Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (160)

Search Parameters:
Keywords = 3D-printed tablet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1827 KB  
Review
Three-Dimensional Printing in Paediatrics: Innovative Technology for Manufacturing Patient-Centred Drug Delivery Systems
by Nadine Couți, Sonia Iurian, Alina Porfire, Tibor Casian, Rareș Iovanov and Ioan Tomuță
Pharmaceutics 2025, 17(11), 1364; https://doi.org/10.3390/pharmaceutics17111364 - 22 Oct 2025
Viewed by 484
Abstract
Additive manufacturing can be regarded as a game-changing approach for paediatric drug development, as children have special drug-related requirements which are rarely met by conventional technologies. Traditional dosage forms have considerable drawbacks, among them dose, excipient safety, and taste issues, which can be [...] Read more.
Additive manufacturing can be regarded as a game-changing approach for paediatric drug development, as children have special drug-related requirements which are rarely met by conventional technologies. Traditional dosage forms have considerable drawbacks, among them dose, excipient safety, and taste issues, which can be resolved by using three-dimensional (3D) printing. Ease of swallowing and an appealing design are among the improvements brought forth by 3D printing techniques. Techniques that have been thoroughly researched in the paediatric field include hot-melt extrusion (HME) coupled with fused deposition modelling (FDM), direct powder extrusion (DPE) and semisolid extrusion (SSE) 3D printing. Selective Laser Sintering (SLS) 3D bioprinting and binder-jet (BJ) 3D printing are other less known but highly useful techniques. A number of studies focus on significant subjects for the paediatric medicine domain, such as the acceptability of the produced formulations, the size of tablets, the design, the concealment of bitter API flavour, and the stability of the dosage forms. The 3D-printed oral formulations are varied: conventional-sized tablets, miniaturised tablets, chewable tablets, and orodispersible films or tablets. Most of the drugs used in the presented studies are essential medicines for children, for which commercial products with flexible doses and age-appropriate characteristics are often lacking. The practical implications of currently published studies and future directions for paediatric pharmaceutical 3D printing are described. Although there is a substantial amount of technical and in vitro data as well as paediatric engagement work on this subject, its translation into clinical practice is still limited. The clinical efficacy of 3D-printed dosage forms has to be further researched, since only a few studies have targeted this aspect. Full article
(This article belongs to the Special Issue 3D Printing in Personalized Drug Delivery)
Show Figures

Figure 1

29 pages, 2574 KB  
Article
Development and Evaluation of 3D-Printed Losartan Potassium Tablets Using Semi-Solid Extrusion: The Effect of Geometry, Drug Loading and Superdisintegrant
by Aleksandra Vojinović, Đorđe Medarević, Gordana Stanojević, Dušica Mirković, Snežana Mugoša, Ivana Adamov and Svetlana Ibrić
Pharmaceuticals 2025, 18(10), 1504; https://doi.org/10.3390/ph18101504 - 7 Oct 2025
Viewed by 556
Abstract
Background/Objectives: Semi-solid extrusion (SSE) three-dimensional (3D) printing offers a versatile approach for fabricating personalized oral dosage forms. This study aimed to develop and optimize losartan potassium tablets produced via SSE 3D printing, focusing on the effects of polymer composition, tablet geometry, drug loading, [...] Read more.
Background/Objectives: Semi-solid extrusion (SSE) three-dimensional (3D) printing offers a versatile approach for fabricating personalized oral dosage forms. This study aimed to develop and optimize losartan potassium tablets produced via SSE 3D printing, focusing on the effects of polymer composition, tablet geometry, drug loading, and superdisintegrant concentration on printability and performance characteristics. Methods: Formulations containing hydroxypropyl methylcellulose (HPMC) 4500 at various concentrations were evaluated for suitability in an ethanol–water (9:1 v/v) solvent system. The optimized formulation (5% w/w HPMC 4500) was used to print tablets with varying shapes, drug loadings (5–15% w/w; approximately 50–150 mg losartan potassium per tablet), and croscarmellose sodium concentrations (0–3% w/w). Printed tablets were characterized for dimensional accuracy, mass uniformity, disintegration time, and drug release behavior. Drug release kinetics were modeled to elucidate the release mechanism. Results: All SSE-printed tablets exhibited excellent dimensional precision (SD < 0.8 mm) and mass uniformity (SD < 0.12 g). Increasing drug loading enhanced the initial release rate, reaching up to 63% in 45 min for 15% loading. The addition of 1% croscarmellose sodium reduced disintegration time to approximately 25 min. Drug release profiles were best described by the Korsmeyer–Peppas model (R2 > 0.96), indicating diffusion-controlled release. Conclusions: SSE 3D printing demonstrated robustness and flexibility in producing losartan potassium tablets with consistent quality, tunable release properties, and strong potential for personalized pharmaceutical manufacturing. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

