Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = 3D microfluidic cell culture devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5751 KB  
Article
Laser-Induced Forward Transfer in Organ-on-Chip Devices
by Maria Anna Chliara, Antonios Hatziapostolou and Ioanna Zergioti
Photonics 2025, 12(9), 877; https://doi.org/10.3390/photonics12090877 - 30 Aug 2025
Viewed by 253
Abstract
Laser-induced forward transfer (LIFT) bioprinting enables precise deposition of biological materials for advanced biomedical applications. This study presents a parametric analysis of the donor–receiver distances (1.0, 1.5, 2.0, 2.5, and 3.0 mm) in LIFT bioprinting, investigated through high-speed video and image analysis of [...] Read more.
Laser-induced forward transfer (LIFT) bioprinting enables precise deposition of biological materials for advanced biomedical applications. This study presents a parametric analysis of the donor–receiver distances (1.0, 1.5, 2.0, 2.5, and 3.0 mm) in LIFT bioprinting, investigated through high-speed video and image analysis of 4 × 4 spot arrays. Droplet velocity was quantified and jet trajectory characterized, revealing that increased distances reduced spatial resolution, with significant shape deterioration observed beyond 2.0 mm. Thus, a maximum 2.0 mm donor–receiver gap was determined as optimal for acceptable printing resolution. As an application, a microfluidic device was fabricated using LCD 3D printing with a biocompatible resin and glass-bottomed configuration. The chamber height was matched to the validated 2.0 mm distance, ensuring compatibility with LIFT printing. Computational fluid dynamics simulations were conducted to model fluid flow conditions within the device. Subsequently, LLC cells were successfully printed inside the microfluidic chamber, cultured under continuous flow for 24 h, and demonstrated normal proliferation. This work highlights LIFT bioprinting’s viability and precision for integrating cells within microfluidic platforms, presenting promising potential for organ-on-chip applications and future biomedical advancements. Full article
Show Figures

Figure 1

19 pages, 4054 KB  
Article
Evaluation of Flow-Induced Shear in a Porous Microfluidic Slide: CFD Analysis and Experimental Investigation
by Manoela Neves, Gayathri Aparnasai Reddy, Anitha Niyingenera, Norah Delaney, Wilson S. Meng and Rana Zakerzadeh
Fluids 2025, 10(6), 160; https://doi.org/10.3390/fluids10060160 - 17 Jun 2025
Viewed by 1560
Abstract
Microfluidic devices offer well-defined physical environments that are suitable for effective cell seeding and in vitro three-dimensional (3D) cell culture experiments. These platforms have been employed to model in vivo conditions for studying mechanical forces, cell–extracellular matrix (ECM) interactions, and to elucidate transport [...] Read more.
Microfluidic devices offer well-defined physical environments that are suitable for effective cell seeding and in vitro three-dimensional (3D) cell culture experiments. These platforms have been employed to model in vivo conditions for studying mechanical forces, cell–extracellular matrix (ECM) interactions, and to elucidate transport mechanisms in 3D tissue-like structures, such as tumor and lymph node organoids. Studies have shown that fluid flow behavior in microfluidic slides (µ-slides) directly influences shear stress, which has emerged as a key factor affecting cell proliferation and differentiation. This study investigates fluid flow in the porous channel of a µ-slide using computational fluid dynamics (CFD) techniques to analyze the impact of perfusion flow rate and porous properties on resulting shear stresses. The model of the µ-slide filled with a permeable biomaterial is considered. Porous media fluid flow in the channel is characterized by adding a momentum loss term to the standard Navier–Stokes equations, with a physiological range of permeability values. Numerical simulations are conducted to obtain data and contour plots of the filtration velocity and flow-induced shear stress distributions within the device channel. The filtration flow is subsequently measured by performing protein perfusions into the slide embedded with native human-derived ECM, while the flow rate is controlled using a syringe pump. The relationships between inlet flow rate and shear stress, as well as filtration flow and ECM permeability, are analyzed. The findings provide insights into the impact of shear stress, informing the optimization of perfusion conditions for studying tissues and cells under fluid flow. Full article
(This article belongs to the Special Issue Biological Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

