Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = 5-fluorouridine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2199 KiB  
Article
Antifungal Activity of 5-Fluorouridine Against Candida albicans and Candida parapsilosis Based on Virulence Reduction
by Ewa Lenarczyk, Damian Oleksiak and Monika Janeczko
Molecules 2025, 30(13), 2735; https://doi.org/10.3390/molecules30132735 - 25 Jun 2025
Viewed by 397
Abstract
This study aims to explore the potential repurposing of 5-fluorouridine (5-FUrd) as an antifungal agent against Candida species. We evaluated the responses of nine reference species of Candida spp. and one hundred clinical isolates of C. albicans to 5-FUrd using the broth microdilution [...] Read more.
This study aims to explore the potential repurposing of 5-fluorouridine (5-FUrd) as an antifungal agent against Candida species. We evaluated the responses of nine reference species of Candida spp. and one hundred clinical isolates of C. albicans to 5-FUrd using the broth microdilution method. Additionally, we assessed the effect of 5-FUrd on selected virulence factors, including biofilm formation, cell adhesion, dimorphism, hydrolase secretion, and hemolytic activity, in the two most sensitive Candida species, C. albicans and C. parapsilosis. The frequency of spontaneous mutations occurring in these two Candida species under the influence of 5-FUrd was also determined. Finally, we examined the cytotoxic properties of 5-FUrd against human erythrocytes and zebrafish embryos. Our results demonstrated that 5-FUrd exhibits antifungal activity in vitro, inhibits biofilm formation, suppresses hyphal growth, reduces cell surface hydrophobicity, eradicates mature biofilms, and decreases the secretion of extracellular proteinases and hemolytic activity in C. albicans and C. parapsilosis cells. The overall mutation frequency under the selective pressure of 5-FUrd ranged from 2 × 10−5 to 1.2 × 10−4 per species. Notably, the exposure to 5-FUrd did not induce significant toxic effects on human erythrocytes or zebrafish embryos. This study highlights the potential clinical application of 5-FUrd as an anti-Candida agent. Full article
Show Figures

Figure 1

10 pages, 949 KiB  
Article
A Rapid Approach for Identifying Cell Lines Lacking Functional Cytidine Deaminase
by Anna Ligasová, Markéta Kociánová and Karel Koberna
Int. J. Mol. Sci. 2025, 26(7), 3344; https://doi.org/10.3390/ijms26073344 - 3 Apr 2025
Viewed by 427
Abstract
CDD plays a pivotal role within the pyrimidine salvage pathway. In this study, a novel, rapid method for the identification of cell lines lacking functional cytidine deaminase was developed. This innovative method utilizes immunocytochemical detection of the product of 5-fluorocytidine deamination, 5-fluorouridine in [...] Read more.
CDD plays a pivotal role within the pyrimidine salvage pathway. In this study, a novel, rapid method for the identification of cell lines lacking functional cytidine deaminase was developed. This innovative method utilizes immunocytochemical detection of the product of 5-fluorocytidine deamination, 5-fluorouridine in cellular RNA, enabling the identification of these cells within two hours. The approach employs an anti-bromodeoxyuridine antibody that also specifically binds to 5-fluorouridine and its subsequent detection by a fluorescently labeled antibody. Our results also revealed a strong correlation between the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio and cytidine deaminase content. On the other hand, no correlation was observed between the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio and deoxycytidine monophosphate deaminase content. Similarly, no correlation was observed between this ratio and equilibrative nucleoside transporters 1 or 2. Finally, concentrative nucleoside transporters 1, 2, or 3 also do not correlate with the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio. Full article
(This article belongs to the Special Issue Recent Research on Cell and Molecular Biology)
Show Figures

