Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (734)

Search Parameters:
Keywords = 6G wireless communication system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 926 KB  
Article
Pilot Design Based on the Distribution of Inter-User Interference for Grant-Free Access
by Hao Wang, Xiujun Zhang and Shidong Zhou
Electronics 2025, 14(20), 3988; https://doi.org/10.3390/electronics14203988 (registering DOI) - 12 Oct 2025
Abstract
Massive random access (MRA) involves massive devices sporadically and randomly sending short-packet messages through a shared wireless channel. It is a crucial scenario in 6G communications to support the Internet-of-Things. Grant-free access, where devices complete transmission without grants, is a promising scheme for [...] Read more.
Massive random access (MRA) involves massive devices sporadically and randomly sending short-packet messages through a shared wireless channel. It is a crucial scenario in 6G communications to support the Internet-of-Things. Grant-free access, where devices complete transmission without grants, is a promising scheme for MRA. In grant-free access, the design of pilot sequences has a significant effect on joint activity detection and channel estimation (JADCE) and, consequently, system performance. Inter-user interference (IUI), caused by non-orthogonal pilots, is random owing to the random set of active users, and existing studies on pilot design for grant-free access often attempt to reduce the mean IUI. However, the performance of JADCE is affected not only by the mean IUI but also by the tail behavior of the IUI distribution. In this paper, we propose a metric for pilot design, exploiting the distribution of IUI to reflect the impact of pilots on JADCE more precisely. We further develop a pilot design algorithm based on the proposed metric, with modified approximate message passing (AMP) adopted as the JADCE algorithm. Simulation results demonstrate that the proposed pilot design reduces the probability of missed detection of active users and channel estimation error, compared with existing pilot designs. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

17 pages, 6267 KB  
Article
Local and Remote Digital Pre-Distortion for 5G Power Amplifiers with Safe Deep Reinforcement Learning
by Christian Spano, Damiano Badini, Lorenzo Cazzella and Matteo Matteucci
Sensors 2025, 25(19), 6102; https://doi.org/10.3390/s25196102 - 3 Oct 2025
Viewed by 315
Abstract
The demand for higher data rates and energy efficiency in wireless communication systems drives power amplifiers (PAs) into nonlinear operation, causing signal distortions that hinder performance. Digital Pre-Distortion (DPD) addresses these distortions, but existing systems face challenges with complexity, adaptability, and resource limitations. [...] Read more.
The demand for higher data rates and energy efficiency in wireless communication systems drives power amplifiers (PAs) into nonlinear operation, causing signal distortions that hinder performance. Digital Pre-Distortion (DPD) addresses these distortions, but existing systems face challenges with complexity, adaptability, and resource limitations. This paper introduces DRL-DPD, a Deep Reinforcement Learning-based solution for DPD that aims to reduce computational burden, improve adaptation to dynamic environments, and minimize resource consumption. To ensure safety and regulatory compliance, we integrate an ad-hoc Safe Reinforcement Learning algorithm, CRE-DDPG (Cautious-Recoverable-Exploration Deep Deterministic Policy Gradient), which prevents ACLR measurements from falling below safety thresholds. Simulations and hardware experiments demonstrate the potential of DRL-DPD with CRE-DDPG to surpass current DPD limitations in both local and remote configurations, paving the way for more efficient communication systems, especially in the context of 5G and beyond. Full article
Show Figures

