Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = 5G passive antenna system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3810 KiB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Viewed by 277
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

54 pages, 17044 KiB  
Review
Perspectives and Research Challenges in Wireless Communications Hardware for the Future Internet and Its Applications Services
by Dimitrios G. Arnaoutoglou, Tzichat M. Empliouk, Theodoros N. F. Kaifas, Constantinos L. Zekios and George A. Kyriacou
Future Internet 2025, 17(6), 249; https://doi.org/10.3390/fi17060249 - 31 May 2025
Viewed by 982
Abstract
The transition from 5G to 6G wireless systems introduces new challenges at the physical layer, including the need for higher frequency operations, massive MIMO deployment, advanced beamforming techniques, and sustainable energy harvesting mechanisms. A plethora of feature articles, review and white papers, and [...] Read more.
The transition from 5G to 6G wireless systems introduces new challenges at the physical layer, including the need for higher frequency operations, massive MIMO deployment, advanced beamforming techniques, and sustainable energy harvesting mechanisms. A plethora of feature articles, review and white papers, and roadmaps elaborate on the perspectives and research challenges of wireless systems, in general, including both unified physical and cyber space. Hence, this paper presents a comprehensive review of the technological challenges and recent advancements in wireless communication hardware that underpin the development of next-generation networks, particularly 6G. Emphasizing the physical layer, the study explores critical enabling technologies including beamforming, massive MIMO, reconfigurable intelligent surfaces (RIS), millimeter-wave (mmWave) and terahertz (THz) communications, wireless power transfer, and energy harvesting. These technologies are analyzed in terms of their functional roles, implementation challenges, and integration into future wireless infrastructure. Beyond traditional physical layer components, the paper also discusses the role of reconfigurable RF front-ends, innovative antenna architectures, and user-end devices that contribute to the adaptability and efficiency of emerging communication systems. In addition, the inclusion of application-driven paradigms such as digital twins highlights how new use cases are shaping design requirements and pushing the boundaries of hardware capabilities. By linking foundational physical-layer technologies with evolving application demands, this work provides a holistic perspective aimed at guiding future research directions and informing the design of scalable, energy-efficient, and resilient wireless communication platforms for the Future Internet. Specifically, we first try to identify the demands and, in turn, explore existing or emerging technologies that have the potential to meet these needs. Especially, there will be an extended reference about the state-of-the-art antennas for massive MIMO terrestrial and non-terrestrial networks. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems)
Show Figures

Figure 1

26 pages, 3719 KiB  
Article
Design of Multi-Sourced MIMO Multiband Hybrid Wireless RF-Perovskite Photovoltaic Energy Harvesting Subsystems for IoTs Applications in Smart Cities
by Fanuel Elias, Sunday Ekpo, Stephen Alabi, Mfonobong Uko, Sunday Enahoro, Muhammad Ijaz, Helen Ji, Rahul Unnikrishnan and Nurudeen Olasunkanmi
Technologies 2025, 13(3), 92; https://doi.org/10.3390/technologies13030092 - 1 Mar 2025
Cited by 2 | Viewed by 2006
Abstract
Energy harvesting technology allows Internet of Things (IoT) devices to be powered continuously without needing battery charging or replacement. In addressing existing and emerging massive IoT energy supply challenges, this paper presents the design of multi-sourced multiple input and multiple output (MIMO) multiband [...] Read more.
Energy harvesting technology allows Internet of Things (IoT) devices to be powered continuously without needing battery charging or replacement. In addressing existing and emerging massive IoT energy supply challenges, this paper presents the design of multi-sourced multiple input and multiple output (MIMO) multiband hybrid wireless RF-perovskite photovoltaic energy harvesting subsystems for IoT application. The research findings evaluate the efficiency and power output of different RF configurations (1 to 16 antennas) within MIMO RF subsystems. A Delon quadruple rectifier in the RF energy harvesting system demonstrates a system-level power conversion efficiency of 51%. The research also explores the I-V and P-V characteristics of the adopted perovskite tandem cell. This results in an impressive array capable of producing 6.4 V and generating a maximum power of 650 mW. For the first time, the combined mathematical modelling of the system architecture is presented. The achieved efficiency of the combined system is 90% (for 8 MIMO) and 98% (for 16 MIMO) at 0 dBm input RF power. This novel study holds great promise for next-generation 5G/6G smart IoT passive electronics. Additionally, it establishes the hybrid RF-perovskite energy harvester as a promising, compact, and eco-friendly solution for efficiently powering IoT devices in smart cities. This work contributes to the development of sustainable, scalable, and smart energy solutions for IoT integration into smart city infrastructures. Full article
Show Figures