Figure 1

11 pages, 2769 KiB  
Article
Design, Synthesis, and Evaluation of Doxifluridine Derivatives as Nitroreductase-Responsive Anticancer Prodrugs
by Xinmeng Zhang, Taimin Dong, Xu Li, Changjie Xu, Fanghui Chen, Shiben Wang and Xuekun Wang
Molecules 2024, 29(21), 5077; https://doi.org/10.3390/molecules29215077 - 27 Oct 2024
Viewed by 1342
Abstract
Antimetabolite antitumor drugs interfere with nucleic acid and DNA synthesis, causing cancer cell death. However, they also affect rapidly dividing normal cells and cause serious side effects. Doxifluridine (5′-deoxy-5-fluorouridine [5′-DFUR]), a 5-fluorouracil (5-FU) prodrug converted to 5-FU by thymidine phosphorylase (TP), exerts antitumor [...] Read more.
Antimetabolite antitumor drugs interfere with nucleic acid and DNA synthesis, causing cancer cell death. However, they also affect rapidly dividing normal cells and cause serious side effects. Doxifluridine (5′-deoxy-5-fluorouridine [5′-DFUR]), a 5-fluorouracil (5-FU) prodrug converted to 5-FU by thymidine phosphorylase (TP), exerts antitumor effects. Since TP is distributed in tumor and normal tissues, 5′-DFUR features side effects. Here we designed a series of novel 5′-DFUR derivatives based on high nitroreductase (NTR) levels in the hypoxic microenvironment of tumor tissues by introducing nitro-containing moieties into the 5′-DFUR structure. These derivatives exert their antitumor effects by producing 5-FU under the dual action of TP and NTR in the tumor microenvironment. The derivatives were synthesized and their stability, release, and cytotoxicity evaluated in vitro and antitumor activity evaluated in vivo. Compound 2c, featuring nitrofuran fragments, was stable in phosphate-buffered saline and plasma at different pH values and reduced rapidly in the presence of NTR. The in vitro cytotoxicity evaluation indicated that compound 2c showed excellent selectivity in the MCF-7 and HT29 cell lines. Moreover, it exhibited antitumor effects comparable to those of 5′-DFUR in vivo without significant toxic side effects. These results suggest that compound 2c is a promising antitumor prodrug. Full article
Show Figures

Figure 1

18 pages, 2404 KiB  
Article
Determination of Capecitabine and Its Metabolites in Plasma of Egyptian Colorectal Cancer Patients
by Sara Shamseldin, Liza Samir Botros, Salem Eid Salem, Sahar Abdel-Maksoud, Mohamed Zakaria Gad and Rasha Sayed Hanafi
Analytica 2023, 4(4), 397-414; https://doi.org/10.3390/analytica4040029 - 1 Oct 2023
Viewed by 2908
Abstract
The incidence of colorectal cancer (CRC) is increasing worldwide. It has variable signs and symptoms starting from changes in bowel habit to nausea and vomiting. Chemotherapeutic agents are often prescribed in CRC such as Capecitabine (CCB) and 5-Fluorouracil (FU). CCB is the prodrug [...] Read more.
The incidence of colorectal cancer (CRC) is increasing worldwide. It has variable signs and symptoms starting from changes in bowel habit to nausea and vomiting. Chemotherapeutic agents are often prescribed in CRC such as Capecitabine (CCB) and 5-Fluorouracil (FU). CCB is the prodrug of FU in oral dosage form, which makes it preferable by physicians, since no hospitalization is needed for drug administration. CCB is activated to FU in a three-step reaction producing 5′-deoxy-5-fluorocytidine (DFCR) (by carboxylesterase (CES) enzyme), then 5′-deoxy-5-fluorouridine (DFUR) (by cytidine deaminase (CDD) enzyme) and finally FU (by thymidine phosphorylase (TP) enzyme), the active form, which is later deactivated to give 5,6-dihydro-5-fluorouracil (DHFU). Different patients exhibit variable drug responses and adverse in response to CCB therapy, despite being treated by the same dose, which could be attributed to the occurrence of different possible enzyme single nucleotide polymorphisms (SNPs) along the activation and deactivation pathways of CCB. The most commonly occurring toxicities in CCB therapy are hand-foot syndrome and diarrhea. This study aims at developing and validating a new method for the simultaneous determination of CCB and its metabolites by HPLC-UV, followed by a correlation study with the toxicities occurring during therapy, where predictions of toxicity could be based on metabolites’ levels instead of the tedious process of genotyping. A new superior analytical method was optimized by a quality-by-design approach using DryLab® 2000 software achieving a baseline resolution of the six analytes within the least possible gradient time of 10 min. The method also showed linearity (in a range from 1 to 500 μg/mL), accuracy, precision and robustness upon validation: The LOD was found to be 3.0 ng/mL for DHFU and CCB, and 0.3 ng/mL for DFUR, DFCR and FU. The LOQ was found to be 10.0 ng/mL for DHFU and CCB, and 1.0 ng/mL for DFUR, DFCR and FU. The clinical results showed a positive correlation between the concentration of DFCR and mucositis and between the concentration of DFUR and hand-foot syndrome, confirming that this technique could be used for predicting such toxicities. Full article
Show Figures