Figure 1

17 pages, 620 KB  
Article
Closed-Form Approximation to the Average Symbol Error Probability for Cross-QAM over κμ Fading Channels with Experimental Validation in the Millimeter-Wave Band
by Wilian Eurípedes Vieira, Karine Barbosa Carbonaro, Gilberto Arantes Carrijo, Edson Agustini, André Antônio dos Anjos and Pedro Luiz Lima Bertarini
Telecom 2025, 6(4), 72; https://doi.org/10.3390/telecom6040072 - 2 Oct 2025
Viewed by 204
Abstract
This work presents a closed-form approximation to the symbol error probability (SEP) for cross-quadrature amplitude modulation (cross-QAM) schemes over κμ fading channels. The proposed formulation enables accurate performance evaluation while avoiding computationally expensive numerical integration. The analysis covers millimeter-wave (mmWave) frequencies [...] Read more.
This work presents a closed-form approximation to the symbol error probability (SEP) for cross-quadrature amplitude modulation (cross-QAM) schemes over κμ fading channels. The proposed formulation enables accurate performance evaluation while avoiding computationally expensive numerical integration. The analysis covers millimeter-wave (mmWave) frequencies at 55, 60, and 65 GHz, under both line-of-sight (LoS) and non-line-of-sight (nLoS) conditions, and for multiple transmitter–receiver polarization configurations. A key contribution of this work is the experimental validation of the theoretical expression with real channel-measurement data, which confirms the applicability of the κμ model in realistic mmWave scenarios. Furthermore, we perform a detailed parametric study to quantify the influence of κ and μ on adaptive modulation performance, providing practical insights for 5G and future 6G systems. The proposed framework bridges theoretical analysis and experimental validation, offering a computationally efficient and robust tool for the design and evaluation of advanced modulation schemes in generalized fading environments. Full article
Show Figures

Figure 1

22 pages, 4882 KB  
Article
82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm
by Jingtao Ge, Jie Zhang, Sicong Xu, Qihang Wang, Jingwen Lin, Sheng Hu, Xin Lu, Zhihang Ou, Siqi Wang, Tong Wang, Yichen Li, Yuan Ma, Jiali Chen, Tensheng Zhang and Wen Zhou
Sensors 2025, 25(19), 5986; https://doi.org/10.3390/s25195986 - 27 Sep 2025
Viewed by 412
Abstract
With the rise of 6G, the exponential growth of data traffic, the proliferation of emerging applications, and the ubiquity of smart devices, the demand for spectral resources is unprecedented. Terahertz communication (100 GHz–3 THz) plays a key role in alleviating spectrum scarcity through [...] Read more.
With the rise of 6G, the exponential growth of data traffic, the proliferation of emerging applications, and the ubiquity of smart devices, the demand for spectral resources is unprecedented. Terahertz communication (100 GHz–3 THz) plays a key role in alleviating spectrum scarcity through ultra-broadband transmission. In this study, terahertz optical carrier-based systems are employed, where fiber-optic components are used to generate the optical signals, and the signal is transmitted via direct detection in the receiver side, without relying on fiber-optic transmission. In these systems, deep learning-based equalization effectively compensates for nonlinear distortions, while probability shaping (PS) enhances system capacity under modulation constraints. However, the probability distribution of signals processed by PS varies with amplitude, making it challenging to extract useful information from the minority class, which in turn limits the effectiveness of nonlinear equalization. Furthermore, in IM-DD systems, optical multipath interference (MPI) noise introduces signal-dependent amplitude jitter after direct detection, degrading system performance. To address these challenges, we propose a lightweight neural network equalizer assisted by the Synthetic Minority Oversampling Technique (SMOTE) and a clustering method. Applying SMOTE prior to the equalizer mitigates training difficulties arising from class imbalance, while the low-complexity clustering algorithm after the equalizer identifies edge jitter levels for decision-making. This joint approach compensates for both nonlinear distortion and jitter-related decision errors. Based on this algorithm, we conducted a 3.75 Gbaud W-band PAM4 wireless transmission experiment over 300 m at Fudan University’s Handan campus, achieving a bit error rate of 1.32 × 10−3, which corresponds to a 70.7% improvement over conventional schemes. Compared to traditional equalizers, the proposed new equalizer reduces algorithm complexity by 70.6% and training sequence length by 33%, while achieving the same performance. These advantages highlight its significant potential for future optical carrier-based wireless communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

