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Abstract: The aim of this article is to highlight the potential role of the locus-coeruleus–noradrenergic
(LC-NA) system in neurodevelopmental disorders (NdDs). The LC is the main brain noradrenergic
nucleus, key in the regulation of arousal, attention, and stress response, and its early maturation and
sensitivity to perinatal damage make it an interesting target for translational research. Clinical data
shows the involvement of the LC-NA system in several NdDs, suggesting a pathogenetic role in the
development of such disorders. In this context, a new neuroimaging tool, LC Magnetic Resonance
Imaging (MRI), has been developed to visualize the LC in vivo and assess its integrity, which could
be a valuable tool for exploring morphological alterations in NdD in vivo in humans. New animal
models may be used to test the contribution of the LC-NA system to the pathogenic pathways of
NdD and to evaluate the efficacy of NA-targeting drugs. In this narrative review, we provide an
overview of how the LC-NA system may represent a common pathophysiological and pathogenic
mechanism in NdD and a reliable target for symptomatic and disease-modifying drugs. Further
research is needed to fully understand the interplay between the LC-NA system and NdD.

Keywords: locus coeruleus; noradrenaline; neurodevelopment; developmental disorders; autism;
ADHD; neuropediatric; neurogenesis; childhood epilepsy

1. Introduction

The central noradrenergic system plays crucial roles in maintaining the homeostasis
of the adult brain and influences various neural networks that control cognition and be-
havior. The main source of noradrenaline (NA) in the human brain is the locus coeruleus
(LC), a pontine nucleus that supplies NA to the entire central nervous system (CNS),
except for the basal ganglia. In recent years, the involvement of this nucleus in adult
neurological disorders has been increasingly recognized, not only thanks to sophisticated
neuropathological postmortem analysis in patients and several experimental models, but
also to advances in neuroimaging tools that eventually enabled the in vivo study of LC
integrity [1]. These findings have led to the hypothesis that LC impairment may play a
key role in neurodegenerative disorders (namely, Parkinson’s disease, and Alzheimer’s
disease), in parallel with further emphasizing the significance of this nucleus in CNS
physiology. These findings prompt further investigation into the LC-NA system in other
medical conditions and raise questions about what changes might occur in the LC during
infantile disorders and how these changes may impact the pathophysiology and occurrence
of neurodevelopmental diseases (NdD). According to the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR), NdD are characterized by de-
velopmental deficits or differences in brain processes that produce impairment of personal,
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social, academic, or occupational functioning. NdDs comprise intellectual disability (ID),
communication disorders, autism spectrum disorder (ASD); attention-deficit/hyperactivity
disorder (ADHD), neurodevelopmental motor disorders—including tic disorders—and
specific learning disorders [2].

In this review, we aim to provide a general perspective on the LC-NA system in
neurodevelopment and infancy, framing the current physiological knowledge within the
clinical spectrum of NdD. In particular, an overview of the following aspects will be
provided: (a) LC ontogenesis; (b) the role of LC in neurodevelopment; (c) clinical evidence
and experimental findings supporting LC-NA impairment in NdD. Then, we will discuss
the possible pathogenic role of LC involvement based on the abovementioned points and
eventually propose future experimental and clinical studies that may profit from innovative
in vivo tools and animal models.

2. Methods

We performed a two-stage literature search using the pubmed.ncbi.nlm.nih.gov search
platform. In the first stage, we searched for papers describing LC ontogeny and its involve-
ment in CNS development, using the following keywords: “locus coeruleus”, “ontogeny”,
“development”, “brain development”, and “embryogenesis.” In the second stage, we
searched for papers reporting data on the involvement of the LC-NA system in NdDs; the
keywords used were “locus coeruleus,” “norepinephrine,” “neurodevelopmental disor-
ders,” “autism spectrum disorders,” “ADHD,” and “childhood neurological disorders.”
We included only original articles written in English. Figure 1 shows the flow chart of the
literature search. The review of collected studies was performed by three of the authors
(AG; EB; FSG). The selected papers were used to write the descriptive sections of the review
(Sections 4–8), which report the results of the systematic review of the literature. The
introductory sections (Sections 1 and 2) and discussion sections (Sections 9 and 10) were
written by referring also to original articles, review papers, and book chapters authored by
prominent researchers in the field of LC-NA system physiology and pathology. It should be
mentioned right away that, concerning clinical articles, only studies about ASD and ADHD
were found. The review is not registered, and no review protocol has been prepared.
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are summarized in Figure 2. From the LC, NA fibers reach their target by forming three 
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forebrain; (ii) a cerebellar path, which projects to the cerebellum; and (iii) a descending 
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two different mechanisms. One is the “classical” synaptic transmission, which takes place 
at the level of axon terminals, where NA is released from neurotransmitter vesicles into 
the synaptic cleft. This is called “wiring transmission” [13]. The other mechanism is typical 
of neurons belonging to the reticular formation and involves varicosities placed along the 
LC axons, which release NA in a paracrine fashion, thus modulating the activity of a broad 
area, irrespective of the cellular target. The latter is called “volume transmission” [13]. LC-
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Figure 1. The workflow of the literature search is reported in the flowchart. The search was performed
on pubmed.ncbi.nlm.nih.gov using the key words reported in the paragraph “Methods”. A final set
of 68 papers were used to write the systematic part of the review. * Articles cited as [3–10] are review
papers used to provide a clinical and pharmacological background and are thus not included in the
final count.