16 pages, 1161 KB  
Article
Development of 3D-Printed Gel-Based Supplement-Containing Tablets with Tailored Release Profiles for Neurological Pain Management
by Jurga Andreja Kazlauskaite, Inga Matulyte and Jurga Bernatoniene
Pharmaceutics 2025, 17(9), 1168; https://doi.org/10.3390/pharmaceutics17091168 - 6 Sep 2025
Viewed by 771
Abstract
Background/Objectives: Neuropathic pain, resulting from damage or pathology affecting the somatosensory nervous system, is a prevalent form of chronic pain that significantly impacts quality of life. Combined therapies are often utilised to manage this condition. Three-dimensional printing (3DP) offers a promising approach [...] Read more.
Background/Objectives: Neuropathic pain, resulting from damage or pathology affecting the somatosensory nervous system, is a prevalent form of chronic pain that significantly impacts quality of life. Combined therapies are often utilised to manage this condition. Three-dimensional printing (3DP) offers a promising approach for personalising medication doses and dosage forms to meet individual patient needs. Methods: In this study, a formulation suitable for 3D printing was developed using magnesium citrate, uridine monophosphate, vitamins B3 (niacin), B6 (pyridoxine), B12 (cobalamin), B9 (folic acid), and spermidine to create a novel gel-based oral tablet for the targeted treatment of neurological pain. The antioxidant potential of the active pharmaceutical ingredients (APIs) was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods. The physical properties of the tablets were evaluated using a texture analyser, while the in vitro release profiles were determined by high-performance liquid chromatography (HPLC). Results: Results demonstrated that pectin–gelatin tablets hardened over time, with higher citric acid concentrations further enhancing this effect. Formulation AVII exhibited good hardness and low stickiness. Formulation AV, however, showed poor performance across all physical parameters and lacked sufficient structural integrity for practical application. While uridine monophosphate, B12, and B9 showed no significant differences in the release profiles of the tablets, spermidine, B6, and B3 displayed statistically significant variations. Specifically, AVII outperformed AV in terms of spermidine and B6 release, and AV showed a higher release of B3 compared to AV. Conclusions: The AVII tablet demonstrates potential for use in combined therapy targeting neurological pain disorders. Full article
(This article belongs to the Special Issue 3D Printing in Personalized Drug Delivery)
Show Figures