30 pages, 1641 KB  
Review
Sensing-Assisted Communication for mmWave Networks: A Review of Techniques, Applications, and Future Directions
by Ruba Mahmoud, Daniel Castanheira, Adão Silva and Atílio Gameiro
Electronics 2025, 14(19), 3787; https://doi.org/10.3390/electronics14193787 - 24 Sep 2025
Viewed by 435
Abstract
The emergence of 6G wireless systems marks a paradigm shift toward intelligent, context-aware networks that can adapt in real-time to their environment. Within this landscape, Sensing-Assisted Communication (SAC) emerges as a key enabler, integrating perception into the communication control loop to enhance reliability, [...] Read more.
The emergence of 6G wireless systems marks a paradigm shift toward intelligent, context-aware networks that can adapt in real-time to their environment. Within this landscape, Sensing-Assisted Communication (SAC) emerges as a key enabler, integrating perception into the communication control loop to enhance reliability, beamforming accuracy, and system responsiveness. Unlike prior surveys that treat SAC as a subfunction of Integrated Sensing and Communication (ISAC), this work offers the first dedicated review of SAC in Millimeter-Wave (mmWave) and Sub-Terahertz (Sub-THz) systems, where directional links and channel variability present core challenges. SAC encompasses a diverse set of methods that enable wireless systems to dynamically adapt to environmental changes and channel conditions in real time. Recent studies demonstrate up to 80% reduction in beam training overhead and significant gains in latency and mobility resilience. Applications include predictive beamforming, blockage mitigation, and low-latency Unmanned Aerial Vehicle (UAV) and vehicular communication. This review unifies the SAC landscape and outlines future directions in standardization, Artificial Intelligence (AI) integration, and cooperative sensing for next-generation wireless networks. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 4708 KB  
Article
Physical-Layer Encryption for Terahertz Wireless Communication via Logical AND Operation of Dual Beams
by Yoshiki Kamiura, Shinji Iwamoto, Yuya Mikami and Kazutoshi Kato
Electronics 2025, 14(19), 3762; https://doi.org/10.3390/electronics14193762 - 23 Sep 2025
Viewed by 238
Abstract
This paper proposes and experimentally demonstrates a novel physical-layer encryption scheme for terahertz (THz) wireless communication based on a logical AND operation between dual THz beams transmitted from spatially separated sources. Unlike previous studies, confined to chip-scale or waveguide configurations, our approach validates [...] Read more.
This paper proposes and experimentally demonstrates a novel physical-layer encryption scheme for terahertz (THz) wireless communication based on a logical AND operation between dual THz beams transmitted from spatially separated sources. Unlike previous studies, confined to chip-scale or waveguide configurations, our approach validates the concept under free-space transmission, thereby highlighting its applicability to real wireless environments. The system utilizes uni-traveling carrier photodiodes (UTC-PDs) to generate independent THz carriers, and coherent detection combined with envelope extraction enables analog-domain realization of the AND operation. Experimental results confirm successful decryption at data rates up to 1.5 Gbit/s, achieving bit error rates (BERs) below the forward error correction threshold (e.g., 3.13 × 10−10 at 500 Mbit/s). Furthermore, spatial mapping and simulation show strong agreement with measurements, yielding a predictive accuracy of approximately 84% and validating spatial selectivity as a security feature. These findings establish the novelty of applying dual-beam logical operations for secure THz transmission and provide a foundation for scalable, low-complexity physical-layer security in next-generation wireless networks. Full article
Show Figures

Figure 1

12 pages, 3114 KB  
Article
Planar CPW-Fed MIMO Antenna Array Design with Enhanced Isolation Using T-Shaped Neutralization Lines
by Mohamed Morsy
Electronics 2025, 14(18), 3683; https://doi.org/10.3390/electronics14183683 - 17 Sep 2025
Viewed by 319
Abstract
This paper presents the design and performance evaluation of a compact four-element coplanar waveguide (CPW)-fed antenna array operating in the 3.3–3.6 GHz frequency band. The proposed antenna is tailored for sub-6 GHz 5G New Radio (NR) applications, specifically aligning with the n77/n78 bands [...] Read more.
This paper presents the design and performance evaluation of a compact four-element coplanar waveguide (CPW)-fed antenna array operating in the 3.3–3.6 GHz frequency band. The proposed antenna is tailored for sub-6 GHz 5G New Radio (NR) applications, specifically aligning with the n77/n78 bands widely adopted for mid-band 5G deployment. The CPW feeding technique enables low-profile integration and ease of fabrication, while the multi-element configuration supports enhanced gain and spatial diversity. Both simulated and measured results demonstrate good impedance matching (|S11| < −10 dB), stable radiation patterns, and inter-element isolation suitable for MIMO operation. The design offers a promising solution for compact 5G antenna systems and can be extended to future wireless communication platforms requiring high efficiency and compact form factors. Full article
Show Figures