3. LC Anatomy and Basic Description of Its Functions

The LC is located in the rostral portion of the pons, right below the floor of the
fourth ventricle [11]. In humans, it is formed by approx. 40,000–60,000 neurons that
are organized in an elongated column, and it receives input from several brain regions,
including the hypothalamus, raphe nuclei, and basal forebrain. The LC is richly innervated
by noradrenergic, serotonergic, and cholinergic neurons, and it receives both excitatory
and inhibitory inputs from these sources [12].

As already said, the LC has a widespread and dense projection system that reaches
virtually the whole CNS, including the cortex, hippocampus, amygdala, and spinal cord.
Anatomical and functional connections between the LC and the other parts of the CNS
are summarized in Figure 2. From the LC, NA fibers reach their target by forming three
pathways: (i) an ascending path, which provides the NA innervation of the midbrain and
forebrain; (ii) a cerebellar path, which projects to the cerebellum; and (iii) a descending
path, which innervates the medulla and spinal cord [12]. LC axons release NA through two
different mechanisms. One is the “classical” synaptic transmission, which takes place at
the level of axon terminals, where NA is released from neurotransmitter vesicles into the
synaptic cleft. This is called “wiring transmission” [13]. The other mechanism is typical of
neurons belonging to the reticular formation and involves varicosities placed along the LC
axons, which release NA in a paracrine fashion, thus modulating the activity of a broad area,
irrespective of the cellular target. The latter is called “volume transmission” [13]. LC-NA
exerts its several modulatory roles by acting on adrenoceptors, namely α1, α2, and β ones.
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A1 and β adrenoceptors are mainly post-synaptic and excitatory, while α2 are both pre- and
post-synaptic and inhibitory [14]. However, the effect of LC-NA innervation is particularly
complex and cannot be described only on the basis of targeted receptors. As an example, in
sensory cortices, it produces a “signal-to-noise” reduction effect by promoting the activity
of neurons specifically receiving the stimuli and inhibiting, at the same time, surrounding
neurons [15]. In the prefrontal and temporal cortex, the LC has been shown to modulate
the areas that play a critical role in the regulation of arousal and attention [16,17]. In the
hippocampus, the LC modulates memory processes (both encoding and retrieval) [18,19],
and in the amygdala, it takes part in emotional behavior [20].
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memory. (Created with Biorender.com, accessed on 15 March 2023). Abbreviations: ANP: 
Ascending Noradrenergic Pathway; CNP: cerebellar noradrenergic pathway; CNS: central nervous 
system; CRN: caudal raphe nuclei; DNP: descendent noradrenergic pathway; DRN: dorsal raphe 
nucleus; LC: locus coeruleus; LDT: lateral dorsal tegmental nucleus; LHA: lateral hypothalamic 
area; NA: noradrenaline; PPT: pedunculo-pontine tegmental nucleus; PVN: paraventricular 
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[31,32]. In human embryogenesis, tyrosine hydroxylase (TH)- and dopamine-β-
hydroxylase (DBH)- positive cells appear in this region approximately at the fifth 
gestational week [33]. Within the thirteenth week, noradrenergic innervation of the 
cortical plate is already detectable, expanding rostro-caudally from frontal to occipital 
regions [34]. Such an early origin might involve only the NA cells of the LC, as animal 
evidence suggests that they are already quite differentiated in fetuses [35] and that non-
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Figure 2. The LC provides a dense and widespread system of projections that virtually reaches
the whole CNS. From the anatomical nucleus, NA fibers travels segmented into three pathways:
an ascending pathway (ANP) through which the LC reaches the midbrain and the forebrain, a
cerebellar pathway (CNP), and a descending pathway (DNP), which carries the NA fibers for the
lower pons, the medulla, and the spinal cord. Through such anatomical connections, the LC enters
the circuitries of the sleep/wake cycle and circadian rhythms regulatory nuclei and of autonomic
system modulatory nuclei. Rostrally, the LC reaches the limbic system and the neocortex, taking
part in the complex orchestration of cognitive and behavioral functions, such as attention and
memory. (Created with Biorender.com, accessed on 15 March 2023). Abbreviations: ANP: Ascending
Noradrenergic Pathway; CNP: cerebellar noradrenergic pathway; CNS: central nervous system;
CRN: caudal raphe nuclei; DNP: descendent noradrenergic pathway; DRN: dorsal raphe nucleus;
LC: locus coeruleus; LDT: lateral dorsal tegmental nucleus; LHA: lateral hypothalamic area; NA:
noradrenaline; PPT: pedunculo-pontine tegmental nucleus; PVN: paraventricular nucleus; RVLM:
rostral ventro-lateral medulla; SCN: suprachiasmatic nucleus; VLPO: ventro-lateral preoptic area;
W/S: wake and sleep cycle.
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Furthermore, LC-NA terminals influence those target areas not only by directly reg-
ulating the activity of neurons and interneurons [12], but also indirectly by modulating
astrocytes functions and neurovascular response [21].