Figure 1

18 pages, 1885 KB  
Article
Additive Manufacturing of Regorafenib Tablets: Formulation Strategies and Characterization for Colorectal Cancer
by Fatemeh Safari, Azin Goudarzi, Hossein Abolghasemi, Hussein Abdelamir Mohammad, Mohammad Akrami, Saeid Mohammadi and Ismaeil Haririan
Polymers 2025, 17(17), 2302; https://doi.org/10.3390/polym17172302 - 26 Aug 2025
Cited by 2 | Viewed by 1150
Abstract
Significant efforts have been dedicated to developing controlled-release systems for the effective management of colorectal cancer. In this study, a once-daily, delayed-release regorafenib (REG) tablet was fabricated using 3D printing technology for the treatment of colorectal cancer. For this, a hydrogel containing 80 [...] Read more.
Significant efforts have been dedicated to developing controlled-release systems for the effective management of colorectal cancer. In this study, a once-daily, delayed-release regorafenib (REG) tablet was fabricated using 3D printing technology for the treatment of colorectal cancer. For this, a hydrogel containing 80 mg of the drug in a matrix of hyaluronic acid, carboxymethyl cellulose, Pluronic F127, and glycerol was prepared to incorporate into the shell cavity of tablet via a pressure-assisted microsyringe (PAM). The shell was printed from an optimized ink formulation of Soluplus®, Eudragit® RS-100, corn starch 1500, propylene glycol 4000, and talc through melt extrusion-based 3D printing. In vitro release assays showed a drug release rate of 91.1% in the phosphate buffer medium at 8 h and only 8.5% in the acidic medium. Drug release kinetics followed a first-order model. The results showed smooth and uniform layers based on scanning electron microscopy (SEM) and drug stability at 135 °C upon TGA. FTIR analysis confirmed the absence of undesired covalent interactions between the materials. Weight variation and assay results complied with USP standards. Mechanical strength testing revealed a Young’s modulus of 5.18 MPa for the tablets. Overall, these findings demonstrate that 3D printing technology enables the precise fabrication of delayed-release REG tablets, offering controlled-release kinetics and accurate dosing tailored for patients in intensive care units. Full article
(This article belongs to the Special Issue Polymeric Materials for 3D Printing)
Show Figures

Graphical abstract

25 pages, 17212 KB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 - 1 Aug 2025
Viewed by 905
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Graphical abstract

16 pages, 3597 KB  
Article
Towards a Customized Oral Drug Therapy for Pediatric Applications: Chewable Propranolol Gel Tablets Printed by an Automated Extrusion-Based Material Deposition Method
by Kristiine Roostar, Andres Meos, Ivo Laidmäe, Jaan Aruväli, Heikki Räikkönen, Leena Peltonen, Sari Airaksinen, Niklas Sandler Topelius, Jyrki Heinämäki and Urve Paaver
Pharmaceutics 2025, 17(7), 881; https://doi.org/10.3390/pharmaceutics17070881 - 4 Jul 2025
Cited by 1 | Viewed by 930
Abstract
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid [...] Read more.
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid polymeric printing ink. Methods: An automated SSE material deposition method was used for generating chewable gel tablets loaded with propranolol hydrochloride (-HCl) at three different API content levels (3.0 mg, 4.0 mg, 5.0 mg). The physical appearance, surface morphology, dimensions, mass and mass variation, process-derived solid-state changes, mechanical properties, and in-vitro drug release of the gel tablets were studied. Results: The inclusion of API (1% w/w) in the semi-solid CuraBlendTM printing mixture decreased viscosity and increased fluidity, thus promoting the spreading of the mixture on the printed (material deposition) bed and the printing performance of the gel tablets. The printed gel tablets were elastic, soft, jelly-like, chewable preparations. The mechanical properties of the gel tablets were dependent on the printing ink composition (i.e., with or without propranolol HCl). The maximum load for the final deformation of the CuraBlend™-API (3.0 mg) gel tablets was very uniform, ranging from 73 N to 80 N. The in-vitro dissolution test showed that more than 85% of the drug load was released within 15–20 min, thus verifying the immediate-release behavior of these drug preparations. Conclusions: Automated SSE material deposition as a modified 3D printing method is a feasible technology for preparing customized oral chewable gel tablets of propranolol HCl. Full article
Show Figures