Graphical abstract

22 pages, 4119 KiB  
Review
Dual-Band Passive Beam Steering Antenna Technologies for Satellite Communication and Modern Wireless Systems: A Review
by Maira I. Nabeel, Khushboo Singh, Muhammad U. Afzal, Dushmantha N. Thalakotuna and Karu P. Esselle
Sensors 2024, 24(18), 6144; https://doi.org/10.3390/s24186144 - 23 Sep 2024
Cited by 5 | Viewed by 3818
Abstract
Efficient beam steerable high-gain antennas enable high-speed data rates over long-distance networks, including wireless backhaul, satellite communications (SATCOM), and SATCOM On-the-Move. These characteristics are essential for advancing contemporary wireless communication networks, particularly within 5G and beyond. Various beam steering solutions have been proposed [...] Read more.
Efficient beam steerable high-gain antennas enable high-speed data rates over long-distance networks, including wireless backhaul, satellite communications (SATCOM), and SATCOM On-the-Move. These characteristics are essential for advancing contemporary wireless communication networks, particularly within 5G and beyond. Various beam steering solutions have been proposed in the literature, with passive beam steering mechanisms employing planar metasurfaces emerging as cost-effective, power-efficient, and compact options. These attributes make them well-suited for use in confined spaces, large-scale production and widespread distribution to meet the demands of the mass market. Utilizing a dual-band antenna terminal setup is often advantageous for full duplex communication in wireless systems. Therefore, this article presents a comprehensive review of the dual-band beam steering techniques for enabling full-duplex communication in modern wireless systems, highlighting their design methodologies, scanning mechanisms, physical characteristics, and constraints. Despite the advantages of planar metasurface-based beam steering solutions, the literature on dual-band beam steering antennas supporting full duplex communication is limited. This review article identifies research gaps and outlines future directions for developing economically feasible passive dual-band beam steering solutions for mass deployment. Full article
Show Figures