The LC also plays a role in the regulation of the sleep/wake cycle through a variety of
mechanisms [22] and alterations in its activity have been implicated in sleep disorders [23].
The LC is a key station of the ascending reticular activating system (ARAS) [24], and it
works as a wake-promoting nucleus [22]. It projects to the cholinergic neurons of the basal
forebrain, the dopaminergic neurons of the ventral tegmental area and the orexinergic
cells of the lateral hypothalamus, through whose stimulation it prompts cortical activity
and EEG desynchronization [25]. GABAergic fibers from the anterior hypothalamus and
GABAergic interneurons located next to the LC itself provide the inhibitory input, which
reduces LC activity, in turn promoting sleep onset [23].

Furthermore, LC takes part in the modulation of circadian rhythms, projecting to the
hypothalamus [26]. The connections between these two areas of the CNS also underlie the
regulation of many autonomic and endocrine pathways, such as heart rate, blood pressure,
and release of steroid hormones [27]. Finally, the LC also plays a role in the regulation of
the stress response, and its activity is altered in stress-related disorders such as anxiety and
depression [28–30].

4. LC Ontogenesis

LC originates within the rhombomere 1 of the developing hindbrain, the same part
from which the cerebellum, the trigeminal, and the vestibular sensory column form [31,32].
In human embryogenesis, tyrosine hydroxylase (TH)- and dopamine-β-hydroxylase (DBH)-
positive cells appear in this region approximately at the fifth gestational week [33]. Within
the thirteenth week, noradrenergic innervation of the cortical plate is already detectable,
expanding rostro-caudally from frontal to occipital regions [34]. Such an early origin
might involve only the NA cells of the LC, as animal evidence suggests that they are
already quite differentiated in fetuses [35] and that non-NA neurons might take longer
to fully develop [36]. It is worth noting that the rapid ontogenesis of LC—as a neuronal
cluster—is paralleled by the development and differentiation of its vascularization, with
capillaries showing well-formed walls and organized blood–brain barrier features already
in these early phases [35]. After birth, LC continues to develop and differentiate [37],
with a progressive increase in the neuronal total count and separation into two clusters,
one anterior and one posterior, possibly suggesting a topographical division of projection
targets and functions [38]. At the same time, the NA forebrain innervation shows a huge
growth, as witnessed by the increase in noradrenaline transporter (NAT) positivity, which
rapidly reaches the levels observed in adulthood [39].

From a molecular perspective, LC ontogenesis is a very complex process, which
requires the orchestration of many growth factors [40–43]. Bone morphogenetic proteins 2,
5, and 7; fibroblast growth factor 8; and the protein of the Wnt families have been found
to stimulate the growth of TH-positive neurons of the LC [41]. A pivotal role seems to be
played by the transcriptional factors Phox2a and Phox2b, which are mandatory for LC
development in the context of the rhombomere 1 [43,44], promoting the expression of the
DBH and NAT genes [42]. This molecular interplay is probably also modulated by target
regions of LC themselves; in fact, in vitro evidence shows that in the co-culture of LC-NA
and hippocampal cells, the latter promote the maturation of the formers [45,46].