Figure 1

16 pages, 2915 KB  
Article
Extrusion-Based 3D Printing of Rutin Using Aqueous Polyethylene Oxide Gel Inks
by Oleh Koshovyi, Jyrki Heinämäki, Alina Shpychak, Andres Meos, Niklas Sandler Topelius and Ain Raal
Pharmaceutics 2025, 17(7), 878; https://doi.org/10.3390/pharmaceutics17070878 - 3 Jul 2025
Viewed by 685
Abstract
Background/Objectives. Flavonoids are a vast class of phenolic substances. To date, approximately 6000 plant-origin flavonoids have been discovered, with many of them being used in drug therapy. Therapeutic flavonoids are commonly formulated to conventional “one-size-fits-all” dosage forms, such as conventional tablets or hard [...] Read more.
Background/Objectives. Flavonoids are a vast class of phenolic substances. To date, approximately 6000 plant-origin flavonoids have been discovered, with many of them being used in drug therapy. Therapeutic flavonoids are commonly formulated to conventional “one-size-fits-all” dosage forms, such as conventional tablets or hard capsules. However, the current trends in pharmacy and medicine are centred on personalised drug therapy and drug delivery systems (DDSs). Therefore, 3D printing is an interesting technique for designing and preparing novel personalised pharmaceuticals for flavonoids. The aim of the present study was to develop aqueous polyethylene oxide (PEO) gel inks loaded with rutin for semisolid extrusion (SSE) 3D printing. Methods. Rutin (a model substance for therapeutic flavonoids), Tween 80, PEO (MW approx. 900,000), ethanol, and purified water were used in PEO gels at different proportions. The viscosity and homogeneity of the gels were determined. The rutin–PEO gels were printed with a bench-top Hyrel 3D printer into lattices and discs, and their weight and effective surface area were investigated. Results. The key SSE 3D-printing process parameters were established and verified. The results showed the compatibility of rutin as a model flavonoid and PEO as a carrier polymer. The rutin content (%) and content uniformity of the 3D-printed preparations were assayed by UV spectrophotometry and high-performance liquid chromatography (HPLC). Conclusions. The most feasible aqueous PEO gel ink formulation for SSE 3D printing contained rutin 100 mg/mL and Tween 80 50 mg/mL in a 12% aqueous PEO gel. The 3D-printed dosage forms are intended for the oral administration of flavonoids. Full article
(This article belongs to the Special Issue 3D Printing of Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 764 KB  
Review
3D Printing in Oral Drug Delivery: Technologies, Clinical Applications and Future Perspectives in Precision Medicine
by Zeena Saleh-Bey-Kinj, Yael Heller, Giannis Socratous and Panayiota Christodoulou
Pharmaceuticals 2025, 18(7), 973; https://doi.org/10.3390/ph18070973 - 28 Jun 2025
Cited by 1 | Viewed by 5085
Abstract
The recent advancement of 3D-printed drugs is an emerging technology that has the potential for effective and safe oral delivery of personalized treatment regimens to patients, replacing the current “one size fits all” philosophy. The objective of this literature review is to highlight [...] Read more.
The recent advancement of 3D-printed drugs is an emerging technology that has the potential for effective and safe oral delivery of personalized treatment regimens to patients, replacing the current “one size fits all” philosophy. The objective of this literature review is to highlight the importance of 3D-printing technology in the development of personalized treatments, focusing on Levetiracetam, the first FDA-approved 3D-printed drug, for the treatment of epilepsy. Levetiracetam serves as an ideal paradigm for exploring how precision medicine and 3D printing can be applied to improve treatment outcomes for other complex diseases such as diabetes, cardiovascular diseases, and cancer. 3D printing enables precise dosage and time-release profiles by modifying factors such as shape and size, and the combination of active pharmaceutical ingredients (APIs) and excipients, ensuring consistent therapeutic levels over the treatment period. Design of oral tablets with multiple compartments allows for simultaneous treatment with multiple APIs, each one with a different release profile, minimizing drug–drug interactions and side effects. This technology also supports on-demand production, making it particularly beneficial in resource-limited or urgent situations, and offers the flexibility to customize dosage forms. Additive manufacturing could be an important tool for developing personalized treatments to address the diverse medical needs of patients with complex diseases. Therefore, there is a need for more 3D-printed FDA-approved drugs in the biopharmaceutical industry to enable personalized treatment, improved patient compliance, and precise drug release control. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