Figure 1

27 pages, 20554 KiB  
Article
Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications
by Albert Sabban
Fractal Fract. 2024, 8(2), 100; https://doi.org/10.3390/fractalfract8020100 - 6 Feb 2024
Cited by 9 | Viewed by 3475
Abstract
Future communication, 5G, medical, and IoT systems need compact, green, efficient wideband sensors, and antennas. Novel linear and dual-polarized antennas for 5G, 6G, medical devices, Internet of Things (IoT) systems, and healthcare monitoring sensors are presented in this paper. One of the major [...] Read more.
Future communication, 5G, medical, and IoT systems need compact, green, efficient wideband sensors, and antennas. Novel linear and dual-polarized antennas for 5G, 6G, medical devices, Internet of Things (IoT) systems, and healthcare monitoring sensors are presented in this paper. One of the major goals in the evaluation of medical, 5G, and smart wireless communication devices is the development of efficient, compact, low-cost antennas and sensors. Moreover, passive and active sensors may be self-powered by connecting an energy-harvesting unit to the antenna to collect electromagnetic radiation and charge the wearable sensor battery. Wearable sensors and antennas can be employed in smart grid applications that provide communication between neighbors, localized management, bidirectional power transfer, and effective demand response. A low-cost wearable antenna may be developed by etching the printed feed and matching the network on the same substrate in the printed antenna. Active modules may be placed on the same dielectric board. The antenna design parameters and a comparison between the computation and measured electrical performance of the antennas are presented in this paper. The electrical characteristics of the new compact antennas in the vicinity of the patient’s body were simulated by using electromagnetic simulation techniques. Fractal and metamaterial efficient antennas and sensors were evaluated to maximize the electrical characteristics of smart communication and medical devices. The dual- and circularly polarized antennas developed in this paper are crucial to the evaluation of wideband and multiband compact 5G, 6G, and IoT advanced systems. The new efficient sensors and antennas maximize the system’s dynamic range and electrical characteristics. The new efficient wearable antennas and sensors are compact, wideband, and low-cost. The operating resonant frequency of the metamaterial antennas with circular split-ring resonators (CSRRs) may be 5% to 9% lower than the resonant frequency of the sensor without CSRRs. The directivity and gain of the metamaterial fractal antennas with CSRRs may be up to 3 dB higher than the antennas without CSRRs. The directivity and gain of the metamaterial fractal passive sensors with CSRRs may be up to 8.5 dBi. This study presents new wideband active meta-fractal antennas and sensors. The bandwidth of the new sensors is around 9% to 20%. At 2.83 GHz, the receiving active sensor gain is 13.5 dB and drops to 8 dB at 3.2 GHz. The receiving module noise figure with TAV541 LNA is around 1dB. Full article
(This article belongs to the Special Issue Advances in Fractal Antennas: Design, Modeling and Applications)
Show Figures

Figure 1

14 pages, 2382 KiB  
Article
Joint Resource Allocation in TWDM-PON-Enabled Cell-Free mMIMO System
by Tianyu Xue, Kamran Ali Memon and Chunguo Li
Photonics 2023, 10(11), 1180; https://doi.org/10.3390/photonics10111180 - 24 Oct 2023
Viewed by 1570
Abstract
Cell-free massive multiple input multiple outputs (CF-mMIMO) is considered a promising technology for sixth-generation (6G) telecommunication systems. In the CF-mMIMO system, an extensive array of distributed small base stations (BSs) is deployed across the network, which enables us to facilitate seamless collaboration among [...] Read more.
Cell-free massive multiple input multiple outputs (CF-mMIMO) is considered a promising technology for sixth-generation (6G) telecommunication systems. In the CF-mMIMO system, an extensive array of distributed small base stations (BSs) is deployed across the network, which enables us to facilitate seamless collaboration among BSs. To achieve this goal, the baseband signal from these BSs needs to be transmitted to a central server via fronthaul networks. Due to the large number of BSs, the data that needs to be transmitted is usually huge, which brings severe requirements on fronthaul networks. Time and wavelength division multiplexed passive optical networks (TWDM-PON) can be a potential solution for CF-mMIMO fronthaul due to their large capacity and high flexibility. However, how to efficiently allocate both optical and wireless resources in a TWDM-PON-enabled CF-mMIMO system is still a problem to be addressed. This paper proposes a joint scheduling method of wavelength, antenna, radio unit (RU), and radio resource block (RB) resources in the TWDM-PON-enabled CF-mMIMO system. Furthermore, an integer linear programming (ILP) model for joint resource allocation is proposed to minimize the fronthaul resource occupancy, thereby increasing network scalability. Considering the complexity of the ILP model, two heuristic algorithms are also presented to solve this model. We compare the ILP with heuristic algorithms under different scenarios. Simulation results show that the proposed algorithm can reduce the fronthaul resource occupancy to improve the network scalability of the CF-mMIMO system. Full article
(This article belongs to the Special Issue Next-Generation Passive Optical Networks: Progress and Challenges)
Show Figures