5. Susceptibility of LC to Different Insults during Ontogenesis and Post-Natal
Development

LC is particularly susceptible to damage caused by a variety of insults in the adult [47],
and a similar sensitivity might be hypothesized to occur also during its fetal and post-
gestational development [48–51].

Among the possible damaging causes, hypoxia has been studied more systematically
and offers the largest body of evidence [48–51]. LC is particularly sensitive to hypoxic
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damage, which may lead to the morphological and cellular disruption of the nucleus
during its ontogenesis and post-natal development [35]. In two neuropathological case
series of sudden unexplained perinatal death, Lavezzi and colleagues showed a significant
reduction in TH staining in the LC of human fetuses and newborns. [49,50]. The authors
themselves suggested that the disruption of LC development might have contributed to
the death of those infants, maybe hampering the normal functioning of the respiratory
centers, in the regulation of which LC plays a key role [52]. More interestingly, Lavezzi and
colleagues observed the occurrence of an association between maternal smoking and LC
damage [49,50], suggesting hypoxia as a possible cause, mediated directly by the high level
of CO in maternal blood and indirectly by the vasoconstrictive effect of nicotine [49].

In line with this data, another neuropathological study assessed LC integrity in infants
who died in concomitance with hypoxic/ischemic injury [51]. The authors found that LC
was the monoaminergic nucleus that suffered the worst damage from hypoxia, especially
when prolonged and of moderate severity [51].

Beyond hypoxic/ischemic damage, the development of LC might also be compromised
by other harmful substances or events, such as polluting compounds, which can be espe-
cially damaging during its ontogenesis [53]. For, bisphenol A (BPA), an industrial-derived
xenoestrogen and common pollutant [54], has been associated with LC development dis-
ruption in a study in rodents [55]. Incidentally, BPA has also been linked to NdD, such as
ASD [56,57].

Finally, some studies have associated maternal malnourishment with the alteration of
NA innervation development and the impairment of frontal/attentive functions [58–60].

6. The Role of LC-NA Innervation in the Ontogenesis of CNS and Possible
Consequences of Its Alteration

Beyond proper LC development and its modulation, the central NA system plays
an important role in regulating and stimulating the ontogenesis of other areas of the
CNS [61–71]. As mentioned, LC projections are already established during fetal life and
can exert their effect on target areas [72].

Thus, the influence of the NA system on brain ontogenesis probably starts since the
earliest stages of CNS development; NA neurons appear at the fifth gestational week in
humans, and they can exert their modulation both in a paracrine and a synaptic fash-
ion [72]. Studies performed in various animal species suggest that NA might promote
the differentiation of neuronal progenitors from ectodermal cells [61,62]. In those studies,
the authors administered exogenous NA or NA antagonists, observing an increase or a
reduction, respectively, in neurogenesis [61,62]. Paralleling these findings, other studies
found that the correct expression and functioning of NAT are crucial for the physiological
neuronal differentiation in the developing brain, for both NA and non-NA neurons [63–65].

In the following stages of brain pre-natal development, NA might influence, together
with other catecholamines, the differentiation and structural organization of the fore-
brain [66–71] and of the spinal cord [3]. The loss of NA might bear detrimental conse-
quences on the development of the cortex; in primates, it has been observed that the
administration of cocaine, which is responsible for transient NA depletion [68], alters the
normal cortical development, reducing the count of neurons and disrupting the cortical
architecture [69]. This functional evidence is then supported by histological studies, which
revealed the occurrence of adrenoceptor and noradrenergic innervation in the periventric-
ular zone [71] and in the developing cortical plate [70]; while in the first area, NA might
exert a modulating effect of progenitor stem cells proliferation [71], in the cortical plate, it
might play an active role in promoting cortex differentiation and formation of layers [70].

Finally, it is worth noting that NA keeps exerting its modulatory effects on neuronal
development also in the post-natal period and even in adult life, although more weakly
than during prenatal development [66]. Noradrenaline regulates synaptogenesis in the
earliest phases of post-natal life, as has been observed in the visual cortex of rats [67]; in
this study, the loss of NA innervation was linked to hyperactive synaptogenesis, leading
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to aberrant functioning of cortical networks [67]. In the adult, NA has been linked to
hippocampal neurogenesis, even though the specific role in its regulation, i.e., whether it is
promoting [73–76] or inhibiting [77], has not been clarified yet.