Figure 1

19 pages, 5480 KiB  
Article
Hepatocyte Growth Factor Enhances Antineoplastic Effect of 5-Fluorouracil by Increasing UPP1 Expression in HepG2 Cells
by Manabu Okumura, Tomomi Iwakiri, Naoki Yoshikawa, Takao Nagatomo, Takanori Ayabe, Isao Tsuneyoshi and Ryuji Ikeda
Int. J. Mol. Sci. 2022, 23(16), 9108; https://doi.org/10.3390/ijms23169108 - 14 Aug 2022
Cited by 5 | Viewed by 2549
Abstract
Aberrant activation of hepatocyte growth factor (HGF) and its receptor c-Met axis promotes tumor growth. Therefore, many clinical trials have been conducted. A phase 3 trial investigating a monoclonal antibody targeting HGF in combination with fluoropyrimidine-based chemotherapy had to be terminated prematurely; however, [...] Read more.
Aberrant activation of hepatocyte growth factor (HGF) and its receptor c-Met axis promotes tumor growth. Therefore, many clinical trials have been conducted. A phase 3 trial investigating a monoclonal antibody targeting HGF in combination with fluoropyrimidine-based chemotherapy had to be terminated prematurely; however, the reason behind the failure remains poorly defined. In this study, we investigated the influence of HGF on the antineoplastic effects of 5-fluorouracil (5-FU), a fluoropyrimidine, in HepG2 cells. HGF suppressed the proliferative activity of cells concomitantly treated with 5-FU more robustly as compared to that of cells treated with 5-FU alone, and markedly increased the expression of uridine phosphorylase 1 (UPP1). Intracellular concentration of 5-fluorouridine, an initial anabolite of 5-FU catalyzed by UPP1, was increased by HGF. Interestingly, erlotinib enhanced HGF-induced increase in UPP1 mRNA; in contrast, gefitinib suppressed it. Furthermore, erlotinib suppressed HGF-increased phosphorylation of the epidermal growth factor receptor at the Tyr1173 site involved in downregulation of extracellular signal-regulated kinase (Erk) activation, and enhanced the HGF-increased phosphorylation of Erk. Collectively, these findings suggest that inhibition of the HGF/c-Met axis diminishes the effects of fluoropyrimidine through downregulation of UPP1 expression. Therefore, extreme caution must be exercised in terms of patient safety while offering chemotherapy comprising fluoropyrimidine concomitantly with inhibitors of the HGF/c-Met axis. Full article
Show Figures