Figure 1

26 pages, 7162 KiB  
Article
Metasurfaces and Blinking Jamming: Convergent Study, Comparative Analysis, and Challenges
by Rafael Gonçalves Licursi de Mello
Micromachines 2023, 14(7), 1405; https://doi.org/10.3390/mi14071405 - 11 Jul 2023
Cited by 4 | Viewed by 3312
Abstract
Blinking jamming is an active self-screening technique performed by at least two aircraft to tackle monopulse radars and all complexity related thereto. Nowadays, the technique can be performed with digital radiofrequency memories (DRFMs), which are cumbersome, complex, expensive, need a dedicated compartment and [...] Read more.
Blinking jamming is an active self-screening technique performed by at least two aircraft to tackle monopulse radars and all complexity related thereto. Nowadays, the technique can be performed with digital radiofrequency memories (DRFMs), which are cumbersome, complex, expensive, need a dedicated compartment and antenna, and introduce spurs in the signals. In this paper, we propose an alternative to the implementation of blinking jamming with DRFMs, namely with reconfigurable metasurfaces. By covering the aircraft parts that most contribute to the radar cross-section (RCS), reconfigurable metasurfaces can interchangeably absorb or amplify impinging waves, making the aircraft ‘blink’ from the radar perspective. To validate the feasibility, simulations accounting for realistic phenomena are conducted. It is seen that, if the aircraft RCS can be varied in a ratio of 10:1, either with absorptive or power-amplifying metasurfaces, a performance similar to that of the DRFM is achieved. Furthermore, a ratio of 2:1 is sufficient to make the radar antenna system movements exceed the angular range of the formation. We also anticipate our work to be a starting point for completely new ways of countering radars, e.g., with countless small drones performing passive or active stand-off blinking jamming. Full article
(This article belongs to the Special Issue Metasurfaces: Design, Fabrication and Applications)
Show Figures

Figure 1

16 pages, 3672 KiB  
Article
A Novel AI-Based Thermal Conductivity Predictor in the Insulation Performance Analysis of Signal-Transmissive Wall
by Xiaolei Wang, Xiaoshu Lü, Lauri Vähä-Savo and Katsuyuki Haneda
Energies 2023, 16(10), 4211; https://doi.org/10.3390/en16104211 - 19 May 2023
Viewed by 1683
Abstract
It is well known that thermal conductivity measurement is a challenging task, due to the weaknesses of the traditional methods, such as the high cost, complex data analysis, and limitations of sample size. Nowadays, the requirement of quality of life and tightening energy [...] Read more.
It is well known that thermal conductivity measurement is a challenging task, due to the weaknesses of the traditional methods, such as the high cost, complex data analysis, and limitations of sample size. Nowadays, the requirement of quality of life and tightening energy efficiency regulations of buildings promote the demand for new construction materials. However, limited by the size and inhomogeneous structure, the thermal conductivity measurement of wall samples becomes a demanding topic. Additionally, we find the thermal parameter values of the samples measured in the laboratory are different from those obtained by theoretical computation. In this paper, a novel signal-transmissive wall is designed to provide the problem solving of signal connectivity in 5G. We further propose a new thermal conductivity predictor based on the Harmony Search (HS) algorithm to estimate the thermal properties of laboratory-made wall samples. The advantages of our approach over the conventional methods are simplicity and robustness, which can be generalized to a wide range of solid samples in the laboratory measurement. Full article
Show Figures