17 pages, 2898 KB  
Article
Selective Laser Sintering of Atomoxetine Tablets: An Innovative Approach for Small-Scale, Personalized Production
by Gordana Stanojević, Ivana Adamov, Snežana Mugoša, Veselinka Vukićević and Svetlana Ibrić
Pharmaceutics 2025, 17(6), 794; https://doi.org/10.3390/pharmaceutics17060794 - 18 Jun 2025
Viewed by 792
Abstract
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing [...] Read more.
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing it with conventional direct compression. Methods: Atomoxetine tablets were produced using SLS 3D printing with varying laser scanning speeds and compared to tablets made via a compaction simulator. Formulations were based on hydroxypropyl methylcellulose (HPMC) as the primary matrix former. The physical properties, drug content, disintegration time, and dissolution profiles were evaluated. The structural and chemical integrity were assessed using SEM, FTIR, DSC, and XRPD. Results: The SLS tablets exhibited comparable mechanical properties and drug content to those made by compaction. Lower laser speeds produced harder tablets with slower disintegration, while higher speeds yielded more porous tablets with ultra-rapid drug release (>85% in 15 min). All tablets met the European Pharmacopoeia dissolution criteria. No significant drug–excipient interactions or changes in crystallinity were detected. Conclusions: SLS printing is a viable alternative to traditional tablet manufacturing, offering control over drug release profiles through parameter adjustment. The technique supports the development of high-quality, patient-specific dosage forms and shows promise for broader implementation in personalized pharmaceutical therapy. Full article
Show Figures

Graphical abstract

19 pages, 3044 KB  
Article
Automated 3D Printing-Based Non-Sterile Compounding Technology for Pediatric Corticosteroid Dosage Forms in a Health System Pharmacy Setting
by M. Brooke Bernhardt, Farnaz Shokraneh, Ludmila Hrizanovska, Julius Lahtinen, Cynthia A. Brasher and Niklas Sandler
Pharmaceutics 2025, 17(6), 762; https://doi.org/10.3390/pharmaceutics17060762 - 9 Jun 2025
Cited by 3 | Viewed by 1625
Abstract
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage [...] Read more.
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage forms were prepared in a hospital pharmacy setting using a proprietary excipient base and standardized procedures, including automated dosing and syringe heating when required. Three dosage forms—3.2 mg gel tablets, 2.8 mg water-free troches, and 1.2 mg orodispersible films (ODFs)—were selected to demonstrate the platform’s versatility and to address pediatric needs for varying strengths and dosage types. All products were prepared using a reproducible semi-solid extrusion (SSE)-based workflow with the consistent API-excipient blending and automated deposition. Results: Analytical testing confirmed that all formulations met pharmacopeial criteria for mass and content uniformity. The ODF and troche forms achieved rapid drug release, exceeding 75% within 5 min, while the gel tablet showed a slower release profile, reaching 86% by 60 min. Additionally, in-process homogeneity testing across syringe printing cycles confirmed the consistent API distribution. Conclusions: The results support the feasibility of integrating automated compounding technologies into pharmacy workflows. Such systems can improve accuracy, minimize variability, and streamline the production of customized pediatric medications, particularly for drugs with poor palatability or narrow therapeutic windows. Overall, this study highlights the potential of automation to modernize non-sterile compounding, and to better support individualized therapy. Full article
Show Figures