Graphical abstract

11 pages, 4586 KiB  
Article
Molecular Basis of NDT-Mediated Activation of Nucleoside-Based Prodrugs and Application in Suicide Gene Therapy
by Javier Acosta, Elena Pérez, Pedro A. Sánchez-Murcia, Cristina Fillat and Jesús Fernández-Lucas
Biomolecules 2021, 11(1), 120; https://doi.org/10.3390/biom11010120 - 18 Jan 2021
Cited by 10 | Viewed by 3951
Abstract
Herein we report the first proof for the application of type II 2′-deoxyribosyltransferase from Lactobacillus delbrueckii (LdNDT) in suicide gene therapy for cancer treatment. To this end, we first confirm the hydrolytic ability of LdNDT over the nucleoside-based prodrugs 2′-deoxy-5-fluorouridine [...] Read more.
Herein we report the first proof for the application of type II 2′-deoxyribosyltransferase from Lactobacillus delbrueckii (LdNDT) in suicide gene therapy for cancer treatment. To this end, we first confirm the hydrolytic ability of LdNDT over the nucleoside-based prodrugs 2′-deoxy-5-fluorouridine (dFUrd), 2′-deoxy-2-fluoroadenosine (dFAdo), and 2′-deoxy-6-methylpurine riboside (d6MetPRib). Such activity was significantly increased (up to 30-fold) in the presence of an acceptor nucleobase. To shed light on the strong nucleobase dependence for enzymatic activity, different molecular dynamics simulations were carried out. Finally, as a proof of concept, we tested the LdNDT/dFAdo system in human cervical cancer (HeLa) cells. Interestingly, LdNDT/dFAdo showed a pronounced reduction in cellular viability with inhibitory concentrations in the low micromolar range. These results open up future opportunities for the clinical implementation of nucleoside 2′-deoxyribosyltransferases (NDTs) in cancer treatment. Full article
Show Figures

Figure 1

13 pages, 3057 KiB  
Article
Optimized 5-Fluorouridine Prodrug for Co-Loading with Doxorubicin in Clinically Relevant Liposomes
by Debra Wu, Douglas Vogus, Vinu Krishnan, Marta Broto, Anusha Pusuluri, Zongmin Zhao, Neha Kapate and Samir Mitragotri
Pharmaceutics 2021, 13(1), 107; https://doi.org/10.3390/pharmaceutics13010107 - 15 Jan 2021
Cited by 4 | Viewed by 3760
Abstract
Liposome-based drug delivery systems have allowed for better drug tolerability and longer circulation times but are often optimized for a single agent due to the inherent difficulty of co-encapsulating two drugs with differing chemical profiles. Here, we design and test a prodrug based [...] Read more.
Liposome-based drug delivery systems have allowed for better drug tolerability and longer circulation times but are often optimized for a single agent due to the inherent difficulty of co-encapsulating two drugs with differing chemical profiles. Here, we design and test a prodrug based on a ribosylated nucleoside form of 5-fluorouracil, 5-fluorouridine (5FUR), with the final purpose of co-encapsulation with doxorubicin (DOX) in liposomes. To improve the loading of 5FUR, we developed two 5FUR prodrugs that involved the conjugation of either one or three moieties of tryptophan (W) known respectively as, 5FUR−W and 5FUR−W3. 5FUR−W demonstrated greater chemical stability than 5FUR−W3 and allowed for improved loading with fewer possible byproducts from tryptophan hydrolysis. Varied drug ratios of 5FUR−W: DOX were encapsulated for in vivo testing in the highly aggressive 4T1 murine breast cancer model. A liposomal molar ratio of 2.5 5FUR−W: DOX achieved a 62.6% reduction in tumor size compared to the untreated control group and a 33% reduction compared to clinical doxorubicin liposomes in a proof-of-concept study to demonstrate the viability of the co-encapsulated liposomes. We believe that the new prodrug 5FUR−W demonstrates a prodrug design with clinical translatability by reducing the number of byproducts produced by the hydrolysis of tryptophan, while also allowing for loading flexibility. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