Figure 1

20 pages, 4421 KiB  
Article
AHSS—Construction Material Used in Smart Cities
by Bożena Szczucka-Lasota, Tomasz Węgrzyn, Abílio Pereira Silva and Adam Jurek
Smart Cities 2023, 6(2), 1132-1151; https://doi.org/10.3390/smartcities6020054 - 13 Apr 2023
Cited by 3 | Viewed by 3394
Abstract
With the level of development of the smart city, there are more and more research sub-areas in which the latest material and technological solutions are used, enabling the proper management and functioning of these cities. On the one hand, the introduced materials and [...] Read more.
With the level of development of the smart city, there are more and more research sub-areas in which the latest material and technological solutions are used, enabling the proper management and functioning of these cities. On the one hand, the introduced materials and technologies are designed to facilitate the functioning of residents both in the urban space and at home; on the other hand, the implemented solutions strive to be consistent with the principles of sustainable development. As shown in this article, reports on new technical and technological solutions and their positive and negative effects are strongly emphasized in publications on the development of smart cities. The most highlighted materials research in the smart city area concerns smart materials and their characteristics and applications. A research gap in this area is in the presentation of material solutions, particularly materials intended for the load-bearing structures of vehicles (electric vehicles, flying vehicles) or infrastructure elements (buildings, shelters, etc.) designed to increase the durability of the structure while reducing its weight. This paper aims to comprehensively present the most important research areas related to the functioning of smart cities in light of previous research, with particular emphasis on new material solutions used for thin-walled load-bearing structures in smart cities made of AHSS (advanced high-strength steel). These solutions are very essential for smart cities because their use allows for the installation of additional devices, sensors, transmitters, antennas, etc., without increasing the total weight of the structure; they reduce the number of raw materials used for production (lighter and durable thin structures), ensure lower energy consumption (e.g., lighter vehicles), and also increase the passive safety of systems or increase their lifting capacity (e.g., the possibility of transporting more people using transports at the same time; the possibility of designing and arranging, e.g., green gardens on buildings; etc.). AHSS-welded joints are usually characterized by too-low strength in the base material or a tendency to crack. Thus, the research problem is producing a light and durable AHSS structure using welding processes. The research presented in this article concerns the possibility of producing welded joints using the Metal Active Gas (MAG) process. The test methods include the assessment of the quality of joints, such as through visual examination (VT); according to the requirements of PN-EN ISO 17638; magnetic particle testing (MT); according to PN-EN ISO 17638; and the assessment of the selected mechanical properties, such as tensile strength tests, bending tests, and fatigue strength checks. These methods enable the selection of the correct joints, without welding defects. The results have a practical implication; advanced production technology for obtaining AHSS joints can be used in the construction of the load-bearing elements of mobile vehicles or parts of point infrastructure (shelters, bus stops). The obtained joint is characterized by adequate strength for the production of the assumed structures. The originality of the manuscript is the presentation of a new, cheaper, and uncomplicated solution for obtaining an AHSS joint with good mechanical properties. The application of the presented solution also contributes to sustainable development (lower fuel and material consumption use by mobile vehicles) and may contribute to increasing the load capacity of mobile vehicles (the possibility of transporting more people). Full article
(This article belongs to the Special Issue Mobility as a Service Systems in Smart Cities)
Show Figures

Figure 1

17 pages, 5871 KiB  
Technical Note
Passive Location for 5G OFDM Radiation Sources Based on Virtual Synthetic Aperture
by Tong Zhang, Xin Zhang and Qiang Yang
Remote Sens. 2023, 15(6), 1695; https://doi.org/10.3390/rs15061695 - 21 Mar 2023
Cited by 8 | Viewed by 3568
Abstract
Passive location technology has been greatly developed because of its low power consumption, long detection distance, good concealment, and strong anti-interference ability. Orthogonal frequency-division multiplexing (OFDM) is an efficient multi-carrier transmission technology, which is an important signal form of 5G communication. Researching passive [...] Read more.
Passive location technology has been greatly developed because of its low power consumption, long detection distance, good concealment, and strong anti-interference ability. Orthogonal frequency-division multiplexing (OFDM) is an efficient multi-carrier transmission technology, which is an important signal form of 5G communication. Researching passive locations for OFDM signals can realize the location of base stations, which is of great significance in the military. Space-borne passive location technology has a contradiction between wide coverage and high precision. Therefore, a single-satellite passive location algorithm for OFDM radiation sources based on the virtual synthetic aperture is proposed. The algorithm introduces virtual synthetic aperture technology, using antenna movement to accumulate data coherently over a long time period and synthesizing a long azimuth virtual aperture. In addition, it utilizes fast Fourier transform (FFT) to extract phase information at a specific frequency based on the multi-carrier modulation technology of the OFDM signal. Pilot technology of the communication system is used for phase compensation and noise reduction. Thus, the azimuth linear frequency modulation (LFM) signal containing the location information of the radiation source is obtained. The radiation source location can be obtained by range searching and azimuth focusing. Simulation results verify the effectiveness of the algorithm and show that the algorithm can realize high-precision and wide-coverage location for the OFDM radiation sources using a single antenna, turning the hardware structure into software to reduce the cost and complexity of the system. Full article
Show Figures