Figure 1

25 pages, 899 KB  
Review
A Scoping Review of Vitamins Detection Using Electrochemically Polymerised, Molecularly Imprinted Polymers
by Mohd Azerulazree Jamilan, Balqis Kamarudin, Zainiharyati Mohd Zain, Kavirajaa Pandian Sambasevam, Faizatul Shimal Mehamod and Mohd Fairulnizal Md Noh
Polymers 2025, 17(10), 1415; https://doi.org/10.3390/polym17101415 - 21 May 2025
Cited by 2 | Viewed by 1216
Abstract
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a [...] Read more.
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a straightforward polymerisation technique on screen-printed electrodes (SPEs). Here, we report a review based on three databases (PubMed, Scopus, and Web of Science) from 2014 to 2024 using medical subject heading (MeSH) terms “electrochemical polymerisation” OR “electropolymerisation” crossed with the terms “molecularly imprinted polymer” AND “vitamin A” OR “vitamin D” OR “vitamin E” OR “vitamin K” OR “fat soluble vitamin” OR “vitamin B” OR “vitamin C” OR “water soluble vitamin”. The resulting 12 articles covered the detection of vitamins in ascorbic acid, riboflavin, cholecalciferol, calcifediol, and menadione using monomers of catechol (CAT), 3,4-ethylenedioxythiophene (EDOT), o-aminophenol (oAP), o-phenylenediamine (oPD), pyrrole, p-aminophenol (pAP), p-phenylenediamine (pPD), or resorcinol (RES), using common bare electrodes including graphite rod electrode (GRE), glassy carbon electrode (GCE), gold electrode (GE), and screen-printed carbon electrode (SPCE). The most common electrochemical detections were differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV). The imprinting factor (IF) of the eMIP-modified electrodes were from 1.6 to 21.0, whereas the cross-reactivity was from 0.0% to 29.9%. Several types of food and biological samples were tested, such as supplement tablets, poultry and pharmaceutical drugs, soft drinks, beverages, milk, infant formula, human and calf serum, and human plasma. However, more discoveries and development of detection methods needs to be performed, especially for the vitamins that have not been studied yet. This will allow the improvement in the application of eMIPs on portable-based detection and POCT devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Graphical abstract

26 pages, 3061 KB  
Article
Three-Dimensional-Printed Isoniazid Chewable Gels for On-Demand Latent Tuberculosis Treatment in Children
by Amanda de O. E. Moreira, Lêda Maria S. Azevedo Neta, Márcia Pietroluongo, Ana Paula dos S. Matos, Beatriz B. Correa, Beatriz H. Ortiz, André da S. Guimarães, Marcio Nele, Carollyne M. Santos, Ana Elizabeth C. Fai, Maria Helena Gonçalves, Flávio M. Shimizu, Monique S. Dos Santos, Rosemberg B. Moure, Diogo D. Nascimento, André Luis de A. Guimarães, Saint Clair dos S. G. Junior, Alessandra L. Vicosa and Lucio M. Cabral
Pharmaceutics 2025, 17(5), 658; https://doi.org/10.3390/pharmaceutics17050658 - 17 May 2025
Cited by 1 | Viewed by 1287
Abstract
Background/Objectives: Pediatric drug administration is hindered by difficulties in swallowing conventional medications and the unpalatable taste of many drugs. Among diseases highlighting the need for improved pediatric delivery, tuberculosis (TB) stands out. One form of the disease is latent TB infection (LTBI), [...] Read more.
Background/Objectives: Pediatric drug administration is hindered by difficulties in swallowing conventional medications and the unpalatable taste of many drugs. Among diseases highlighting the need for improved pediatric delivery, tuberculosis (TB) stands out. One form of the disease is latent TB infection (LTBI), which is concerning in children. Effective LTBI treatment is crucial for prevention, with isoniazid (INH) widely used for its proven efficacy and safety. This study aims to develop innovative 3D-printed chewable gels containing INH for LTBI treatment. Methods: The gels were formulated using gelatin and carrageenan gum, sugar-free sweeteners, and flavoring. Two batches were prepared, and using 3D printing (3DP) with a semi-solid extrusion (SSE) module, chewable gels were produced. Rheological properties were measured to assess the feasibility of 3DP-SSE, evaluating the structural integrity and adequate fluidity of the formulation. The 3D-printed chewable gels were evaluated by visual, mass, and dimensional characteristics. In addition, the water activity, texture profile, INH and degradation product content, in vitro release, and taste-masking were investigated. Results: The optimized formulation maintained suitable rheological properties for 3DP-SSE, demonstrating consistent weight, dimensions, and stability after the process. The texture achieved a balance between printing parameters and shape maintenance, and the INH presented an immediate-release profile (>85% within 30 min). The chewable gels showed an improvement in palatability compared to conventional INH tablets. Conclusions: This innovative approach offers a promising solution for pediatric LTBI treatment, as it improves efficacy, medication acceptability, and on-demand access. Full article
(This article belongs to the Special Issue 3D Printing in Personalized Drug Delivery)
Show Figures