13 pages, 8467 KiB  
Article
Inhibition of Tyrosyl-DNA Phosphodiesterase 1 by Lipophilic Pyrimidine Nucleosides
by Alexandra L. Zakharenko, Mikhail S. Drenichev, Nadezhda S. Dyrkheeva, Georgy A. Ivanov, Vladimir E. Oslovsky, Ekaterina S. Ilina, Irina A. Chernyshova, Olga I. Lavrik and Sergey N. Mikhailov
Molecules 2020, 25(16), 3694; https://doi.org/10.3390/molecules25163694 - 13 Aug 2020
Cited by 10 | Viewed by 2738
Abstract
Inhibition of DNA repair enzymes tyrosyl-DNA phosphodiesterase 1 and poly(ADP-ribose)polymerases 1 and 2 in the presence of pyrimidine nucleoside derivatives was studied here. New effective Tdp1 inhibitors were found in a series of nucleoside derivatives possessing 2′,3′,5′-tri-O-benzoyl-d-ribofuranose and 5-substituted [...] Read more.
Inhibition of DNA repair enzymes tyrosyl-DNA phosphodiesterase 1 and poly(ADP-ribose)polymerases 1 and 2 in the presence of pyrimidine nucleoside derivatives was studied here. New effective Tdp1 inhibitors were found in a series of nucleoside derivatives possessing 2′,3′,5′-tri-O-benzoyl-d-ribofuranose and 5-substituted uracil moieties and have half-maximal inhibitory concentrations (IC50) in the lower micromolar and submicromolar range. 2′,3′,5′-Tri-O-benzoyl-5-iodouridine manifested the strongest inhibitory effect on Tdp1 (IC50 = 0.6 μM). A decrease in the number of benzoic acid residues led to a marked decline in the inhibitory activity, and pyrimidine nucleosides lacking lipophilic groups (uridine, 5-fluorouridine, 5-chlorouridine, 5-bromouridine, 5-iodouridine, and ribothymidine) did not cause noticeable inhibition of Tdp1 (IC50 > 50 μM). No PARP1/2 inhibitors were found among the studied compounds (residual activity in the presence of 1 mM substances was 50–100%). Several O-benzoylated uridine and cytidine derivatives strengthened the action of topotecan on HeLa cervical cancer cells. Full article
Show Figures

Graphical abstract

23 pages, 3354 KiB  
Article
Muraymycin Nucleoside Antibiotics: Structure-Activity Relationship for Variations in the Nucleoside Unit
by Anna Heib, Giuliana Niro, Stefanie C. Weck, Stefan Koppermann and Christian Ducho
Molecules 2020, 25(1), 22; https://doi.org/10.3390/molecules25010022 - 19 Dec 2019
Cited by 17 | Viewed by 4496
Abstract
Muraymycins are a subclass of naturally occurring nucleoside antibiotics with promising antibacterial activity. They inhibit the bacterial enzyme translocase I (MraY), a clinically yet unexploited target mediating an essential intracellular step of bacterial peptidoglycan biosynthesis. Several structurally simplified muraymycin analogues have already been [...] Read more.
Muraymycins are a subclass of naturally occurring nucleoside antibiotics with promising antibacterial activity. They inhibit the bacterial enzyme translocase I (MraY), a clinically yet unexploited target mediating an essential intracellular step of bacterial peptidoglycan biosynthesis. Several structurally simplified muraymycin analogues have already been synthesized for structure–activity relationship (SAR) studies. We now report on novel derivatives with unprecedented variations in the nucleoside unit. For the synthesis of these new muraymycin analogues, we employed a bipartite approach facilitating the introduction of different nucleosyl amino acid motifs. This also included thymidine- and 5-fluorouridine-derived nucleoside core structures. Using an in vitro assay for MraY activity, it was found that the introduction of substituents in the 5-position of the pyrimidine nucleobase led to a significant loss of inhibitory activity towards MraY. The loss of nucleobase aromaticity (by reduction of the uracil C5-C6 double bond) resulted in a ca. tenfold decrease in inhibitory potency. In contrast, removal of the 2′-hydroxy group furnished retained activity, thus demonstrating that modifications of the ribose moiety might be well-tolerated. Overall, these new SAR insights will guide the future design of novel muraymycin analogues for their potential development towards antibacterial drug candidates. Full article
Show Figures