15 pages, 3888 KB  
Communication
Development of Low-Cost CNC-Milled PMMA Microfluidic Chips as a Prototype for Organ-on-a-Chip and Neurospheroid Applications
by Sushmita Mishra, Ginia Mondal and Murali Kumarasamy
Organoids 2025, 4(2), 13; https://doi.org/10.3390/organoids4020013 - 11 Jun 2025
Cited by 2 | Viewed by 799
Abstract
Improved in vitro models are needed to reduce costs and delays in central nervous system (CNS) drug discovery. The FDA Modernization Acts 2.0 and 3.0 require human-centered alternative testing methods to mitigate animal-based experiments and discovery delays, and to ensure human safety. Developing [...] Read more.
Improved in vitro models are needed to reduce costs and delays in central nervous system (CNS) drug discovery. The FDA Modernization Acts 2.0 and 3.0 require human-centered alternative testing methods to mitigate animal-based experiments and discovery delays, and to ensure human safety. Developing cost-efficient, flexible microfluidic chips is essential to advance organ-on-chip (OoC) technology for drug discovery and disease modeling. While CNC micromilling shows promise for fabricating microfluidic devices, it remains underutilized due to limited accessibility. We present a simple CNC-milled flexible microfluidic chip fabricated from thermoplastic poly (methyl methacrylate) (PMMA). The structure of the microplate included drilled openings for connecting the wells. The chip’s biocompatibility was evaluated with isolated primary neuronal cultures from postnatal Wistar rat pups (p1). Primary cells cultured in the device showed high viability, differentiation, and 3D neurosphere formation, similar to conventional well-plate cultures. Neuronal cultures showed neurite growth and functional markers. Although cleanroom-based methods provide higher accuracy, the chip effectively promotes cell viability, differentiation, and alignment, offering an ideal platform for tissue modeling and OoC applications. It allows cell biologists to quickly create prototypes at lower cost and in less time than required for soft lithography and is a viable alternative to the current manufacturing methods. Full article
Show Figures

Figure 1

14 pages, 1039 KB  
Review
Pancreatic 3D Organoids and Microfluidic Systems—Applicability and Utilization in Surgery: A Literature Review
by Vidas Petrauskas, Ryte Damaseviciute and Aiste Gulla
Medicina 2025, 61(4), 623; https://doi.org/10.3390/medicina61040623 - 28 Mar 2025
Viewed by 1089
Abstract
Background: Pancreatic organoids are a rapidly advancing field of research with new discoveries being made every day. A literature review was performed to answer the question of how relevant 3D pancreatic organoids are for surgery. Materials and Methods: We started our [...] Read more.
Background: Pancreatic organoids are a rapidly advancing field of research with new discoveries being made every day. A literature review was performed to answer the question of how relevant 3D pancreatic organoids are for surgery. Materials and Methods: We started our investigation by identifying articles in PubMed within the last 5 years using the keywords ((“pancreatic organoid”, OR “organ-on-a-chip”, OR “pancreatic chip” OR “3D culture methods”) AND pancreatic surgery). Only English articles were included in this literature review. This literature review was performed in a non-systematic way; articles were chosen without a predetermined protocol of inclusion and were based on the aim of the review. Results and Conclusions: There are many promising innovations in the field of 3D cultures. Drug sensitivity testing in particular holds great potential for surgical application. For locally advanced PDAC, EUS-FNB obtained cancer tissue can be cultured as organoids, and after 4 weeks, neoadjuvant treatment could be adjusted for each patient individually. Utilizing this approach could increase the number of R0 resections and possibly cure the disease. Furthermore, microfluidic devices, as a platform for pancreatic islet pre-transplant evaluation or cultivation of beta cells derived from HiPSC in vitro, promise broad application of islet transplantation to T1DM patients in the near future. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