Graphical abstract

17 pages, 4828 KiB  
Article
Thermal Impact of 5G Antenna Systems in Sandwich Walls
by Tao Lu, Lauri Vähä-Savo, Xiaoshu Lü and Katsuyuki Haneda
Energies 2023, 16(6), 2657; https://doi.org/10.3390/en16062657 - 12 Mar 2023
Cited by 3 | Viewed by 1988
Abstract
The 5th generation (5G) cellular networks offer high speeds, low latency, and greater capacity, but they face greater penetration loss through buildings than 4G due to their higher frequency bands. To reduce this loss in energy-efficient buildings, a passive antenna system was developed [...] Read more.
The 5th generation (5G) cellular networks offer high speeds, low latency, and greater capacity, but they face greater penetration loss through buildings than 4G due to their higher frequency bands. To reduce this loss in energy-efficient buildings, a passive antenna system was developed and integrated into sandwich walls. However, the thermal effects of this system, which includes highly thermally conductive metals, require further study. In this research, three-dimensional heat transfer simulations were performed using COMSOL Multiphysics to determine the thermal transmittances (U-values) of 5G antenna walls. The results revealed that, using stainless steel as the connector material (current design), the U-value rose from 0.1496 (for the wall without antenna) to 0.156 W/m2K, leading to an additional heating loss per year of only 0.545 KWh/m2 in Helsinki. In contrast, with the previous design that used copper as the connector material, the U-value increased dramatically to 0.3 W/m2K, exceeding the National Building Code of Finland’s limit of 0.17 W/m2K and causing 12.8 KWh/m2 additional heat loss (23.5 times more than the current design). The current design significantly reduces thermal bridging effects. Additionally, three analytical methods were used to calculate antenna wall U-values: parallel paths, isothermal planes, and ISO 6946 combined. The isothermal planes method was found to be more accurate and reliable. The study also found that a wall unit cell with a single developed 5G antenna and a wall consisting of nine such cells arranged in a 3 × 3 grid pattern had the same U-values. Furthermore, areas affected by thermal bridging were typically smaller than the dimensions of a wall unit cell (150 mm × 150 mm). Full article
Show Figures

