Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = 23Na magnetic resonance imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2935 KiB  
Systematic Review
23Na-MRI for Breast Cancer Diagnosis and Treatment Monitoring: A Scoping Review
by Taylor Smith, Minh Chau, Jordan Sims and Elio Arruzza
Bioengineering 2025, 12(2), 158; https://doi.org/10.3390/bioengineering12020158 - 6 Feb 2025
Cited by 1 | Viewed by 1549
Abstract
(1) Background: Variations in intracellular and extracellular sodium levels have been hypothesized to serve as biomarkers for tumour characterization and therapeutic response. While previous research has explored the feasibility of 23Na-MRI, a comprehensive review of its clinical utility in breast cancer is lacking. [...] Read more.
(1) Background: Variations in intracellular and extracellular sodium levels have been hypothesized to serve as biomarkers for tumour characterization and therapeutic response. While previous research has explored the feasibility of 23Na-MRI, a comprehensive review of its clinical utility in breast cancer is lacking. This scoping review aims to synthesize existing literature on the potential role of 23Na-MRI in breast cancer diagnosis and treatment monitoring. (2) Methods: This review included English-language studies reporting on quantitative applications of 23Na-MRI in breast cancer. Systematic searches were conducted across PubMed, Emcare, Embase, Scopus, Google Scholar, Cochrane Library, and Medline. (3) Results: Seven primary studies met the inclusion criteria, highlighting the ability of 23Na-MRI to differentiate between malignant and benign breast lesions based on elevated total sodium concentration (TSC) in tumour tissues. 23Na-MRI also showed potential in early prediction of treatment response, with significant reductions in TSC observed in responders. However, the studies varied widely in their protocols, use of phantoms, field strengths, and contrast agent application, limiting inter-study comparability. (4) Conclusion: 23Na-MRI holds promise as a complementary imaging modality for breast cancer diagnosis and treatment monitoring. However, standardization of imaging protocols and technical optimization are essential before it can be translated into clinical practice. Full article
Show Figures

Figure 1

18 pages, 3350 KiB  
Review
Beyond the Lumen: Molecular Imaging to Unmask Vulnerable Coronary Plaques
by Geoffrey Currie and Hosen Kiat
J. Cardiovasc. Dev. Dis. 2025, 12(2), 51; https://doi.org/10.3390/jcdd12020051 - 30 Jan 2025
Cited by 1 | Viewed by 1801
Abstract
Vulnerable coronary atherosclerotic plaque involves a dynamic pathophysiologic process within and surrounding an atheromatous plaque in coronary artery intima. The process drastically increases the risk of plaque rupture and is clinically responsible for most cases of acute coronary syndromes, myocardial infarctions, and sudden [...] Read more.
Vulnerable coronary atherosclerotic plaque involves a dynamic pathophysiologic process within and surrounding an atheromatous plaque in coronary artery intima. The process drastically increases the risk of plaque rupture and is clinically responsible for most cases of acute coronary syndromes, myocardial infarctions, and sudden cardiac deaths. Early detection of vulnerable plaque is crucial for clinicians to implement appropriate risk-mitigation treatment strategies, offer timely interventions, and prevent potentially life-threatening events. There is an imperative clinical need to develop practical diagnostic pathways that utilize non-invasive means to risk-stratify symptomatic patients. Since the early 1990s, the identification of vulnerable plaque in clinical practice has primarily relied on invasive imaging techniques. In the last two decades, CT coronary angiogram (CTCA) has rapidly evolved into the prevalent non-invasive diagnostic modality for assessing coronary anatomy. There are now validated plaque appearances on CTCA correlating with plaque vulnerability. It is worth noting that in clinical practice, most CTCA reports omit mention of vulnerable plaque details because spatial resolution (0.3–0.5 mm) is often insufficient to reliably detect some crucial features of vulnerable plaques, such as thin fibrous caps. Additionally, accurately identifying vulnerable plaque features requires substantial expertise and time, which many cardiologists or radiologists may lack in routine reporting. Cardiac magnetic resonance imaging (cMRI) is also non-invasive and allows simultaneous anatomic and functional assessment of coronary plaques. Despite several decades of research and development, routine clinical application of cMRI in coronary plaque imaging remains hampered by complex imaging protocols, inconsistent image quality, and cost. Molecular imaging with radiotracers, specifically positron emission tomography (PET) with sodium fluoride (Na18F PET), have demonstrated significant potential as a sensitive and specific imaging procedure for diagnosing vulnerable coronary artery plaque. The study protocol is robust and brief, requiring minimal patient preparation. Compared to CTCA and cMRI, the diagnostic accuracy of this test is less dependent on the experience and expertise of the readers. Furthermore, validated automated quantitative algorithms complement the visual interpretation of the study, enhancing confidence in the diagnosis. This combination of factors makes Na18F PET a promising tool in cardiology for identifying high-risk coronary plaques. Full article
(This article belongs to the Special Issue Current Practice in Cardiac Imaging)
Show Figures