Graphical abstract

15 pages, 1958 KiB  
Article
(F)uridylylated Peptides Linked to VPg1 of Foot-and- Mouth Disease Virus (FMDV): Design, Synthesis and X-Ray Crystallography of the Complexes with FMDV RNA-Dependent RNA Polymerase
by Sonia de Castro, Cristina Ferrer-Orta, Alberto Mills, Gloria Fernández-Cureses, Federico Gago, Nuria Verdaguer and María-José Camarasa
Molecules 2019, 24(13), 2360; https://doi.org/10.3390/molecules24132360 - 26 Jun 2019
Cited by 2 | Viewed by 4789
Abstract
Foot-and-mouth disease virus (FMDV) is an RNA virus belonging to the Picornaviridae family that contains three small viral proteins (VPgs), named VPg1, VPg2 and VPg3, linked to the 5′-end of the viral genome. These VPg proteins act as primers for RNA replication, which [...] Read more.
Foot-and-mouth disease virus (FMDV) is an RNA virus belonging to the Picornaviridae family that contains three small viral proteins (VPgs), named VPg1, VPg2 and VPg3, linked to the 5′-end of the viral genome. These VPg proteins act as primers for RNA replication, which is initiated by the consecutive binding of two UMP molecules to the hydroxyl group of Tyr3 in VPg. This process, termed uridylylation, is catalyzed by the viral RNA-dependent RNA polymerase named 3Dpol. 5-Fluorouridine triphosphate (FUTP) is a potent competitive inhibitor of VPg uridylylation. Peptide analysis showed FUMP covalently linked to the Tyr3 of VPg. This fluorouridylylation prevents further incorporation of the second UMP residue. The molecular basis of how the incorporated FUMP blocks the incorporation of the second UMP is still unknown. To investigate the mechanism of inhibition of VPg uridylylation by FUMP, we have prepared a simplified 15-mer model of VPg1 containing FUMP and studied its x-ray crystal structure in complex with 3Dpol. Unfortunately, the fluorouridylylated VPg1 was disordered and not visible in the electron density maps; however, the structure of 3Dpol in the presence of VPg1-FUMP showed an 8 Å movement of the β9-α11 loop of the polymerase towards the active site cavity relative to the complex of 3Dpol with VPg1-UMP. The conformational rearrangement of this loop preceding the 3Dpol B motif seems to block the access of the template nucleotide to the catalytic cavity. This result may be useful in the design of new antivirals against not only FMDV but also other picornaviruses, since all members of this family require the uridylylation of their VPg proteins to initiate the viral RNA synthesis. Full article
Show Figures

Graphical abstract

17 pages, 3363 KiB  
Article
Enhanced Anticancer Activity of 5’-DFUR-PCL-MPEG Polymeric Prodrug Micelles Encapsulating Chemotherapeutic Drugs
by Alicia J. Sawdon, Jun Zhang, Xutu Wang and Ching-An Peng
Nanomaterials 2018, 8(12), 1041; https://doi.org/10.3390/nano8121041 - 13 Dec 2018
Cited by 10 | Viewed by 3767
Abstract
The compound 5’-deoxy-5-fluorouridine (5’-DFUR) is a prodrug of the anti-tumor drug 5-fluorouracil (5-FU). Thymidine phosphorylase (TP) is an enzyme that can convert 5’-DFUR to its active form 5-FU and the expression of TP is upregulated in various cancer cells. In this study, 5’-DFUR [...] Read more.
The compound 5’-deoxy-5-fluorouridine (5’-DFUR) is a prodrug of the anti-tumor drug 5-fluorouracil (5-FU). Thymidine phosphorylase (TP) is an enzyme that can convert 5’-DFUR to its active form 5-FU and the expression of TP is upregulated in various cancer cells. In this study, 5’-DFUR associated with amphiphilic copolymer poly(ε-caprolactone)-methoxy poly(ethylene glycol) (5’-DFUR-PCL-MPEG) was synthesized, characterized, and self-assembled into functional polymeric micelles. To demonstrate that the prodrug 5’-DFUR could convert into cytotoxic 5-fluorouracil (5-FU) by endogenous TP, HT-29 colorectal cancer cells were treated with 5’-DFUR-PCL-MPEG polymeric micelles for various time periods. Chemotherapeutic drugs doxorubicin (DOX) and 7-ethyl-10-hydroxycamptothecin (SN-38) were also encapsulated separately into 5’-DFUR-PCL-MPEG polymeric micelles to create a dual drug-loaded system. HT-29 cells were treated with DOX or SN-38 encapsulated 5’-DFUR-PCL-MPEG polymeric micelles to examine the efficacy of dual drug-loaded micelles. As a result, HT-29 cells treated with 5’-DFUR-PCL-MPEG polymeric micelles showed up to 40% cell death rate after a 72-h treatment. In contrast, HT-29 cells challenged with DOX or SN-38 encapsulated 5’-DFUR-incorporated polymeric micelles showed 36% and 31% in cell viability after a 72-h treatment, respectively. Full article
(This article belongs to the Special Issue Polymeric Micelles and Their Application in Nanomedicine)
Show Figures

