. Methods: Polymorphic screening was performed using TaqMan allelic discrimination assays, and oxidative DNA damage was evaluated through the quantification of 8-OHdG and total antioxidant capacity (TAC); in addition, electrical bioimpedance spectroscopy (EBiS) measurements were used as a reference for different electrical properties associated with 8-OHdG concentrations. Results: The detected Cys (G) allele frequency (0.4) was higher compared to the allele frequency reported in the “Allele Frequency Aggregator” (ALFA) and “Haplotype Map” (HapMap) projects for American populations (0.21–0.29), suggesting that the Cys (G) allele carrier could be a factor associated with American infertile populations. The values of 8-OHdG were twofold higher in carriers of the Cys326Cys (GG) genotype than the other genotypes and, in concordance, the TAC levels were threefold lower in Cys326Cys (GG) genotype carriers compared to the other genotypes. Moreover, the EBiS magnitude exhibited potential for the detection of different oxidative damage in DNA samples between genotypes. Conclusions: The Cys326Cys (GG) genotype is associated with oxidative DNA damage that could contribute to male infertility. Full article
(This article belongs to the Special Issue Molecular and Genetic Bases of Infertility)
Show Figures

Figure 1

19 pages, 3873 KiB  
Article
Comparative Metabolome and Transcriptome Analyses Reveal Differential Enrichment of Metabolites with Age in Panax notoginseng Roots
by Xinru Yan, Ao Zhang, Yiming Guan, Jinlong Jiao, Murad Ghanim, Yayu Zhang, Xiahong He and Rui Shi
Plants 2024, 13(11), 1441; https://doi.org/10.3390/plants13111441 - 23 May 2024
Cited by 4 | Viewed by 1566
Abstract
Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential [...] Read more.
Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids (“13S-hydroperoxy-9Z, 11E-octadecadionic acid”, “9S-hydroxy-10E, 12Z-octadecadionic acid”, “9S-oxo-10E, 12Z-octadecadionic acid”, and “9,10,13-trihydroxy-11-octadecadionic acid”), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants’ secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant’s dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 3918 KiB  
Article
Structural and Dynamic Features of the Recognition of 8-oxoguanosine Paired with an 8-oxoG-clamp by Human 8-oxoguanine-DNA Glycosylase
by Maria V. Lukina, Polina V. Zhdanova and Vladimir V. Koval
Curr. Issues Mol. Biol. 2024, 46(5), 4119-4132; https://doi.org/10.3390/cimb46050253 - 29 Apr 2024
Viewed by 1722
Abstract
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in [...] Read more.
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme’s active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar–phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme–substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme–substrate complex. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Health and Diseases)
Show Figures

Figure 1

14 pages, 2126 KiB  
Article
1-Deoxynojirimycin Attenuates High-Glucose-Induced Oxidative DNA Damage via Activating NRF2/OGG1 Signaling
by Yuwei Chen and Jun Wang
Appl. Sci. 2024, 14(8), 3186; https://doi.org/10.3390/app14083186 - 10 Apr 2024
Cited by 3 | Viewed by 2395
Abstract
1-Deoxynojirimycin (DNJ) is a type of alkaloid that mainly exists in mulberry fruit and leaves. DNJ inhibits α-glucosidase, reduces the absorption of sugar, and suppresses after-meal hyperglycemia. It was reported that DNJ functions in attenuating cellular oxidative stress. However, the mechanisms remain largely [...] Read more.
1-Deoxynojirimycin (DNJ) is a type of alkaloid that mainly exists in mulberry fruit and leaves. DNJ inhibits α-glucosidase, reduces the absorption of sugar, and suppresses after-meal hyperglycemia. It was reported that DNJ functions in attenuating cellular oxidative stress. However, the mechanisms remain largely unknown. In this study, we firstly confirmed that 5 µmol/L DNJ treatment mitigated the oxidative DNA damage and cell senescence in human umbilical vein endothelial cells (HUVEC) cultured in medium containing 50 mmol/L glucose. Next, we found that DNJ treatment stimulates the expression of anti-oxidative response regulator, Nuclear factor (erythroid-derived 2)-like 2 (NRF2) by around 50% in cells cultured with high glucose. In addition, 8-oxoguanine DNA glycosylase (OGG1) was upregulated by over 15% after DNJ treatment to mitigate high-glucose-induced oxidative DNA damage, and it was identified as a downstream target of NRF2. Further, DNJ treatment promoted the phosphorylation and activation of AKT (ser473) by around 50% in cells cultured with high glucose, and AKT inhibitor treatment abrogated DNJ-induced upregulation of NRF2 and OGG1. Taken together, our results indicate that DNJ is an effective natural antioxidant in mitigating high-glucose-induced oxidative stress in HUVEC via activating the AKT-NRF2-OGG1 anti-oxidative response. Full article
(This article belongs to the Special Issue Plant-Based Compounds or Extractions for Medical Applications)
Show Figures

Figure 1

Back to TopTop