Figure 1

11 pages, 4367 KiB  
Article
Gray-Level Co-Occurrence Matrix Uniformity Correction Algorithm in Positron Emission Tomographic Image: A Phantom Study
by Kyuseok Kim and Youngjin Lee
Photonics 2025, 12(1), 33; https://doi.org/10.3390/photonics12010033 - 3 Jan 2025
Viewed by 1135
Abstract
High uniformity of positron emission tomography (PET) images in the field of nuclear medicine is necessary to obtain excellent and stable data from the system. In this study, we aimed to apply and optimize a PET/magnetic resonance (MR) imaging system by approaching the [...] Read more.
High uniformity of positron emission tomography (PET) images in the field of nuclear medicine is necessary to obtain excellent and stable data from the system. In this study, we aimed to apply and optimize a PET/magnetic resonance (MR) imaging system by approaching the gray-level co-occurrence matrix (GLCM), which is known to be efficient in the uniformity correction of images. CAIPIRINHA Dixon-VIBE was used as an MR image acquisition pulse sequence for the fast and accurate attenuation correction of PET images, and the phantom was constructed by injecting NaCl and NaCl + NiSO4 solutions. The lambda value of the GLCM algorithm for uniformity correction of the acquired PET images was optimized in terms of energy and contrast. By applying the GLCM algorithm optimized in terms of energy and contrast to the PET images of phantoms using NaCl and NaCl + NiSO4 solutions, average percent image uniformity (PIU) values of 26.01 and 83.76 were derived, respectively. Compared to the original PET image, an improved PIU value of more than 30% was derived from the PET image to which the proposed optimized GLCM algorithm was applied. In conclusion, we demonstrated that an algorithm optimized in terms of the GLCM energy and contrast can improve the uniformity of PET images. Full article
Show Figures