Figure 1

23 pages, 10504 KB  
Article
Indoor Localization with Extended Trajectory Map Construction and Attention Mechanisms in 5G
by Kexin Yang, Chao Yu, Saibin Yao, Zhenwei Jiang and Kun Zhao
Sensors 2025, 25(18), 5784; https://doi.org/10.3390/s25185784 - 17 Sep 2025
Viewed by 417
Abstract
Integrated sensing and communication (ISAC) is considered a key enabler for the future Internet of Things (IoT), as it enables wireless networks to simultaneously support high-capacity data transmission and precise environmental sensing. Indoor localization, as a representative sensing service in ISAC, has attracted [...] Read more.
Integrated sensing and communication (ISAC) is considered a key enabler for the future Internet of Things (IoT), as it enables wireless networks to simultaneously support high-capacity data transmission and precise environmental sensing. Indoor localization, as a representative sensing service in ISAC, has attracted considerable research attention. Nevertheless, its performance is largely constrained by the quality and granularity of the collected data. In this work, we propose an attention-based framework for cost-efficient indoor fingerprint localization that exploits extended trajectory map construction through a novel trajectory-based data augmentation (TDA) method. In particular, fingerprints at unmeasured locations are synthesized using a conditional Wasserstein generative adversarial network (CWGAN). A path generation algorithm is employed to produce diverse trajectories and construct the extended trajectory map. Based on this map, a multi-head attention model with direction-constrained auxiliary loss is then applied for accurate mobile device localization. Experiments in a real 5G indoor environment demonstrate the system’s effectiveness, achieving an average localization error of 1.09 m and at least 34% higher accuracy than existing approaches. Full article
Show Figures

Figure 1

15 pages, 883 KB  
Review
Hybrid NFC-VLC Systems: Integration Strategies, Applications, and Future Directions
by Vindula L. Jayaweera, Chamodi Peiris, Dhanushika Darshani, Sampath Edirisinghe, Nishan Dharmaweera and Uditha Wijewardhana
Network 2025, 5(3), 37; https://doi.org/10.3390/network5030037 - 15 Sep 2025
Viewed by 475
Abstract
The hybridization of Near-Field Communication (NFC) with Visible Light Communication (VLC) presents a promising framework for robust, secure, and efficient wireless transmission. By combining proximity-based authentication of NFC with high-speed and interference-resistant data transfer of VLC, this approach mitigates the inherent limitations of [...] Read more.
The hybridization of Near-Field Communication (NFC) with Visible Light Communication (VLC) presents a promising framework for robust, secure, and efficient wireless transmission. By combining proximity-based authentication of NFC with high-speed and interference-resistant data transfer of VLC, this approach mitigates the inherent limitations of each technology, such as the restricted range of NFC and authentication challenges of VLC. The resulting hybrid system leverages NFC for secure handshaking and VLC for high-throughput communication, enabling scalable, real-time applications across diverse domains. This study examines integration strategies, technical enablers, and potential use cases, including smart street poles for secure citizen engagement, patient authentication and record access systems in healthcare, personalized retail advertising, and automated attendance tracking in education. Additionally, this paper addresses key challenges in hybridization and explores future research directions, such as the integration of Artificial Intelligence and 6G networks. Full article
(This article belongs to the Special Issue Advances in Wireless Communications and Networks)
Show Figures