22 pages, 5917 KB  
Article
Development of a Widely Accessible, Advanced Large-Scale Microfluidic Airway-on-Chip
by Brady Rae, Gwenda F. Vasse, Jalal Mosayebi, Maarten van den Berge, Simon D. Pouwels and Irene H. Heijink
Bioengineering 2025, 12(2), 182; https://doi.org/10.3390/bioengineering12020182 - 13 Feb 2025
Cited by 2 | Viewed by 1679
Abstract
On-chip microfluidics are advanced in vitro models that simulate lung tissue’s native 3D environment more closely than static 2D models to investigate the complex lung architecture and multifactorial processes that lead to pulmonary disease. Current microfluidic systems can be restrictive in the quantities [...] Read more.
On-chip microfluidics are advanced in vitro models that simulate lung tissue’s native 3D environment more closely than static 2D models to investigate the complex lung architecture and multifactorial processes that lead to pulmonary disease. Current microfluidic systems can be restrictive in the quantities of biological sample that can be retrieved from a single micro-channel, such as RNA, protein, and supernatant. Here, we describe a newly developed large-scale airway-on-chip model that employs a surface area for a cell culture wider than that in currently available systems. This enables the collection of samples comparable in volume to traditional cell culture systems, making the device applicable to any workflow utilizing these static systems (RNA isolation, ELISA, etc.). With our construction method, this larger culture area allows for easier handling, the potential for a wide range of exposures, as well as the collection of low-quantity samples (e.g., volatiles or mitochondrial RNA). The model consists of two large polydimethylsiloxane (PDMS) cell culture chambers under an independent flow of medium or air, separated by a semi-permeable polyethylene (PET) cell culture membrane (23 μm thick, 0.4 μm pore size). Each chamber carries a 5 × 18 mm, 90 mm2 (92 mm2 with tapered chamber inlets) surface area that can contain up to 1–2 × 104 adherent structural lung cells and can be utilized for close contact co-culture studies of different lung cell types, including airway epithelial cells, fibroblasts, smooth muscle cells, and endothelial cells. The parallel bi-chambered design of the chip allows for epithelial cells to be cultured at the air–liquid interface (ALI) and differentiation into a dense, multi-layered, pseudostratified epithelium under biological flow rates. This millifluidic airway-on-chip advances the field by providing a readily reproducible, easily adjustable, and cost-effective large-scale fluidic 3D airway cell culture platform. Full article
(This article belongs to the Special Issue Microfluidics and Sensor Technologies in Biomedical Engineering)
Show Figures

Figure 1

15 pages, 5530 KB  
Article
Development of Pyramidal Microwells for Enhanced Cell Spheroid Formation in a Cell-on-Chip Microfluidic System for Cardiac Differentiation of Mouse Embryonic Stem Cells
by Tepparit Wongpakham, Thanapat Chunfong, Wutthinan Jeamsaksiri, Kriengkai Chessadangkul, Sudchaya Bhanpattanakul, Wirakan Kallayanathum, Theerawat Tharasanit and Alongkorn Pimpin
Cells 2024, 13(24), 2132; https://doi.org/10.3390/cells13242132 - 23 Dec 2024
Cited by 4 | Viewed by 1409
Abstract
Three-dimensional (3D) tissue culture models provide in vivo-like conditions for studying cell physiology. This study aimed to examine the efficiency of pyramidal microwell geometries in microfluidic devices on spheroid formation, cell growth, viability, and differentiation in mouse embryonic stem cells (mESCs). The static [...] Read more.
Three-dimensional (3D) tissue culture models provide in vivo-like conditions for studying cell physiology. This study aimed to examine the efficiency of pyramidal microwell geometries in microfluidic devices on spheroid formation, cell growth, viability, and differentiation in mouse embryonic stem cells (mESCs). The static culture using the hanging drop (HD) method served as a control. The microfluidic chips were fabricated to have varying pyramidal tip angles, including 66°, 90°, and 106°. From flow simulations, when the tip angle increased, streamline distortion decreased, resulting in more uniform flow and a lower velocity gradient near the spheroids. These findings demonstrate the significant influence of microwell geometry on fluid dynamics. The 90° microwells provide optimal conditions, including uniform flow and reduced shear stress, while maintaining the ability for waste removal, resulting in superior spheroid growth compared to the HD method and other microwell designs. From the experiments, by Day 3, spheroids in the 90° microwells reached approximately 400 µm in diameter which was significantly larger than those in the 66° microwells, 106° microwells, and HD cultures. Brachyury gene expression in the 90° microwells was four times higher than the HD method, indicating enhanced mesodermal differentiation essential for cardiac differentiation. Immunofluorescence staining confirmed cardiomyocyte differentiation. In conclusion, microwell geometry significantly influences 3D cell culture outcomes. The pyramidal microwells with a 90° tip angle proved most effective in promoting spheroid growth and cardiac differentiation of mESC differentiation, providing insights for optimizing microfluidic systems in tissue engineering and regenerative medicine. Full article
Show Figures