Figure 1

14 pages, 739 KiB  
Case Report
Fatal Fulminant Epstein–Barr Virus (EBV) Encephalitis in Immunocompetent 5.5-Year-Old Girl—A Case Report with the Review of Diagnostic and Management Dilemmas
by Magdalena Mierzewska-Schmidt, Anna Piwowarczyk, Krystyna Szymanska, Michal Ciaston, Edyta Podsiadly, Maciej Przybylski and Izabela Pagowska-Klimek
Biomedicines 2024, 12(12), 2877; https://doi.org/10.3390/biomedicines12122877 - 18 Dec 2024
Cited by 1 | Viewed by 1747
Abstract
Introduction: Epstein–Barr virus (EBV) usually causes mild, self-limiting, or asymptomatic infection in children, typically infectious mononucleosis. The severe course is more common in immunocompromised patients. Neurological complications of primary infection, reactivation of the latent infection, or immune-mediated are well-documented. However, few published cases [...] Read more.
Introduction: Epstein–Barr virus (EBV) usually causes mild, self-limiting, or asymptomatic infection in children, typically infectious mononucleosis. The severe course is more common in immunocompromised patients. Neurological complications of primary infection, reactivation of the latent infection, or immune-mediated are well-documented. However, few published cases of fatal EBV encephalitis exist. Case presentation We report a case of a 5.5-year-old immunocompetent girl with fulminant EBV encephalitis fulfilling the criteria for the recently proposed subtype Acute Fulminant Cerebral Edema: (AFCE). The child presented with fever, vomiting, altered mental status, and ataxia. Her initial brain CT (computed tomography) scan was normal. On day 2 she developed refractory status epilepticus requiring intubation, ventilation, and sedation for airway protection and seizure control. Magnetic resonance imaging (MRI) scan showed cytotoxic brain edema. Despite intensive treatment, including acyclovir, ceftriaxone, hyperosmotic therapy (3% NaCl), intravenous immunoglobulins (IVIG), corticosteroids, as well as supportive management, on day 5 she developed signs of impending herniation. Intensification of therapy (hyperventilation, deepening sedation, mannitol) was ineffective, and a CT scan demonstrated generalized brain edema with tonsillar herniation. EBV primary infection was confirmed by serology and qPCR in blood samples and post-mortem brain tissue. An autopsy was consistent with the early phase of viral encephalitis. Conclusions This case confirms that normal or non-specific CT and MRI scans do not exclude encephalitis diagnosis if clinical presentation fulfills the diagnostic criteria. The implementation of prophylactic anticonvulsants could improve outcomes. Intracranial pressure (ICP) monitoring should be considered in AFCE for better ICP management. Decompressive craniectomy might be a life-saving option in refractory cases. An encephalitis management algorithm is proposed. Full article
(This article belongs to the Special Issue Encephalitis and Viral Infection: Mechanisms and Therapies)
Show Figures

Figure 1

18 pages, 4178 KiB  
Article
Exploring Multi-Parameter Effects on Iron Oxide Nanoparticle Synthesis by SAXS Analysis
by Marco Eigenfeld, Marco Reindl, Xiao Sun and Sebastian P. Schwaminger
Crystals 2024, 14(11), 961; https://doi.org/10.3390/cryst14110961 - 4 Nov 2024
Cited by 1 | Viewed by 1433
Abstract
Iron oxide nanoparticles (IONs) are extensively used in biomedical applications due to their unique magnetic properties. This study optimized ION synthesis via the co-precipitation method, exploring the impact of the reactant concentrations (Fe(II) and Fe(III)), NaOH concentration, temperature (30 °C–80 °C), stirring speed [...] Read more.
Iron oxide nanoparticles (IONs) are extensively used in biomedical applications due to their unique magnetic properties. This study optimized ION synthesis via the co-precipitation method, exploring the impact of the reactant concentrations (Fe(II) and Fe(III)), NaOH concentration, temperature (30 °C–80 °C), stirring speed (0–1000 rpm), and dosing rate (10–600 s) on particle size and growth. Using small-angle X-ray scattering (SAXS), we observed, for example, that higher temperatures (e.g., 67 °C compared with 53 °C) led to a 50% increase in particle size, while the stirring speed and NaOH concentration also influenced nucleation and aggregation. These results provide comprehensive insights into optimizing synthetic conditions for targeted applications in biomedical fields, such as drug delivery and magnetic resonance imaging (MRI), where precise control over nanoparticle size and properties is crucial. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 1631 KiB  
Review
Targeting Sodium in Heart Failure
by Filippos Triposkiadis, Andrew Xanthopoulos and John Skoularigis
J. Pers. Med. 2024, 14(10), 1064; https://doi.org/10.3390/jpm14101064 - 17 Oct 2024
Viewed by 2998
Abstract
A dominant event determining the course of heart failure (HF) includes the disruption of the delicate sodium (Na+) and water balance leading to (Na+) and water retention and edema formation. Although incomplete decongestion adversely affects outcomes, it is unknown [...] Read more.
A dominant event determining the course of heart failure (HF) includes the disruption of the delicate sodium (Na+) and water balance leading to (Na+) and water retention and edema formation. Although incomplete decongestion adversely affects outcomes, it is unknown whether interventions directly targeting (Na+), such as strict dietary (Na+) restriction, intravenous hypertonic saline, and diuretics, reverse this effect. As a result, it is imperative to implement (Na+)-targeting interventions in selected HF patients with established congestion on top of quadruple therapy with angiotensin receptor neprilysin inhibitor, β-adrenergic receptor blocker, mineralocorticoid receptor antagonist, and sodium glucose cotransporter 2 inhibitor, which dramatically improves outcomes. The limited effectiveness of (Na+)-targeting treatments may be partly due to the fact that the current metrics of HF severity have a limited capacity of foreseeing and averting episodes of congestion and guiding (Na+)-targeting treatments, which often leads to dysnatremias, adversely affecting outcomes. Recent evidence suggests that spot urinary sodium measurements may be used as a guide to monitor (Na+)-targeting interventions both in chronic and acute HF. Further, the classical (2)-compartment model of (Na+) storage has been displaced by the (3)-compartment model emphasizing the non-osmotic accumulation of (Na+), chiefly in the skin. 23(Na+) magnetic resonance imaging (MRI) enables the accurate and reliable quantification of tissue (Na+). Another promising approach enabling tissue (Na+) monitoring is based on wearable devices employing ion-selective electrodes for electrolyte detection, including (Na+) and (Cl). Undoubtably, further studies using 23(Na+)-MRI technology and wearable sensors are required to learn more about the clinical significance of tissue (Na+) storage and (Na+)-related mechanisms of morbidity and mortality in HF. Full article
(This article belongs to the Section Disease Biomarker)
Show Figures