7. Preclinical Data Links NdD Symptoms with LC-NA System Dysfunction

Considering the early maturation of the LC and its role in brain development, it is
not surprising that many researchers have hypothesized that alterations of the central
noradrenergic system during critical periods might promote the onset of NdD. Despite its
potential interest, only a few experimental studies on animal models of NdD have been
performed and provide limited information. In particular, we included only three of those
in this review, as they specifically focused on the LC-NA system in well-defined animal
models of NdD [78–80]. The first two studies we selected focused on ADHD, particularly
on the possible noradrenergic genesis of attention impairment and hyperactivity [78,79].

In particular, in 1995, de Villiers and colleagues tested the effect of brimonidine, an α2
adrenoceptor agonist, on spontaneously hypertensive rats (SHRs), which are considered
an animal model for ADHD [78]. The authors based their experiment on the hypothe-
sis that in SHR, there is a hyperactivation of the LC-NA system, which in turn inhibits
dopamine release in the nucleus accumbens. Indeed, they found increased levels of NA
and dopamine in the brains of SHRs, particularly in the prefrontal cortex and in the LC.
However, brimonidine did not exert a specific effect on dopamine release and concentration.
The authors suggested that a much more complex mechanism might underlie the interplay
between these two biochemical systems, which could not be dissected using only their
pharmacological approach. Nonetheless, they clearly showed that increased levels of NA
are associated with ADHD-like symptoms [78]. In 2003, Jones and Hess performed another
animal study, whose findings supported this evidence. They used the coloboma mouse
model, which is considered another animal model for ADHD and spontaneously exhibits
locomotor hyperactivity [79]. This abnormal behavior might be due to LC-NA system
dysregulation, resulting from the reduction in the pre-synaptic protein SNAP-25, which is
implied in NA release. Indeed, the authors lesioned the LC-NA system in these animals by
DSP-4 administration and observed a dramatic reduction in locomotor hyperactivity. They
interpreted that finding as proof supporting the hypothesis of the noradrenergic genesis of
ADHD-like symptoms in those animals [79,80].

The third study we found was published in 2021 by Yin and colleagues, which explored
the role of the LC-NA system in motor learning in an ADS animal model. Specifically, they
studied the 16p11.2 deletion mouse model, which carries a genetic mutation commonly
detected in ADS patients and found that the impairment of motor learning typically
observed in this model was associated with abnormal functioning of the motor cortex
network, whose activity was restored by pharmacogenetic activation of the LC-NA system.
This resulted in the rescue of motor learning ability, and the authors interpreted this finding
as evidence of the possible role of the LC-NA system in the pathophysiology of ADS [80].

8. Clinical Evidence of LC-NA System Involvement in NdD

The low number of preclinical studies parallels that of clinical investigations, which
mainly focus on ASD and ADHD [4,81–83]. In ASD, an LC dysfunction has been proposed
as a promoter of aberrant attentional function and altered neuromodulation [5,6]. As
far as we know, LC integrity in vivo has been only tested by the indirect pupillometric
assessment—a reliable surrogate marker of noradrenaline activity—which has indeed
shown pupillary dilation is impaired in children with ASD [5] or through functional
MRI [84], while no LC structural MRI studies have been performed thus far.

ASD includes a broad range of disorders mainly characterized by the impairment of
social skills and cognitive alterations, such as repetitive behavior and attention deficit [7].
The proper control of attentive function requires two phases, namely alerting and orienting.
Alerting is the ability to detect the occurrence of a new stimulus in the context of quiet
or active arousal, while orienting is the ability to spatially localize the stimulus in the
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environment [5]. Both these steps are modulated by LC activity and are impaired in
ASD children [6,17,85]. The interplay between NA activity, attention function, and ASD
is supported by neuroimaging evidence. In 2021, Huang and colleagues studied the
functional connectivity between the LC and the cortex in a group of ASD children and
showed an impairment of the LC projection system toward several cortical areas, including
the ones involved in somatosensory perception and attention [86]. Pupillometric studies
further supported the impairment of the LC-NA system in these patients. ASD children
show a larger resting-state pupil diameter (RSPD), which is linked to the tonic activity
of LC, while abnormal diameter variations were observed after specific stimuli or tasks
(task/stimulus-evoked pupil dilation response (EPDR)) [87–91], the latter parameter being
associated with LC phasic activity [89]. The degrees of alteration of RSPD and EPDR were
directly related one to another, supporting the hypothesis of a global dysfunction of the
LC-NA system. Interestingly, EPDR was not merely reduced when compared to control
patients, but showed an aberrant behavior, with lower response to social stimuli and higher
to visual [92] or non-social ones [90,93,94].