Figure 1

13 pages, 2287 KB  
Article
Development of an Easy-To-Use Microfluidic System to Assess Dynamic Exposure to Mycotoxins in 3D Culture Models: Evaluation of Ochratoxin A and Patulin Cytotoxicity
by Veronica Zingales, Caterina Piunti, Sara Micheli, Elisa Cimetta and María-José Ruiz
Foods 2024, 13(24), 4167; https://doi.org/10.3390/foods13244167 - 23 Dec 2024
Viewed by 1325
Abstract
Mycotoxins are among the most concerning natural toxic food contaminants. Over the years, significant efforts have been made to characterize the risk associated with their exposure. However, assessing their toxicity has so far been elusive due to the lack of adequate models that [...] Read more.
Mycotoxins are among the most concerning natural toxic food contaminants. Over the years, significant efforts have been made to characterize the risk associated with their exposure. However, assessing their toxicity has so far been elusive due to the lack of adequate models that closely mimic the physiological conditions of human cells in vivo. Here, we present the SpheroFlow Device (SFD), an efficient microfluidic platform designed, manufactured, and validated to evaluate mycotoxin-induced cytotoxicity under dynamic and continuous exposure in 3D culture settings. In the present study, we integrated human neuroblastoma SH-SY5Y spheroids into the SFD to assess the acute toxicity induced by the mycotoxins ochratoxin A (OTA) and patulin (PAT). The developed system enabled qualitative and quantitative measurements of concentration–response relationships and provided accurate control over the culture microenvironment. Our findings show that by enhancing 3D culture model by applying dynamic flow, SH-SY5Y spheroids exhibited different sensitivities to OTA and PAT compared to conventional static SH-SY5Y spheroids, confirming the critical role of culture models in mycotoxin toxicity assessment. This is the first study assessing the neurotoxicity of OTA and PAT on 3D neuroblastoma spheroids considering the contribution of fluid flow. Full article
(This article belongs to the Special Issue Advances in the Monitoring and Analysis of Foodborne Pathogens)
Show Figures

Figure 1

15 pages, 2082 KB  
Article
Enhanced Cell Growth and Astaxanthin Production in Haematococcus lacustris by Mechanostimulation of Seed Cysts
by Catherine Christabel, Bolam Kim, Aditya Lakshmi Narasimhan, Laxmi Priya Sathiyavahisan, Dea Prianka Ayu Ilhamsyah, Eui-Jin Kim and You-Kwan Oh
Appl. Sci. 2024, 14(22), 10434; https://doi.org/10.3390/app142210434 - 13 Nov 2024
Cited by 1 | Viewed by 1714
Abstract
The slow growth and complex life cycle of Haematococcus lacustris pose significant challenges for cost-effective astaxanthin production. This study explores the use of microfluidic collision treatment to stimulate the germination of dormant seed cysts, thereby improving photosynthetic cell growth and astaxanthin productivity in [...] Read more.
The slow growth and complex life cycle of Haematococcus lacustris pose significant challenges for cost-effective astaxanthin production. This study explores the use of microfluidic collision treatment to stimulate the germination of dormant seed cysts, thereby improving photosynthetic cell growth and astaxanthin productivity in H. lacustris cultivated in well plate and flask cultures. The flow rate (1.0–3.0 mL/min) and the number of T-junction loops (3–30) were optimized in the microfluidic device. Under optimal conditions (a flow rate of 2.0 mL/min with 10 loops), the total cell number density in well plate cultures increased by 44.5% compared to untreated controls, reaching 28.9 ± 2.0 × 104 cells/mL after 72 h. In flask cultures, treated cysts showed a 21% increase in astaxanthin productivity after 30 d, reaching 0.95 mg/L/d, due to higher biomass concentrations, while the astaxanthin content per cell remained constant. However, excessive physical collision stress at higher flow rates and loop numbers resulted in reduced cell viability and cell damage. These findings suggest that carefully controlled cyst mechanostimulation can be an effective and environmentally friendly strategy for Haematococcus biorefining, enabling the production of multiple bioactive products. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