Figure 1

13 pages, 1734 KiB  
Article
Hardware and Software Setup for Quantitative 23Na Magnetic Resonance Imaging at 3T: A Phantom Study
by Giulio Giovannetti, Alessandra Flori, Nicola Martini, Filippo Cademartiri, Giovanni Donato Aquaro, Alessandro Pingitore and Francesca Frijia
Sensors 2024, 24(9), 2716; https://doi.org/10.3390/s24092716 - 24 Apr 2024
Cited by 2 | Viewed by 1742
Abstract
Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal [...] Read more.
Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal and the low 23Na gyromagnetic ratio require the design of dedicated radiofrequency (RF) coils tuned to the 23Na Larmor frequency and sequences, as well as the development of dedicated phantoms for testing the image quality, and an MR scanner with multinuclear spectroscopy (MNS) capabilities. In this work, we propose a hardware and software setup for evaluating the potential of 23Na magnetic resonance imaging (MRI) with a clinical scanner. In particular, the reliability of the proposed setup and the reproducibility of the measurements were verified by multiple acquisitions from a 3T MR scanner using a homebuilt RF volume coil and a dedicated sequence for the imaging of a phantom specifically designed for evaluating the accuracy of the technique. The final goal of this study is to propose a setup for standardizing clinical and research 23Na MRI protocols. Full article
Show Figures

Figure 1

16 pages, 4142 KiB  
Article
Whole-Body MRI at Initial Presentation of Chronic Recurrent Multifocal Osteomyelitis, Juvenile Idiopathic Arthritis, Their Overlapping Syndrome, and Non-Specific Arthropathy
by Michał Lanckoroński, Piotr Gietka, Małgorzata Mańczak and Iwona Sudoł-Szopińska
J. Clin. Med. 2024, 13(4), 998; https://doi.org/10.3390/jcm13040998 - 9 Feb 2024
Cited by 5 | Viewed by 1670
Abstract
(1) Background: Whole-body magnetic resonance imaging (WB-MRI) is central to defining total inflammatory burden in juveniles with arthritis. Our aim was to determine and compare the initial distribution of lesions in the WB-MRI in patients with chronic recurrent multifocal osteomyelitis (CRMO), juvenile [...] Read more.
(1) Background: Whole-body magnetic resonance imaging (WB-MRI) is central to defining total inflammatory burden in juveniles with arthritis. Our aim was to determine and compare the initial distribution of lesions in the WB-MRI in patients with chronic recurrent multifocal osteomyelitis (CRMO), juvenile idiopathic arthritis (JIA), their overlapping syndrome (OS), and with Non-specific Arthropathy (NA). (2) Methods: This retrospective single center study was performed on an Avanto 1.5-T MRI scanner with a dedicated multichannel surface coil system. A total of 173 pediatric patients were included with the following final diagnoses: CRMO (15.0%), JIA (29.5%), OS (4.6%), and NA (50.9%). (3) Results: Bone marrow edema (BME) was the most common abnormality, being seen in 100% patients with CRMO, 88% with OS, 55% with JIA, and 11% with NA. The bones of the lower extremities were the most affected in all compared entities. Effusion was seen in 62.5% children with OS, and in 52.9% with JIA, and in CRMO and NA, the exudate was sporadic. Enthesitis was found in 7.8% of patients with JIA and 3.8% with CRMO, and myositis was seen in 12.5% of patients with OS and in 3.9% with JIA. (4) Conclusions: The most frequent indication for WB-MRI in our center was JIA. The most common pathology in all rheumatic entities was BME, followed by effusion mainly seen in in OS and JIA. Enthesitis and myositis were less common; no case was observed in NA. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