Figure 1

14 pages, 2011 KiB  
Tutorial
IRS, LIS, and Radio Stripes-Aided Wireless Communications: A Tutorial
by Ali Gashtasbi, Mário Marques da Silva and Rui Dinis
Appl. Sci. 2022, 12(24), 12696; https://doi.org/10.3390/app122412696 - 11 Dec 2022
Cited by 13 | Viewed by 3336
Abstract
This is a tutorial on current techniques that use a huge number of antennas in intelligent reflecting surfaces (IRS), large intelligent surfaces (LIS), and radio stripes (RS), highlighting the similarities, differences, advantages, and drawbacks. A comparison between IRS, LIS, and RS is performed [...] Read more.
This is a tutorial on current techniques that use a huge number of antennas in intelligent reflecting surfaces (IRS), large intelligent surfaces (LIS), and radio stripes (RS), highlighting the similarities, differences, advantages, and drawbacks. A comparison between IRS, LIS, and RS is performed in terms of the implementation and capabilities, in the form of a tutorial. We begin by introducing the IRS, LIS, and RS as promising technologies for 6 G wireless technology. Then, we will look at how the three notions are applied in wireless networks. We discuss various performance indicators and methodologies for characterizing and improving the performance of IRS, LIS, and RS-assisted wireless networks. We cover rate maximization, power consumption reduction, and cost implementation concerns in order to take advantage of the performance increase. Furthermore, we extend the discussion to some cases of emerging use. In the description of the three concepts, IRS-assisted communication was introduced as a passive system, considering the capacity/data rate, with power optimization being an advantage, while channel estimation was a challenge. LIS is an active component that goes beyond massive MIMO; a recent study found that channel estimation issues in IRS had improved. In comparison to IRS, capacity enhancement is a highlight, and user interference showed a trend of decreasing. However, power consumption due to utilizing power amplifiers has restrictions. The third technique for increasing coverage is cell-free massive MIMO with RS, with easy deployment in communication network structures. It is demonstrated to have suitable energy efficiency and power consumption. Finally, for future work, we further propose expanding the conversation to include some cases of new uses, such as complexity reduction; design and simulation with LDPC code could be a solution to decreasing complexity. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 6275 KiB  
Article
RFID Sensors for Monitoring Glazing Units Integrating Photovoltaic Modules
by Mariusz Węglarski, Piotr Jankowski-Mihułowicz, Kazimierz Kamuda, Patryk Pyt, Grzegorz Pitera, Wojciech Lichoń, Mateusz Chamera and Cezary Ciejka
Energies 2022, 15(4), 1401; https://doi.org/10.3390/en15041401 - 15 Feb 2022
Cited by 4 | Viewed by 2620
Abstract
The paper focuses on the synthesis of semi-passive RFID transponders-sensors that are intended to integrate with active glazing units with built-in photovoltaic cells. The main purpose of the designed construction of the UHF RFID device is to provide diagnostic information in the monitoring [...] Read more.
The paper focuses on the synthesis of semi-passive RFID transponders-sensors that are intended to integrate with active glazing units with built-in photovoltaic cells. The main purpose of the designed construction of the UHF RFID device is to provide diagnostic information in the monitoring system of a photovoltaic micro-power plant. Furthermore, the RFID sensor is aimed at being implemented at various stages of the product life cycle: production, distribution, storage, installation, common operation, service/maintenance and disposal. In the presented research work, particular attention is paid to several aspects of the RFID sensor synthesis: use of the energy, generated periodically in the PV cells, to power the monitoring device that has to act permanently; specification of the PV module parameters that have to be monitored in the diagnostic process; implementation of data acquisition and energy management models in an electrical circuit; wireless data transfer to the master unit (monitoring host), even in the absence of power supply (e.g., module damage, blackout), using a standardized communication protocol IEC 18000-63 used in the RFID technology; and the design of the antenna system taking into consideration limitations of electronic technology and the material properties of substrates and glasses used in PV modules and RFID sensors. Based on the results of the investigations, the modular structure of the RFID sensor demonstrator is proposed. Moreover, several diagnostic scenarios are analyzed in detail. On the basis of the provided considerations, it is shown that in order to find a malfunctioning component, it is enough to compare the voltages on the photovoltaic modules that are in the close vicinity. Full article
Show Figures