19 pages, 7528 KB  
Article
Towards a 3D-Printed Millifluidic Device for Investigating Cellular Processes
by Jared A. Engelken, Tobias Butelmann, Fabian Tribukait-Riemenschneider and V. Prasad Shastri
Micromachines 2024, 15(11), 1348; https://doi.org/10.3390/mi15111348 - 31 Oct 2024
Cited by 1 | Viewed by 1553
Abstract
Microfluidic devices (µFDs) have been explored extensively in drug screening and studying cellular processes such as migration and metastasis. However, the fabrication and implementation of microfluidic devices pose cost and logistical challenges that limit wider-spread adoption. Despite these challenges, light-based 3D printing offers [...] Read more.
Microfluidic devices (µFDs) have been explored extensively in drug screening and studying cellular processes such as migration and metastasis. However, the fabrication and implementation of microfluidic devices pose cost and logistical challenges that limit wider-spread adoption. Despite these challenges, light-based 3D printing offers a potential alternative to device fabrication. This study reports on the development of millifluidic devices (MiFDs) for disease modeling and elucidates the methods and implications of the design, production, and testing of 3D-printed MiFDs. It further details how such millifluidic devices can be cost-efficiently and effortlessly produced. The MiFD was developed through an iterative process with analytical tests (flow tests, leak tests, cytotoxicity assays, and microscopic analyses), driving design evolution and determination of the suitability of the devices for disease modeling and cancer research. The design evolution also considered flow within tissues and replicates interstitial flow between the main flow path and the modules designed to house and support organ-mimicking cancer cell spheroids. Although the primary stereolithographic (SLA) resin used in this study showed cytotoxic potential despite its biocompatibility certifications, the MiFDs possessed essential attributes for cell culturing. In summary, SLA 3D printing enables the production of MiFDs as a cost-effective, rapid prototyping alternative to standard µFD fabrication for investigating disease-related processes. Full article
(This article belongs to the Special Issue Microfluidics and 3D Printing for Biomedical Applications)
Show Figures

Figure 1

16 pages, 6526 KB  
Article
Complement C5a Implication in Axonal Growth After Injury
by Aurélie Cotten, Charlotte Jeanneau, Patrick Decherchi and Imad About
Cells 2024, 13(20), 1729; https://doi.org/10.3390/cells13201729 - 18 Oct 2024
Viewed by 1161
Abstract
Complement C5a protein has been shown to play a major role in tissue regeneration through interaction with its receptor (C5aR) on target cells. Expression of this receptor has been reported in the nervous system which, upon injury, has no treatment to restore the [...] Read more.
Complement C5a protein has been shown to play a major role in tissue regeneration through interaction with its receptor (C5aR) on target cells. Expression of this receptor has been reported in the nervous system which, upon injury, has no treatment to restore the lost functions. This work aimed at investigating the Complement C5a effect on axonal growth after axotomy in vitro. Primary hippocampal neurons were isolated from embryonic Wistar rats. Cell expression of C5aR mRNA was verified by RT-PCR while its membrane expression, localization, and phosphorylation were investigated by immunofluorescence. Then, the effects of C5a on injured axonal growth were investigated using a 3D-printed microfluidic device. Immunofluorescence demonstrated that the primary cultures contained only mature neurons (93%) and astrocytes (7%), but no oligodendrocytes or immature neurons. Immunofluorescence revealed a co-localization of NF-L and C5aR only in the mature neurons where C5a induced the phosphorylation of its receptor. C5a application on injured axons in the microfluidic devices significantly increased both the axonal growth speed and length. Our findings highlight a new role of C5a in regeneration demonstrating an enhancement of axonal growth after axotomy. This may provide a future therapeutic tool in the treatment of central nervous system injury. Full article
Show Figures