18 pages, 16716 KiB  
Article
Intracellular Acidification in a Rat C6 Glioma Model following Cariporide Injection Investigated by CEST-MRI
by Maryam Mozaffari, Nivin N. Nyström, Alex Li, Miranda Bellyou, Timothy J. Scholl and Robert Bartha
Metabolites 2023, 13(7), 823; https://doi.org/10.3390/metabo13070823 - 5 Jul 2023
Cited by 3 | Viewed by 2070
Abstract
Acidification of cancerous tissue induced pharmacologically may slow tumor growth and can be detected using magnetic resonance imaging. Numerous studies have shown that pharmacologically inhibiting specific transporters, such as the Na+/H+ exchanger 1 (NHE1), can alter glycolitic metabolism and affect [...] Read more.
Acidification of cancerous tissue induced pharmacologically may slow tumor growth and can be detected using magnetic resonance imaging. Numerous studies have shown that pharmacologically inhibiting specific transporters, such as the Na+/H+ exchanger 1 (NHE1), can alter glycolitic metabolism and affect tumor acidosis. The sodium proton exchanger inhibitor Cariporide can acidify U87MG gliomas in mice. This study aimed to determine whether Cariporide could acidify C6 glioma tumors in rats with an intact immune system. C6 glioma cells were implanted in the right brain hemisphere of ten rats. Chemical exchange saturation transfer (CEST) MRI (9.4T) was acquired on days 7–8 and 14–15 after implantation to measure in vivo tissue intracellular pH (pHi) within the tumors and on the contralateral side. pHi was basic relative to contralateral tissue at both time points assessed using the amine and amide concentration-independent detection (AACID) value. On day 14–15, measurements were made before and up to 160 min after Cariporide injection (N = 6). Twenty minutes after drug injection, the average AACID value in the tumor significantly increased by ∼6.4% compared to pre-injection, corresponding to 0.31 ± 0.20 lower pHi, while in contralateral tissue, AACID value increased significantly by ∼4.3% compared to pre-injection, corresponding to 0.22 ± 0.19 lower pHi. Control rats without tumors showed no changes following injection of Cariporide dissolved in 10% or 1% DMSO and diluted in PBS. This study demonstrates the sensitivity of CEST-based pH-weighted imaging for monitoring the response of tumors to pharmacologically induced acidification. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Graphical abstract

16 pages, 692 KiB  
Review
Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease
by Alireza Akbari and Christopher W. McIntyre
J. Clin. Med. 2023, 12(13), 4381; https://doi.org/10.3390/jcm12134381 - 29 Jun 2023
Cited by 6 | Viewed by 2391
Abstract
Sodium imbalance is a hallmark of chronic kidney disease (CKD). Excess tissue sodium in CKD is associated with hypertension, inflammation, and cardiorenal disease. Sodium magnetic resonance imaging (23Na MRI) has been increasingly utilized in CKD clinical trials especially in the past [...] Read more.
Sodium imbalance is a hallmark of chronic kidney disease (CKD). Excess tissue sodium in CKD is associated with hypertension, inflammation, and cardiorenal disease. Sodium magnetic resonance imaging (23Na MRI) has been increasingly utilized in CKD clinical trials especially in the past few years. These studies have demonstrated the association of excess sodium tissue accumulation with declining renal function across whole CKD spectrum (early- to end-stage), biomarkers of systemic inflammation, and cardiovascular dysfunction. In this article, we review recent advances of 23Na MRI in CKD and discuss its future role with a focus on the skin, the heart, and the kidney itself. Full article
(This article belongs to the Special Issue Recent Advances in Kidney Disease Imaging)
Show Figures