Figure 1

13 pages, 3620 KiB  
Article
Identification of a 2′-O-Methyluridine Nucleoside Hydrolase Using the Metagenomic Libraries
by Agota Aučynaitė, Rasa Rutkienė, Daiva Tauraitė, Rolandas Meškys and Jaunius Urbonavičius
Molecules 2018, 23(11), 2904; https://doi.org/10.3390/molecules23112904 - 7 Nov 2018
Cited by 6 | Viewed by 4259
Abstract
Ribose methylation is among the most ubiquitous modifications found in RNA. 2′-O-methyluridine is found in rRNA, snRNA, snoRNA and tRNA of Archaea, Bacteria, and Eukaryota. Moreover, 2′-O-methylribonucleosides are promising starting materials for the production of nucleic [...] Read more.
Ribose methylation is among the most ubiquitous modifications found in RNA. 2′-O-methyluridine is found in rRNA, snRNA, snoRNA and tRNA of Archaea, Bacteria, and Eukaryota. Moreover, 2′-O-methylribonucleosides are promising starting materials for the production of nucleic acid-based drugs. Despite the countless possibilities of practical use for the metabolic enzymes associated with methylated nucleosides, there are very few reports regarding the metabolic fate and enzymes involved in the metabolism of 2′-O-alkyl nucleosides. The presented work focuses on the cellular degradation of 2′-O-methyluridine. A novel enzyme was found using a screening strategy that employs Escherichia coli uracil auxotroph and the metagenomic libraries. A 2′-O-methyluridine hydrolase (RK9NH) has been identified together with an aldolase (RK9DPA)—forming a part of a probable gene cluster that is involved in the degradation of 2′-O-methylated nucleosides. The RK9NH is functional in E. coli uracil auxotroph and in vitro. The RK9NH nucleoside hydrolase could be engineered to enzymatically produce 2′-O-methylated nucleosides that are of great demand as raw materials for production of nucleic acid-based drugs. Moreover, RK9NH nucleoside hydrolase converts 5-fluorouridine, 5-fluoro-2′-deoxyuridine and 5-fluoro-2′-O-methyluridine into 5-fluorouracil, which suggests it could be employed in cancer therapy. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

21 pages, 2227 KiB  
Article
Synthesis of Disaccharide Nucleosides Utilizing the Temporary Protection of the 2′,3′-cis-Diol of Ribonucleosides by a Boronic Ester
by Hidehisa Someya, Taiki Itoh and Shin Aoki
Molecules 2017, 22(10), 1650; https://doi.org/10.3390/molecules22101650 - 1 Oct 2017
Cited by 10 | Viewed by 8340
Abstract
Disaccharide nucleosides are an important class of natural compounds that have a variety of biological activities. In this study, we report on the synthesis of disaccharide nucleosides utilizing the temporary protection of the 2′,3′-cis-diol of ribonucleosides, such as adenosine, guanosine, uridine, [...] Read more.
Disaccharide nucleosides are an important class of natural compounds that have a variety of biological activities. In this study, we report on the synthesis of disaccharide nucleosides utilizing the temporary protection of the 2′,3′-cis-diol of ribonucleosides, such as adenosine, guanosine, uridine, 5-metyluridine, 5-fluorouridine and cytidine, by a boronic ester. The temporary protection of the above ribonucleosides permits the regioselective O-glycosylation of the 5’-hydroxyl group with thioglycosides using a p-toluenesulfenyl chloride (p-TolSCl)/silver triflate (AgOTf) promoter system to afford the corresponding disaccharide nucleosides in fairly good chemical yields. The formation of a boronic ester prepared from uridine and 4-(trifluoromethyl)phenylboronic acid was examined by 1H, 11B and 19F NMR spectroscopy. Full article
(This article belongs to the Special Issue Nucleoside and Nucleotide Analogues)
Show Figures