An abnormal pupillary response was also found in ADHD patients, who suffer an
attention impairment along with disorganization, and/or hyperactivity-impulsivity [8].
ADHD patients showed a strong increase in RSPD and dramatic alterations in EPDR,
which could be almost suppressed [87,95], or were unusually hyperreactive to emotional
stimuli [96]. Furthermore, an abnormal timeframe of pupil response was also observed in
ADHD [97]. When performing this cognitive task, in normal conditions, the expected pupil-
lary response is a mydriatic reaction (“cognitive shift”) followed by a reduction in diameter
(“consecutive correction”). This progression of EPDR has been linked to specific patterns
of LC functioning: a sudden increase in phasic activity due to the detection of the new
stimulus (alerting) and then its reduction during the focusing phase (orienting). In children
with ADHD, the pupil response follows an opposite behavior, with a myotic response to
cognitive shifting and increased pupil diameter later during consecutive correction. This
abnormal behavior appeared correlated to the performance at the Wisconsin Card Sorting
Test, which is related to context formation and task switching among executive functions,
suggesting that dysfunction of the LC-NA system may drive the impairment of executive
functions in ADHD [97].

Data regarding the morphological features of LC in ADHD are few and of no univocal
interpretation. One MRI study found a volumetric reduction in the pontine area containing
the LC [84], while PET studies used the radioligand (S,S)-[18F]FMeNER-D2 to quantify the
NAT, which did not show any significant difference with control subjects [98,99].

The strongest evidence in support of LC-NA system involvement in ADHD is de-
rived from pharmacological data. Drugs exerting an NA-modulating effect are beneficial
to ADHD patients. It is interesting to note that both adrenergic receptor agonists and
antagonists have been proven to be effective, highlighting how an aberrant function, rather
than an impaired or excessive one, could lead to NdD symptoms. However, it should
be mentioned that these drugs show complex pharmacodynamics, acting upon many
modulating systems at the same time [9]. In detail, atomoxetine, methylphenidate, and
amphetamines increase NA synaptic concentration, while α2-Adrenergic receptor agonists
such as guanfacine and clonidine reduce it. Nevertheless, they all have been shown to
improve cognitive performance and ameliorate attentive deficits in ADHD, as well as
attention focusing [9,10,100,101].

9. Potential Mechanisms Linking LC Impairment and Pathophysiology of NdD

In the previous sections, we described the ontogenesis of the LC-NA system and its
contribution to the development of the CNS, from the embryonal stage to the post-natal
period, underscoring how this system is sensitive to damage or degeneration, and how its
early impairment might cause morphological and functional alterations of other structures
of the brain. Then, we summarized the available and most relevant pieces of evidence,
clearly showing how the LC-NA system’s malfunctioning could be responsible for cognitive
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and behavioral alterations characterizing two of the most common NdDs, i.e., ASD and
ADHD. Based on these premises, considering the growing amount of data about the role
of LC in physiological functions and neurological disorders, we here made an attempt
to propose a tentative hypothesis on the pathogenic and pathophysiological role of the
LC-NA system in NdD. Figure 3 shows the physiological pathways modulated by the
LC-NA system whose disruption might be involved in NdD.
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Figure 3. The LC-NA system modulates many neural networks (macroscale level) and regulates
several homeostatic mechanisms (microscale level) of the central nervous system, many of which
are involved in neurodevelopmental disorders. At the microscale level, LC-NA participates in
synaptogenesis and synaptic plasticity, both as a neurotransmitter and through modulation of
microglia and the promotion of blood–brain barrier integrity. At the same time, NA functions
as a regulator of neurogenesis, a role that this system maintains during both pre-natal and post-
natal life, up to adulthood. At the macroscale level, the LC-NA system regulates the activity of
many neural networks, participating in the sleep/wake cycle and stress response. Moreover, it
modulates cognitive functions such as attention and memory. Altered synaptogenesis and abnormal
neurogenesis are suggested as possible pathogenetic mechanisms of neurodevelopmental disorders;
in parallel, cognitive and behavioral alterations and mood and sleep disorders are common clinical
features in these patients. Accordingly, a causal role of LC alteration during ontogeny and postnatal
development has been hypothesized. (Created with Biorender.com, accessed on 15 March 2023).
Abbreviations: LC: locus coeruleus; LC-NA: locus-coeruleus–noradrenergic System.