Figure 1

16 pages, 3593 KB  
Article
A Versatile Microfluidic Device System that Lacks a Synthetic Extracellular Matrix Recapitulates the Blood–Brain Barrier and Dynamic Tumor Cell Interaction
by Daniel Santillán-Cortez, Andrés Eliú Castell-Rodríguez, Aliesha González-Arenas, Juan Antonio Suárez-Cuenca, Vadim Pérez-Koldenkova, Denisse Añorve-Bailón, Christian Gabriel Toledo-Lozano, Silvia García, Mónica Escamilla-Tilch and Paul Mondragón-Terán
Bioengineering 2024, 11(10), 1008; https://doi.org/10.3390/bioengineering11101008 - 10 Oct 2024
Viewed by 1891
Abstract
Microfluidic systems offer controlled microenvironments for cell-to-cell and cell-to-stroma interactions, which have precise physiological, biochemical, and mechanical features. The optimization of their conditions to best resemble tumor microenvironments constitutes an experimental modeling challenge, particularly regarding carcinogenesis in the central nervous system (CNS), given [...] Read more.
Microfluidic systems offer controlled microenvironments for cell-to-cell and cell-to-stroma interactions, which have precise physiological, biochemical, and mechanical features. The optimization of their conditions to best resemble tumor microenvironments constitutes an experimental modeling challenge, particularly regarding carcinogenesis in the central nervous system (CNS), given the specific features of the blood–brain barrier (BBB). Gel-free 3D microfluidic cell culture systems (gel-free 3D-mFCCSs), including features such as self-production of extracellular matrices, provide significant benefits, including promoting cell–cell communication, interaction, and cell polarity. The proposed microfluidic system consisted of a gel-free culture device inoculated with human brain microvascular endothelial cells (HBEC5i), glioblastoma multiforme cells (U87MG), and astrocytes (ScienCell 1800). The gel-free 3D-mFCCS showed a diffusion coefficient of 4.06 × 10−9 m2·s−1, and it reconstructed several features and functional properties that occur at the BBB, such as the vasculogenic ability of HBEC5i and the high duplication rate of U87MG. The optimized conditions of the gel-free 3D-mFCCS allowed for the determination of cellular proliferation, invasion, and migration, with evidence of both physical and biochemical cellular interactions, as well as the production of pro-inflammatory cytokines. In conclusion, the proposed gel-free 3D-mFCCSs represent a versatile and suitable alternative to microfluidic systems, replicating several features that occur within tumor microenvironments in the CNS. This research contributes to the characterization of microfluidic approaches and could lead to a better understanding of tumor biology and the eventual development of personalized therapies. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Graphical abstract

22 pages, 4995 KB  
Review
Microfluidic Gastrointestinal Cell Culture Technologies—Improvements in the Past Decade
by Adrian J. T. Teo, Siu-Kin Ng, Kaydeson Khoo, Sunny Hei Wong and King Ho Holden Li
Biosensors 2024, 14(9), 449; https://doi.org/10.3390/bios14090449 - 19 Sep 2024
Cited by 2 | Viewed by 5672
Abstract
Gastrointestinal cell culture technology has evolved in the past decade with the integration of microfluidic technologies, bringing advantages with greater selectivity and cost effectiveness. Herein, these technologies are sorted into three categories, namely the cell-culture insert devices, conventional microfluidic devices, and 3D-printed microfluidic [...] Read more.
Gastrointestinal cell culture technology has evolved in the past decade with the integration of microfluidic technologies, bringing advantages with greater selectivity and cost effectiveness. Herein, these technologies are sorted into three categories, namely the cell-culture insert devices, conventional microfluidic devices, and 3D-printed microfluidic devices. Each category is discussed in brief with improvements also discussed here. Introduction of different companies and applications derived from each are also provided to encourage uptake. Subsequently, future perspectives of integrating microfluidics with trending topics like stool-derived in vitro communities and gut–immune–tumor axis investigations are discussed. Insights on modular microfluidics and its implications on gastrointestinal cell cultures are also discussed here. Future perspectives on point-of-care (POC) applications in relations to gastrointestinal microfluidic devices are also discussed here. In conclusion, this review presents an introduction of each microfluidic platform with an insight into the greater contribution of microfluidics in gastrointestinal cell cultures. Full article
(This article belongs to the Special Issue Lab-on-a-Chip Devices for Point-of-Care Diagnostics)
Show Figures