Graphical abstract

21 pages, 2378 KB  
Review
Advances in Oral Solid Drug Delivery Systems: Quality by Design Approach in Development of Controlled Release Tablets
by Prachi Atre and Syed A. A. Rizvi
BioChem 2025, 5(2), 9; https://doi.org/10.3390/biochem5020009 - 25 Apr 2025
Cited by 1 | Viewed by 4100
Abstract
Oral solid drug delivery continues to be the gold standard in pharmaceutical formulations, owing to its cost-effectiveness, ease of administration, and high patient compliance. Tablets, the most widely used dosage form, are favored for their precise dosing, simplicity, and economic advantages. Among these, [...] Read more.
Oral solid drug delivery continues to be the gold standard in pharmaceutical formulations, owing to its cost-effectiveness, ease of administration, and high patient compliance. Tablets, the most widely used dosage form, are favored for their precise dosing, simplicity, and economic advantages. Among these, controlled release (CR) tablets stand out for their ability to maintain consistent drug levels, enhance therapeutic efficacy, and reduce dosing frequency, thereby improving patient adherence and treatment outcomes. A well-designed CR system ensures a sustained and targeted drug supply, optimizing therapeutic performance while minimizing side effects. This review delves into the latest advancements in CR formulations, with a particular focus on hydrophilic matrix systems, which regulate drug release through mechanisms such as swelling, diffusion, and erosion. These systems rely on a variety of polymers as drug-retarding agents to achieve tailored release profiles. Recent breakthroughs in crystal engineering and polymer science have further enhanced drug solubility and bioavailability, addressing critical challenges associated with poorly soluble drugs. In terms of manufacturing, direct compression has emerged as the most efficient method for producing CR tablets, streamlining production while ensuring consistent drug release. The integration of the Quality by Design framework has been instrumental in optimizing product performance by systematically linking formulation and process variables to patient-centric quality attributes. The advent of cutting-edge technologies such as artificial intelligence and 3D printing is revolutionizing the field of CR formulations. AI enables predictive modeling and data-driven optimization of drug release profiles, while 3D printing facilitates the development of personalized medicines with highly customizable release kinetics. These innovations are paving the way for more precise and patient-specific therapies. However, challenges such as regulatory hurdles, patent constraints, and the need for robust in vivo validation remain significant barriers to the widespread adoption of these advanced technologies. This succinct review underscores the synergistic integration of traditional and emerging strategies in the development of CR matrix tablets. It highlights the potential of hydrophilic and co-crystal matrix systems, particularly those produced via direct compression, to enhance drug bioavailability, improve patient adherence, and deliver superior therapeutic outcomes. By bridging the gap between established practices and innovative approaches, this field is poised to address unmet clinical needs and advance the future of oral drug delivery. Full article
(This article belongs to the Special Issue Drug Delivery: Latest Advances and Prospects)
Show Figures