Figure 1

10 pages, 5043 KiB  
Article
In Silico Discovery of Potential Uridine-Cytidine Kinase 2 Inhibitors from the Rhizome of Alpinia mutica
by Ibrahim Malami, Ahmad Bustamam Abdul, Rasedee Abdullah, Nur Kartinee Bt Kassim, Peter Waziri and Imaobong Christopher Etti
Molecules 2016, 21(4), 417; https://doi.org/10.3390/molecules21040417 - 8 Apr 2016
Cited by 12 | Viewed by 6893
Abstract
Uridine-cytidine kinase 2 is implicated in uncontrolled proliferation of abnormal cells and it is a hallmark of cancer, therefore, there is need for effective inhibitors of this key enzyme. In this study, we employed the used of in silico studies to find effective [...] Read more.
Uridine-cytidine kinase 2 is implicated in uncontrolled proliferation of abnormal cells and it is a hallmark of cancer, therefore, there is need for effective inhibitors of this key enzyme. In this study, we employed the used of in silico studies to find effective UCK2 inhibitors of natural origin using bioinformatics tools. An in vitro kinase assay was established by measuring the amount of ADP production in the presence of ATP and 5-fluorouridine as a substrate. Molecular docking studies revealed an interesting ligand interaction with the UCK2 protein for both flavokawain B and alpinetin. Both compounds were found to reduce ADP production, possibly by inhibiting UCK2 activity in vitro. In conclusion, we have identified flavokawain B and alpinetin as potential natural UCK2 inhibitors as determined by their interactions with UCK2 protein using in silico molecular docking studies. This can provide information to identify lead candidates for further drug design and development. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

20 pages, 462 KiB  
Article
Surface-enhanced Raman Spectral Measurements of 5-Fluorouracil in Saliva
by Stuart Farquharson, Alan Gift, Chetan Shende, Frank Inscore, Beth Ordway, Carl Farquharson and John Murren
Molecules 2008, 13(10), 2608-2627; https://doi.org/10.3390/molecules13102608 - 22 Oct 2008
Cited by 75 | Viewed by 17862
Abstract
The ability of surface-enhanced Raman spectroscopy (SERS) to measure 5-fluorouracil (5-FU) in saliva is presented. The approach is based on the capacity of Raman spectroscopy to provide a unique spectral signature for virtually every chemical, and the ability of SERS to provide μg/mL [...] Read more.
The ability of surface-enhanced Raman spectroscopy (SERS) to measure 5-fluorouracil (5-FU) in saliva is presented. The approach is based on the capacity of Raman spectroscopy to provide a unique spectral signature for virtually every chemical, and the ability of SERS to provide μg/mL sensitivity. A simple sampling method, that employed 1-mm glass capillaries filled with silver-doped sol-gels, was developed to isolate 5-FU from potential interfering chemical components of saliva and simultaneously provide SERSactivity. The method involved treating a 1 mL saliva sample with 1 mL of acetic acid, drawing 10 μL of sample into a SERS-active capillary by syringe, and then measuring the SER spectrum. Quality SER spectra were obtained for samples containing as little as 2 μg of 5-FU in 1 mL saliva. The entire process, the acid pretreatment, extraction and spectral measurement, took less than 5 minutes. The SERS of 5-fluorouridine and 5-fluoro-2’-deoxyuridine, two major metabolites of 5-FU, were also measured and shown to have unique spectral peaks. These measurements suggest that disposable SERS-active capillaries could be used to measure 5-FU and metabolite concentrations in chemotherapy patient saliva, thereby providing metabolic data that would allow regulating dosage. Tentative vibrational mode assignments for 5-FU and its metabolites are also given. Full article
(This article belongs to the Special Issue 5-Fluorouracil)
Show Figures

Graphical abstract

Back to TopTop