Figure 1

27 pages, 12582 KiB  
Article
Wearable Circular Polarized Antennas for Health Care, 5G, Energy Harvesting, and IoT Systems
by Albert Sabban
Electronics 2022, 11(3), 427; https://doi.org/10.3390/electronics11030427 - 30 Jan 2022
Cited by 37 | Viewed by 6238
Abstract
Novel circular polarized sensors and antennas for biomedical systems, energy harvesting, Internet of Things (IoT), and 5G devices are presented in this article. The major challenge in development of healthcare, IoT, 5G and communication systems is the evaluation of circular polarized active and [...] Read more.
Novel circular polarized sensors and antennas for biomedical systems, energy harvesting, Internet of Things (IoT), and 5G devices are presented in this article. The major challenge in development of healthcare, IoT, 5G and communication systems is the evaluation of circular polarized active and passive wearable antennas. Moreover, a low-cost wearable sensor may be evaluated by printing the microstrip antenna with the sensor feed network and the active devices on the same substrate. Design considerations, comparison between simulation and measured results of compact circular polarized efficient sensors for wireless, 5G, energy harvesting, IoT, and medical systems are highlighted in this article. The electrical performance of the novel sensors and antennas on and near the user body were evaluated by employing electromagnetic software. Efficient passive and active metamaterial circular polarized antennas and sensors were developed to improve the system electrical performance. The wearable compact circular polarized passive and active sensors are efficient, flexible, and low-cost. The frequency range of the resonators, without Circular Split-Ring Resonators CSRRs, is higher by 4% to 10% than the resonators with CSRRs. The gain of the circular polarized antennas without CSRRs is lower by 2 dB to 3 dB than the resonators with CSRRs. The gain of the new passive antennas with CSRRs is around 7 dBi to 8.4 dBi. The bandwidth of the new circular polarized antennas with CSRRs is around 10% to 20%. The sensors VSWR is better than 3:1. The passive and active efficient metamaterials antennas improve the system performance. Full article
(This article belongs to the Special Issue Wearable Antennas for 5G, IoT, and Medical Applications)
Show Figures

Figure 1

14 pages, 3038 KiB  
Article
Planning of Optical Connections in 5G Packet-Optical xHaul Access Network
by Mirosław Klinkowski and Marek Jaworski
Appl. Sci. 2022, 12(3), 1146; https://doi.org/10.3390/app12031146 - 22 Jan 2022
Cited by 6 | Viewed by 3009
Abstract
One of the main challenges in dense 5G radio access networks (RANs) is provisioning of low-cost connectivity between a large number of antennas, located at remote sites, and a central site (hub) in which baseband processing functions are performed. Packet-switched Ethernet and wavelength [...] Read more.
One of the main challenges in dense 5G radio access networks (RANs) is provisioning of low-cost connectivity between a large number of antennas, located at remote sites, and a central site (hub) in which baseband processing functions are performed. Packet-switched Ethernet and wavelength division multiplexing (WDM) are two principal transport network technologies enabling the reduction of the demand for direct optical fiber connections between the antennas and the hub. Whereas Ethernet allows for statistical multiplexing of multiple xHaul (fronthaul/midhaul/backhaul) flows and their aggregation in a high-capacity transmission link, WDM makes it possible to establish a number of such links (using different wavelengths) in a single optical fiber. Additional savings in the amount of fibers required can be achieved by means of optical add-drop multiplexers (OADMs) that allow for obtaining access to unused wavelengths by intermediate remote nodes, whenever the capacity on the WDM system is not fully utilized by the end remote node. In this work, we focus on the problem of planning optimal fiber connections, including the placement of OADMs for a set of wavelength demands at remote sites, with the aim of minimizing the amount of fibers used in a packet-optical xHaul access network carrying 5G traffic. We consider a passive WDM system in which the maximum transmission distance, estimated using an optical power-budget model, depends on the number of OADMs that are present on the transmission path. To formulate and solve the optimization problem, we make use of integer linear programming (ILP). We apply the ILP model in network analysis. In particular, by means of numerical experiments performed for two different network topologies, we study the impact of traffic load (in terms of the number of requested wavelengths) and optical multiplexer loss on the number of transmission paths that have to be established in the network. Obtained results show that the savings in fiber connections of up to 65% can be achieved in a packet-optical xHaul network if OADMs are used when compared to the scenario without OADMs. Full article
(This article belongs to the Collection New Trends in Optical Networks)
Show Figures

Figure 1

Back to TopTop