Figure 1

14 pages, 5354 KB  
Article
CO2-Free On-Stage Incubator for Live Cell Imaging of Cholangiocarcinoma Cell Migration on Microfluidic Device
by Shahab Ud Din, Puey Ounjai, Arthit Chairoungdua and Werasak Surareungchai
Methods Protoc. 2024, 7(5), 69; https://doi.org/10.3390/mps7050069 - 4 Sep 2024
Cited by 1 | Viewed by 2420
Abstract
Long-term live cell imaging requires sophisticated and fully automated commercial-stage incubators equipped with specified inverted microscopes to regulate temperature, CO2 content, and humidity. In this study, we present a CO2-free on-stage incubator specifically designed for use across various cell culture [...] Read more.
Long-term live cell imaging requires sophisticated and fully automated commercial-stage incubators equipped with specified inverted microscopes to regulate temperature, CO2 content, and humidity. In this study, we present a CO2-free on-stage incubator specifically designed for use across various cell culture platforms, enabling live cell imaging applications. A simple and transparent incubator was fabricated from acrylic sheets to be easily placed on the stages of most inverted microscopes. We successfully performed live-cell imaging of cholangiocarcinoma (CCA) cells and HeLa cell dynamics in both 2D and 3D microenvironments over three days. We also analyzed directed cell migration under high serum induction within a microfluidic device. Interesting phenomena such as “whole-colony migration”, “novel type of collective cell migration” and “colony formation during cell and colony migration” are reported here for the first time, to the best of our knowledge. These phenomena may improve our understanding of the nature of cell migration and cancer metastasis. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Graphical abstract

19 pages, 4502 KB  
Article
Mesenchymal Stem Cell and Hematopoietic Stem and Progenitor Cell Co-Culture in a Bone-Marrow-on-a-Chip Device toward the Generation and Maintenance of the Hematopoietic Niche
by Dionysia Kefallinou, Maria Grigoriou, Dimitrios T. Boumpas and Angeliki Tserepi
Bioengineering 2024, 11(8), 748; https://doi.org/10.3390/bioengineering11080748 - 24 Jul 2024
Cited by 2 | Viewed by 4541
Abstract
Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome [...] Read more.
Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome of biomimetic systems, combining the advantages of microfluidic technology with cellular biology to surpass conventional 2D/3D cell culture techniques and animal testing. Bone-marrow-on-a-chip (BMoC) devices are usually focused only on the maintenance of the hematopoietic niche; otherwise, they incorporate at least three types of cells for on-chip generation. We, thereby, introduce a BMoC device that aspires to the purely in vitro generation and maintenance of the hematopoietic niche, using solely mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs), and relying on the spontaneous formation of the niche without the inclusion of gels or scaffolds. The fabrication process of this poly(dimethylsiloxane) (PDMS)-based device, based on replica molding, is presented, and two membranes, a perforated, in-house-fabricated PDMS membrane and a commercial poly(ethylene terephthalate) (PET) one, were tested and their performances were compared. The device was submerged in a culture dish filled with medium for passive perfusion via diffusion in order to prevent on-chip bubble accumulation. The passively perfused BMoC device, having incorporated a commercial poly(ethylene terephthalate) (PET) membrane, allows for a sustainable MSC and HSPC co-culture and proliferation for three days, a promising indication for the future creation of a hematopoietic bone marrow organoid. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

16 pages, 2389 KB  
Review
Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices
by Xiangke Li, Meng Wang, Thomas P. Davis, Liwen Zhang and Ruirui Qiao
Biosensors 2024, 14(6), 301; https://doi.org/10.3390/bios14060301 - 8 Jun 2024
Cited by 8 | Viewed by 3812
Abstract
Three-dimensional (3D) printing presents a compelling alternative for fabricating microfluidic devices, circumventing certain limitations associated with traditional soft lithography methods. Microfluidics play a crucial role in the biomedical sciences, particularly in the creation of tissue spheroids and pharmaceutical research. Among the various 3D [...] Read more.
Three-dimensional (3D) printing presents a compelling alternative for fabricating microfluidic devices, circumventing certain limitations associated with traditional soft lithography methods. Microfluidics play a crucial role in the biomedical sciences, particularly in the creation of tissue spheroids and pharmaceutical research. Among the various 3D printing techniques, light-driven methods such as stereolithography (SLA), digital light processing (DLP), and photopolymer inkjet printing have gained prominence in microfluidics due to their rapid prototyping capabilities, high-resolution printing, and low processing temperatures. This review offers a comprehensive overview of light-driven 3D printing techniques used in the fabrication of advanced microfluidic devices. It explores biomedical applications for 3D-printed microfluidics and provides insights into their potential impact and functionality within the biomedical field. We further summarize three light-driven 3D printing strategies for producing biomedical microfluidic systems: direct construction of microfluidic devices for cell culture, PDMS-based microfluidic devices for tissue engineering, and a modular SLA-printed microfluidic chip to co-culture and monitor cells. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

Back to TopTop