As already pointed out, attentive functions are severely impaired in ASD and ADHD,
and such impairments might be the clinical outcome of functional abnormalities occurring
within the LC-NA system. Pupillometric studies show how children suffering from ASD
and ADHD show a larger pupil diameter in resting conditions, and how it abnormally
responds to environmental stimuli or cognitive tasks [5,8,87–97]. Consistently with our
working hypothesis, the authors of those studies pose that such a pupillary behavior might
reflect LC dysfunction in orchestrating attentive functions. Its wide projection system
allows the LC neurons to reach the whole cortex and modulate its activity [19]. As shown
in classical studies, LC provides such modulatory function by changing its firing rate;
during NREM sleep, LC fires at its lowest frequencies and is completely silent during
REM sleep, while its discharge rate increases in the transition from sleep to waking and
from quiet waking to a novel or stressful environment. More specifically, LC firing could
be divided into a tonic and a phasic discharge mode. The tonic activity depends on
the vigilance condition (i.e., sleep or waking) and the outer environment (i.e., a quiet or
stressful one). The phasic activity is elicited by the occurrence of new or unexpected stimuli,
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as well as by cognitive tasks that require attention focusing. These two firing patterns
are related to each other; higher LC basal tonic firing caused by a stressful environment
ensures an elevated state of alertness and improves the ability to detect any unexpected
stimulus. In parallel, higher LC basal tonic firing limits the transition to phasic activity,
thus hindering the ability to focus on a specific target. In contrast, the low tonic activity
occurring under unstressful conditions allows for adequate LC phasic discharge, which
will be finely tuned and corrected in relation to the stimulus or task on which the subject
is focusing [16,17,85,102]. The unbalancing of this interplay is probably at the basis of
attentive dysfunctions observed in NdD; in these patients, LC shows basal hyperactivity,
with higher frequencies of tonic firing—as witnessed by the larger RSPD—which impairs
the phasic firing and, consequently, the attention focusing or shifting [5,6].

It is worth noting that such an abnormal activity of LC might help to also explain other
symptoms occurring in NdD. In children/young adults with NdDs, a high rate of non-NdD
psychiatric disorders (affective, anxiety, and personality disorders), as well as sleep distur-
bances, has been acknowledged [103–109]. Such disturbances have already been associated
with impaired LC function in patients with typical neurodevelopment [22,23,28,110]; hence,
we may hypothesize NA dysfunction to also play a role in promoting these comorbidities
in subjects with NdD. Indeed, in the case of ADHD, the abnormal LC hyperactivity might
be linked to the increased level of anxiety and the shorter sleeping time observed in these
patients [104,105].

Although the functional impairment of LC has been indirectly observed and suggested,
morphological data about its involvement in NdDs are very limited. To our knowledge,
no in vivo imaging studies specifically assessing the LC have been performed yet in ASD,
and postmortem data are very limited. Among the latter ones, two studies did not find any
pathological alterations in the LC of ASD subjects [81,82], while other pieces of evidence
reported slight modification of the cytological architecture [4,83]. However, it should be
mentioned that the former ones were conducted in very small cohorts of subjects and
using incomplete neuropathological samples, while the latter ones were not designed to
explore LC neuropathological features. In the case of ADHD, no neuropathological data
are available, while in vivo imaging is limited to the study we reported in the previous
section [84].

As said in Section 7, the lack of structural information is paralleled by the small
amount of experimental data on animals. In fact, only a few studies explored the role of
NA or LC in animal models of ADHD [78,79] or ASD [80] and the causal link between NdD
and LC is still unclear.

Thus, we used also another approach to further dissect the potential interaction
between LC impairment and NdD pathogenesis, i.e., we explored whether those genes
associated with ADHD and ASD thus far are also involved in the modulation of the
NA system.