Figure 1

19 pages, 1630 KiB  
Review
The Central Noradrenergic System in Neurodevelopmental Disorders: Merging Experimental and Clinical Evidence
by Alessandro Galgani, Emanuele Bartolini, Marta D’Amora, Ugo Faraguna and Filippo Sean Giorgi
Int. J. Mol. Sci. 2023, 24(6), 5805; https://doi.org/10.3390/ijms24065805 - 18 Mar 2023
Cited by 10 | Viewed by 5214
Abstract
The aim of this article is to highlight the potential role of the locus-coeruleus–noradrenergic (LC-NA) system in neurodevelopmental disorders (NdDs). The LC is the main brain noradrenergic nucleus, key in the regulation of arousal, attention, and stress response, and its early maturation and [...] Read more.
The aim of this article is to highlight the potential role of the locus-coeruleus–noradrenergic (LC-NA) system in neurodevelopmental disorders (NdDs). The LC is the main brain noradrenergic nucleus, key in the regulation of arousal, attention, and stress response, and its early maturation and sensitivity to perinatal damage make it an interesting target for translational research. Clinical data shows the involvement of the LC-NA system in several NdDs, suggesting a pathogenetic role in the development of such disorders. In this context, a new neuroimaging tool, LC Magnetic Resonance Imaging (MRI), has been developed to visualize the LC in vivo and assess its integrity, which could be a valuable tool for exploring morphological alterations in NdD in vivo in humans. New animal models may be used to test the contribution of the LC-NA system to the pathogenic pathways of NdD and to evaluate the efficacy of NA-targeting drugs. In this narrative review, we provide an overview of how the LC-NA system may represent a common pathophysiological and pathogenic mechanism in NdD and a reliable target for symptomatic and disease-modifying drugs. Further research is needed to fully understand the interplay between the LC-NA system and NdD. Full article
Show Figures

Figure 1

22 pages, 4407 KiB  
Article
Novel Salinomycin-Based Paramagnetic Complexes—First Evaluation of Their Potential Theranostic Properties
by Irena Pashkunova-Martic, Rositsa Kukeva, Radostina Stoyanova, Ivayla Pantcheva, Peter Dorkov, Joachim Friske, Michaela Hejl, Michael Jakupec, Mariam Hohagen, Anton Legin, Werner Lubitz, Bernhard K. Keppler, Thomas H. Helbich and Juliana Ivanova
Pharmaceutics 2022, 14(11), 2319; https://doi.org/10.3390/pharmaceutics14112319 - 28 Oct 2022
Cited by 7 | Viewed by 2328
Abstract
Combining therapeutic with diagnostic agents (theranostics) can revolutionize the course of malignant diseases. Chemotherapy, hyperthermia, or radiation are used together with diagnostic methods such as magnetic resonance imaging (MRI). In contrast to conventional contrast agents (CAs), which only enable non-specific visualization of tissues [...] Read more.
Combining therapeutic with diagnostic agents (theranostics) can revolutionize the course of malignant diseases. Chemotherapy, hyperthermia, or radiation are used together with diagnostic methods such as magnetic resonance imaging (MRI). In contrast to conventional contrast agents (CAs), which only enable non-specific visualization of tissues and organs, the theranostic probe offers targeted diagnostic imaging and therapy simultaneously. Methods: Novel salinomycin (Sal)-based theranostic probes comprising two different paramagnetic metal ions, gadolinium(III) (Gd(III)) or manganese(II) (Mn(II)), as signal emitting motifs for MRI were synthesized and characterized by elemental analysis, infrared spectral analysis (IR), electroparamagnetic resonance (EPR), thermogravimetry (TG) differential scanning calorimetry (DSC) and electrospray ionization mass spectrometry (ESI-MS). To overcome the water insolubility of the two Sal-complexes, they were loaded into empty bacterial ghosts (BGs) cells as transport devices. The potential of the free and BGs-loaded metal complexes as theranostics was evaluated by in vitro relaxivity measurements in a high-field MR scanner and in cell culture studies. Results: Both the free Sal-complexes (Gd(III) salinomycinate (Sal-Gd(III) and Mn(II) salinomycinate (Sal-Mn(II)) and loaded into BGs demonstrated enhanced cytotoxic efficacy against three human tumor cell lines (A549, SW480, CH1/PA-1) relative to the free salinomycinic acid (Sal-H) and its sodium complex (Sal-Na) applied as controls with IC50 in a submicromolar concentration range. Moreover, Sal-H, Sal-Gd(III), and Sal-Mn(II) were able to induce perturbations in the cell cycle of treated colorectal and breast human cancer cell lines (SW480 and MCF-7, respectively). The relaxivity (r1) values of both complexes as well as of the loaded BGs, were higher or comparable to the relaxivity values of the clinically applied contrast agents gadopentetate dimeglumine and gadoteridol. Conclusion: This research is the first assessment that demonstrates the potential of Gd(III) and Mn(II) complexes of Sal as theranostic agents for MRI. Due to the remarkable selectivity and mode of action of Sal as part of the compounds, they could revolutionize cancer therapy and allow for early diagnosis and monitoring of therapeutic follow-up. Full article
Show Figures