Figure 1

19 pages, 2548 KB  
Article
Random Access Preamble Design for 6G Satellite–Terrestrial Integrated Communication Systems
by Min Hua, Zhongqiu Wu, Cong Zhang, Zeyang Xu, Xiaoming Liu and Wen Zhou
Sensors 2025, 25(17), 5602; https://doi.org/10.3390/s25175602 - 8 Sep 2025
Viewed by 804
Abstract
Satellite–terrestrial integrated communication systems (STICSs) are envisioned to provide ubiquitous, seamless connectivity in next-generation (6G) wireless communication networks for massive-scale Internet of Things (IoT) deployments. This global coverage extends beyond densely populated areas to remote regions (e.g., polar zones, open oceans, deserts) and [...] Read more.
Satellite–terrestrial integrated communication systems (STICSs) are envisioned to provide ubiquitous, seamless connectivity in next-generation (6G) wireless communication networks for massive-scale Internet of Things (IoT) deployments. This global coverage extends beyond densely populated areas to remote regions (e.g., polar zones, open oceans, deserts) and disaster-prone areas, supporting diverse IoT applications, including remote sensing, smart cities, intelligent agriculture/forestry, environmental monitoring, and emergency reporting. Random access signals, which constitute the initial transmission from access IoT devices to base station for unscheduled transmissions or network entry in terrestrial networks (TNs), encounter significant challenges in STICSs due to inherent satellite characteristics: wide coverage, large-scale access, substantial round-trip delay, and high carrier frequency offset (CFO). Consequently, conventional TN preamble designs based on Zadoff–Chu (ZC) sequences, as used in 4G LTE and 5G NR systems, are unsuitable for direct deployment in 6G STICSs. This paper first analyzes the challenges in adapting terrestrial designs to STICSs. It then proposes a CFO-resistant preamble design specifically tailored for STICSs and details its detection procedure. Furthermore, a dedicated root set selection algorithm for the proposed preambles is presented, generating an expanded pool of random access signals to meet the demands of increasing IoT device access. The developed analytical framework provides a foundation for performance analysis of random access signals in 6G STICSs. Full article
(This article belongs to the Special Issue 5G/6G Networks for Wireless Communication and IoT)
Show Figures

Figure 1

67 pages, 2605 KB  
Article
Polar Codes for 6G and Beyond Wireless Quantum Optical Communications
by Peter Jung, Kushtrim Dini, Faris Abdel Rehim and Hamza Almujahed
Electronics 2025, 14(17), 3563; https://doi.org/10.3390/electronics14173563 - 8 Sep 2025
Viewed by 428
Abstract
Wireless communication applications above 300 GHz need careful analog electronics design that takes into account the frequency-dependent nature of ohmic resistance at these frequencies. The cumbersome development of electronics brings quantum optical communication solutions for the sixth generation (6G) THz band located between [...] Read more.
Wireless communication applications above 300 GHz need careful analog electronics design that takes into account the frequency-dependent nature of ohmic resistance at these frequencies. The cumbersome development of electronics brings quantum optical communication solutions for the sixth generation (6G) THz band located between 300 GHz and 10 THz into focus. In this manuscript, the authors propose to replace the classical radio frequency based inner physical layer transceiver blocks used in classical channel coded short range wireless communication systems by wireless quantum optical communication concepts. In addition to discussing the resulting generic concept of the wireless quantum optical communications and illustrating optimum quantum data detection schemes, novel reduced state quantum data detection and novel Kohonen maps-based quantum data detection, will be addressed. All the considered quantum data detection schemes provide soft outputs required for the lowest possible block error ratio (BLER) at the output of the channel decoding. Furthermore, a novel polar codes design approach determining the polar sequence by appropriately combining already available polar sequences tailored for low BLER is presented for the first time after illustrating the basics of polar codes. In addition, turbo equalization for wireless quantum optical communications using polar codes will be presented, for the first time explicitly stating the generation of soft information associated with the codebits and introducing a novel scheme for the computation of extrinsic soft outputs to be used in the turbo equalization iterations. New simulation results emphasize the viability of the theoretical concepts. Full article
(This article belongs to the Special Issue Channel Coding and Measurements for 6G Wireless Communications)
Show Figures