Graphical abstract

20 pages, 3412 KB  
Article
Development of 3D-Printed Chewable Gummy Tablets with Adjustable Ondansetron Content for the Treatment of Pediatric Patients
by Martin Veselý, David Záruba and Jan Elbl
Pharmaceutics 2025, 17(4), 458; https://doi.org/10.3390/pharmaceutics17040458 - 2 Apr 2025
Cited by 4 | Viewed by 1690
Abstract
Background/Objectives: Semi-solid extrusion (SSE) 3D printing is an innovative method utilized for preparation of various drug dosage forms, allowing for individualization by means of incorporation of one or multiple drugs in adjustable doses. SSE provides repeatable results and can be conveniently utilized [...] Read more.
Background/Objectives: Semi-solid extrusion (SSE) 3D printing is an innovative method utilized for preparation of various drug dosage forms, allowing for individualization by means of incorporation of one or multiple drugs in adjustable doses. SSE provides repeatable results and can be conveniently utilized in small batch production. This study aimed to develop a chewable formulation for pediatric patients which could be easily printed using SSE. Methods: Pectin and gelatin were utilized as gel-forming agents, polyvinylpyrrolidone as a thickener, glycerol as a plasticizer, citric acid as a pH modifier, and potassium sorbate as a conserving agent. Obtained tablets were evaluated for mass and content homogeneity and their mechanical properties compared to the long-time market standard for gummies. Results: Gummy formulation with texture properties comparable to the selected standard and mass homogeneity were prepared. The linear correlation between the model size and ondansetron content was proven. Conclusions: SSE 3D printing thus presents a suitable method of gummy formulation production with possible adjustment of dose by defining the object size. Full article
Show Figures

Graphical abstract

27 pages, 3876 KB  
Review
Revealing Three-Dimensional Printing Technology Advances for Oral Drug Delivery: Application to Central-Nervous-System-Related Diseases
by Samir I. Paipa-Jabre-Cantu, Marisela Rodriguez-Salvador and Pedro F. Castillo-Valdez
Pharmaceutics 2025, 17(4), 445; https://doi.org/10.3390/pharmaceutics17040445 - 31 Mar 2025
Cited by 3 | Viewed by 2386
Abstract
Background/Objectives. Central nervous system (CNS)-related diseases such as Alzheimer’s and Parkinson’s, Attention Deficit Hyperactive Disorder (ADHD), stroke, epilepsy, and migraines are leading causes of morbidity and disability worldwide. New solutions for drug delivery are increasingly needed. In this context, three-dimensional (3D) printing technology [...] Read more.
Background/Objectives. Central nervous system (CNS)-related diseases such as Alzheimer’s and Parkinson’s, Attention Deficit Hyperactive Disorder (ADHD), stroke, epilepsy, and migraines are leading causes of morbidity and disability worldwide. New solutions for drug delivery are increasingly needed. In this context, three-dimensional (3D) printing technology has introduced innovative alternatives to produce more efficient medicines with diverse features, patterns, and consistencies, particularly oral medications. Even though research in this area is growing rapidly, no study has thoroughly analyzed 3D printing oral drug delivery progress for the CNS. To fill this gap this study pursues to determine a technological landscape in this field. Methods. For this aim, a Competitive Technology Intelligence (CTI) methodology was applied, examining 747 publications from 1 January 2019 to 20 May 2024 published in the Scopus database. Results. The main advances identified comprise six categories: 3D printing techniques, characteristics and applications, materials, design factors, user acceptance, and quality processes. FDM was identified as the main technique for pharmaceutical use. The main applications include pills, polypills, caplets, gel caps, multitablets, orodispersible films, and tablets, featuring external patterns and internal structures with one or more active substances. Insights show that the most utilized materials are thermoplastic polymers like PLA, PVA, PCL, ABS, and HIPS. A novel design factor involves release patterns using compartments of varying thicknesses and volumes in the core. Additionally, advances in specialized software have enabled the creation of highly complex designs. In the user acceptance category, oral drugs dosages are tailored to the specific needs and preferences of neurological patients. Finally, for the quality aspect, the precision in Active Pharmaceutical Ingredient (API) dosage and controlled-release mechanisms are critical, given the narrow margin between therapeutic doses and toxicity for CNS diseases. Conclusions. Revealing these advancements in 3D printing for oral drug delivery allows researchers, academics, and decision-makers to identify opportunities and allocate resources efficiently, promising enhanced oral medicaments for the health and well-being of individuals suffering from CNS disorders. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of 3D Printing)
Show Figures

Graphical abstract

Back to TopTop