Figure 1

23 pages, 4854 KiB  
Review
The Performance of FDA-Approved PET Imaging Agents in the Detection of Prostate Cancer
by Mei Li, Roman Zelchan and Anna Orlova
Biomedicines 2022, 10(10), 2533; https://doi.org/10.3390/biomedicines10102533 - 10 Oct 2022
Cited by 16 | Viewed by 3587
Abstract
Positron emission tomography (PET) incorporated with X-ray computed tomography (PET/CT) or magnetic resonance imaging (PET/MRI) is increasingly being used as a diagnostic tool for prostate cancer (PCa). In this review, we describe and evaluate the clinical performance of some Food and Drug Administration [...] Read more.
Positron emission tomography (PET) incorporated with X-ray computed tomography (PET/CT) or magnetic resonance imaging (PET/MRI) is increasingly being used as a diagnostic tool for prostate cancer (PCa). In this review, we describe and evaluate the clinical performance of some Food and Drug Administration (FDA)-approved agents used for visualizing PCa: [18F]FDG, [11C]choline, [18F]FACBC, [68Ga]Ga-PSMA-11, [18F]DCFPyL, and [18F]-NaF. We carried out a comprehensive literature search based on articles published from 1 January 2010 to 1 March 2022. We selected English language articles associated with the discovery, preclinical study, clinical study, and diagnostic performance of the imaging agents for the evaluation. Prostate-specific membrane antigen (PSMA)-targeted imaging agents demonstrated superior diagnostic performance in both primary and recurrent PCa, compared with [11C]choline and [18F]FACBC, both of which target dividing cells and are used especially in patients with low prostate-specific antigen (PSA) values. When compared to [18F]-NaF (which is suitable for the detection of bone metastases), PSMA-targeted agents were also capable of detecting lesions in the lymph nodes, soft tissues, and bone. However, a limitation of PSMA-targeted imaging was the heterogeneity of PSMA expression in PCa, and consequently, a combination of two PET tracers was proposed to overcome this obstacle. The preliminary studies indicated that the use of PSMA-targeted scanning is more cost efficient than conventional imaging modalities for high-risk PCa patients. Furthering the development of imaging agents that target PCa-associated receptors and molecules could improve PET-based diagnosis of PCa. Full article
Show Figures