Figure 1

26 pages, 6038 KB  
Article
A Multi-Objective Genetic Algorithm–Deep Reinforcement Learning Framework for Spectrum Sharing in 6G Cognitive Radio Networks
by Ancilla Wadzanai Chigaba, Sindiso Mpenyu Nleya, Mthulisi Velempini and Samkeliso Suku Dube
Appl. Sci. 2025, 15(17), 9758; https://doi.org/10.3390/app15179758 - 5 Sep 2025
Viewed by 811
Abstract
The exponential growth in wireless communication demands intelligent and adaptive spectrum-sharing solutions, especially within dynamic and densely populated 6G Cognitive Radio Networks (CRNs). This paper introduces a novel hybrid framework combing the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with Proximal Policy Optimisation (PPO) [...] Read more.
The exponential growth in wireless communication demands intelligent and adaptive spectrum-sharing solutions, especially within dynamic and densely populated 6G Cognitive Radio Networks (CRNs). This paper introduces a novel hybrid framework combing the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with Proximal Policy Optimisation (PPO) for multi-objective optimisation in spectrum management. The proposed model balances spectrum efficiency, interference mitigation, energy conservation, collision rate reduction, and QoS maintenance. Evaluation on synthetic and ns-3 datasets shows that the NSGA-II and PPO hybrid consistently outperforms the random, greedy, and stand-alone PPO strategies, achieving higher cumulative reward, perfect fairness (Jain’s Fairness Index = 1.0), robust hypervolume convergence (65.1%), up to 12% reduction in PU collision rate, 20% lower interference, and approximately 40% improvement in energy efficiency. These findings validate the framework’s effectiveness in promoting fairness, reliability, and efficiency in 6G wireless communication systems. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 37613 KB  
Article
Wideband Reconfigurable Reflective Metasurface with 1-Bit Phase Control Based on Polarization Rotation
by Zahid Iqbal, Xiuping Li, Zihang Qi, Wenyu Zhao, Zaid Akram and Muhammad Ishfaq
Telecom 2025, 6(3), 65; https://doi.org/10.3390/telecom6030065 - 3 Sep 2025
Viewed by 712
Abstract
The rapid expansion of broadband wireless communication systems, including 5G, satellite networks, and next-generation IoT platforms, has created a strong demand for antenna architectures capable of real-time beam control, compact integration, and broad frequency coverage. Traditional reflectarrays, while effective for narrowband applications, often [...] Read more.
The rapid expansion of broadband wireless communication systems, including 5G, satellite networks, and next-generation IoT platforms, has created a strong demand for antenna architectures capable of real-time beam control, compact integration, and broad frequency coverage. Traditional reflectarrays, while effective for narrowband applications, often face inherent limitations such as fixed beam direction, high insertion loss, and complex phase-shifting networks, making them less viable for modern adaptive and reconfigurable systems. Addressing these challenges, this work presents a novel wideband planar metasurface that operates as a polarization rotation reflective metasurface (PRRM), combining 90° polarization conversion with 1-bit reconfigurable phase modulation. The metasurface employs a mirror-symmetric unit cell structure, incorporating a cross-shaped patch with fan-shaped stub loading and integrated PIN diodes, connected through vertical interconnect accesses (VIAs). This design enables stable binary phase control with minimal loss across a significantly wide frequency range. Full-wave electromagnetic simulations confirm that the proposed unit cell maintains consistent cross-polarized reflection performance and phase switching from 3.83 GHz to 15.06 GHz, achieving a remarkable fractional bandwidth of 118.89%. To verify its applicability, the full-wave simulation analysis of a 16 × 16 array was conducted, demonstrating dynamic two-dimensional beam steering up to ±60° and maintaining a 3 dB gain bandwidth of 55.3%. These results establish the metasurface’s suitability for advanced beamforming, making it a strong candidate for compact, electronically reconfigurable antennas in high-speed wireless communication, radar imaging, and sensing systems. Full article
Show Figures