Figure 1

10 pages, 16661 KiB  
Article
Facile Synthesis of Black Phosphorus Nanosheet@NaReF4 Nanocomposites for Potential Bioimaging
by Dongya Wang, Jingcan Qin, Chuan Zhang and Yuehua Li
Nanomaterials 2022, 12(19), 3383; https://doi.org/10.3390/nano12193383 - 27 Sep 2022
Cited by 5 | Viewed by 2141
Abstract
Black phosphorus nanomaterials (BPN) have been well developed in tumor therapy. However, lack of diagnostic function limits the development of BPN in biomedicine. Lanthanide-doped nanoparticles are considered as versatile materials for fluorescence or magnetic resonance imaging. Integration of BPN with lanthanide-doped nanoparticles was [...] Read more.
Black phosphorus nanomaterials (BPN) have been well developed in tumor therapy. However, lack of diagnostic function limits the development of BPN in biomedicine. Lanthanide-doped nanoparticles are considered as versatile materials for fluorescence or magnetic resonance imaging. Integration of BPN with lanthanide-doped nanoparticles was rarely reported owing to the complex synthesis processes and poor modification effect. Herein, we report a simple and general method for synthesizing BPN@NaReF4 (Re: Gd or Y, Yb, Er) nanocomposite. TEM and XRD characterization confirm efficient combination of BPN and NaGdF4 or NaYF4:Yb,Er (18.2 mol %) after one-step mixing. The FTIR and XPS spectra were used to prove the generation of PO43-Gd and P-Gd coordination bonds and clarify ligand exchange mechanism. The anchored nanoparticles on BPN were stable and become hydrophilic. The prepared BPN@NaGdF4 exhibit the signals of photoacoustic and magnetic resonance imaging. The obtained BPN@NaYF4:Yb,Er (18.2 mol %) have the potential in fluorescence bioimaging. We believe that this work will expand the applications of BPN in diagnosis and therapy together. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 4616 KiB  
Article
Evaluation of Sodium Relaxation Times and Concentrations in the Achilles Tendon Using MRI
by Benedikt Kamp, Miriam Frenken, Lena Klein-Schmeink, Armin M. Nagel, Lena M. Wilms, Karl Ludger Radke, Styliani Tsiami, Philipp Sewerin, Xenofon Baraliakos, Gerald Antoch, Daniel B. Abrar, Hans-Jörg Wittsack and Anja Müller-Lutz
Int. J. Mol. Sci. 2022, 23(18), 10890; https://doi.org/10.3390/ijms231810890 - 17 Sep 2022
Cited by 6 | Viewed by 2572
Abstract
Sodium magnetic resonance imaging (MRI) can be used to evaluate the change in the proteoglycan content in Achilles tendons (ATs) of patients with different AT pathologies by measuring the 23Na signal-to-noise ratio (SNR). As 23Na SNR alone is difficult to compare [...] Read more.
Sodium magnetic resonance imaging (MRI) can be used to evaluate the change in the proteoglycan content in Achilles tendons (ATs) of patients with different AT pathologies by measuring the 23Na signal-to-noise ratio (SNR). As 23Na SNR alone is difficult to compare between different studies, because of the high influence of hardware configurations and sequence settings on the SNR, we further set out to measure the apparent tissue sodium content (aTSC) in the AT as a better comparable parameter. Ten healthy controls and one patient with tendinopathy in the AT were examined using a clinical 3 Tesla (T) MRI scanner in conjunction with a dual tuned 1H/23Na surface coil to measure 23Na SNR and aTSC in their ATs. 23Na T1 and T2* of the AT were also measured for three controls to correct for different relaxation behavior. The results were as follows: 23Na SNR = 11.7 ± 2.2, aTSC = 82.2 ± 13.9 mM, 23Na T1 = 20.4 ± 2.4 ms, 23Na T2s* = 1.4 ± 0.4 ms, and 23Na T2l* = 13.9 ± 0.8 ms for the whole AT of healthy controls with significant regional differences. These are the first reported aTSCs and 23Na relaxation times for the AT using sodium MRI and may serve for future comparability in different studies regarding examinations of diseased ATs with sodium MRI. Full article
(This article belongs to the Special Issue Highlights in Pathophysiology of the Musculoskeletal System)
Show Figures

Figure 1

Back to TopTop