Figure 1

20 pages, 5787 KB  
Article
Path Loss Prediction Model of 5G Signal Based on Fusing Data and XGBoost—SHAP Method
by Tingting Xu, Nuo Xu, Jay Gao, Yadong Zhou and Haoran Ma
Sensors 2025, 25(17), 5440; https://doi.org/10.3390/s25175440 - 2 Sep 2025
Viewed by 756
Abstract
The accurate prediction of path loss is essential for planning and optimizing communication networks, as it directly impacts the user experience. In 5G signal propagation, the mix of varied terrain and dense high-rise buildings poses significant challenges. For example, signals are more prone [...] Read more.
The accurate prediction of path loss is essential for planning and optimizing communication networks, as it directly impacts the user experience. In 5G signal propagation, the mix of varied terrain and dense high-rise buildings poses significant challenges. For example, signals are more prone to multipath effects and occlusion and shadowing occur often, leading to high nonlinearities and uncertainties in the signal path. Traditional and shallow models often fail to accurately depict 5G signal characteristics in complex terrains, limiting the accuracy of path loss modeling. To address this issue, our research introduces innovative feature engineering and prediction models for 5G signals. By utilizing smartphones as signal receivers and creating a multimodal system that captures 3D structures and obstructions in the N1 and N78 bands in China, the study aimed to overcome the shortcomings of traditional linear models, especially in mountainous areas. It employed the XGBoost algorithm with Optuna for hyperparameter tuning, improving model performance. After training on real 5G data, the model achieved a breakthrough in 5G signal path loss prediction, with an R2 of 0.76 and an RMSE of 3.81 dBm. Additionally, SHAP values were employed to interpret the results, revealing the relative impact of various environmental features on 5G signal path loss. This research enhances the accuracy and stability of predictions and offers a technical framework and theoretical foundation for planning and optimizing wireless communication networks in complex environments and terrains. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

29 pages, 9470 KB  
Review
Millimeter-Wave Antennas for 5G Wireless Communications: Technologies, Challenges, and Future Trends
by Yutao Yang, Minmin Mao, Junran Xu, Huan Liu, Jianhua Wang and Kaixin Song
Sensors 2025, 25(17), 5424; https://doi.org/10.3390/s25175424 - 2 Sep 2025
Viewed by 1942
Abstract
With the rapid evolution of 5G wireless communications, millimeter-wave (mmWave) technology has become a crucial enabler for high-speed, low-latency, and large-scale connectivity. As the critical interface for signal transmission, mmWave antennas directly affect system performance, reliability, and application scope. This paper reviews the [...] Read more.
With the rapid evolution of 5G wireless communications, millimeter-wave (mmWave) technology has become a crucial enabler for high-speed, low-latency, and large-scale connectivity. As the critical interface for signal transmission, mmWave antennas directly affect system performance, reliability, and application scope. This paper reviews the current state of mmWave antenna technologies in 5G systems, focusing on antenna types, design considerations, and integration strategies. We discuss how the multiple-input multiple-output (MIMO) architectures and advanced beamforming techniques enhance system capacity and link robustness. State-of-the-art integration methods, such as antenna-in-package (AiP) and chip-level integration, are examined for their importance in achieving compact and high-performance mmWave systems. Material selection and fabrication technologies—including low-loss substrates like polytetrafluoroethylene (PTFE), hydrocarbon-based materials, liquid crystal polymer (LCP), and microwave dielectric ceramics, as well as emerging processes such as low-temperature co-fired ceramics (LTCC), 3D printing, and micro-electro-mechanical systems (MEMS)—are also analyzed. Key challenges include propagation path limitations, power consumption and thermal management in highly integrated systems, cost–performance trade-offs for mass production, and interoperability standardization across vendors. Finally, we outline future research directions, including intelligent beam management, reconfigurable antennas, AI-driven designs, and hybrid mmWave–sub-6 GHz systems, highlighting the vital role of mmWave antennas in shaping next-generation wireless networks. Full article
(This article belongs to the Special Issue Millimeter-Wave Antennas for 5G)
Show Figures

Figure 1

Back to TopTop