We found that some genetic loci that have been associated with NdD are related to
LC-NA system activity and physiology. The most relevant of these is SLC6A2, which
encodes for NAT and has been proposed as a susceptibility gene for ADHD [111,112] but
not for ASD [113]. The gene family SHANK, encoding for post-synaptic proteins whose
role is to join neurotransmitter receptors to the cell cytoskeleton, has been associated with
ASD [114]. The three different SHANK genes can produce multiple protein isoforms that
are differentially expressed according to developmental stages, cell types, and brain regions.
Mutations in SHANK genes can exert a pathogenic role in children with ASD [115,116].
Interestingly, one study showed that the lack of the protein SHANK1 is responsible for
the loss of the hyperactivating effect of amphetamine in a transgenic mouse model, a
pharmacological effect that is considered to be at least in part mediated by NA [117]. NOS3
has also been genetically linked to ASD [118]. NOS3 encodes for the endothelial nitric
oxide synthetase, which plays a major role in brain homeostasis [119], and, as some studies
suggest, also modulates LC activity [120,121]. Finally, the gene MECP2 has been linked
to ASD-like disorder in the context of Rett syndrome, a X-linked neurodevelopmental
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disease [122–124]. It has been shown that, in mice lacking the MECP2 gene, LC neurons
exhibit several abnormal electrophysiological properties, pointing toward an LC-NA system
dysfunction in this disease [125].

Besides genetic association, also environmental factors that have been linked to NdD
might affect LC, in particular during its fetal development. Heavy metals, maternal obesity
or eating disorders, smoking, and imbalance of sexual hormones are considered risk factors
for the development of ASD [126] and ADHD [127], and all of them are known to be toxic
or, at least, to impair the LC proper function [49,50,55,57,128–133].

The impairment of LC-NA system might not only contribute to functional impairment
associated with NdD, but also to the pathogenesis of NdD. In other words, the dysfunction
of LC might not only result in cognitive and behavioral alterations, but it might also
directly affect brain homeostatic and cellular mechanisms, thus taking an active part in
NdD pathology.

Synaptogenesis is severely impaired in ASD and ADHD, and this is thought to be
one of the main pathogenic mechanisms underlying these disorders [134–137]. As already
described above, LC plays a crucial role in synaptogenesis, both during brain development
and in adulthood [67,138–141]. It might be hypothesized that the LC dysfunction occurring
in NdD might contribute to the synaptic impairment observed in these disorders, via
microglial-related mechanisms. Indeed, LC is a powerful modulator of microglial cell
activity [142,143] as it exerts anti-neuroinflammatory effects, keeping microglial cells in
a quiescent state so that LC impairment has been specifically associated with aberrant
microglial functioning [143]. In turn, microglial and astroglial alterations have been sug-
gested as possible mechanisms through which the impairment of synaptogenesis occurs
in NdD [144–148]. Glial cell alterations might also represent a link between synaptic im-
pairment and alterations in NdD by affecting the integrity of the blood–brain barrier (BBB),
which represents another key morpho-functional unit that has been shown to be altered
in ASD in parallel with increased neuroinflammation [149]. In line with this, LC-NA is
key for BBB integrity [150], and thus LC alteration might contribute to ASD pathogenesis
also through an alteration of this path. Indeed, it is likely that the LC-NA system plays
a crucial role in the regulation of the so-called neurovascular unit, a morpho-functional
complex constituted by capillaries, astrocytes, and microglial cells [21]. In such a context, a
hypothetical contribution to NdD pathogenesis might pass through the alteration of the
regulating effect the LC exerts on the neurovascular unit.

10. Future Perspectives

The literature data we reported in the previous paragraphs clearly illustrate how
the LC-NA system might be involved in NdD, particularly considering ADS and ADHD.
However, we are tempted to formulate further hypotheses on this topic based on the
same evidence.

The high sensitivity of LC to hypoxic damage [35,48,51] makes it an intriguing target
for future studies on infantile cerebral palsy, one of the most important causes of childhood
disability, which is often caused by ischemic injury [151]. Even though hypoxic damage
might be sufficient per se to explain the occurrence of both the forebrain and the LC injury,
it should be noted that the LC-NA system exerts a protective role on ischemic damage,
promoting the correct functioning of the neurovascular unit [21]. In line with this, a
possible contribution of LC disruption in the pathogenesis of infantile cerebral palsy might
be hypothesized, and it may be worth future investigations.

Further expanding such speculation, the impairment of LC-NA system might be sus-
pected as a culprit also in another group of childhood disorders, namely epilepsy. The role
of the LC-NA system in adulthood epilepsy is well-known and documented [138,152,153];
the experimental lesion of LC has been associated with a reduction in seizure thresh-
old [153], and the loss of LC proper functioning in vivo has been suggested as a possible
pathogenic mechanism [154]. Thus, exploring the involvement of the LC-NA system in
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childhood epilepsy would represent the extension of what is already known in adulthood,
which may represent the theoretical basis for clinical and experimental investigations.

In order to perform those future studies, appropriate experimental and diagnostic
tools will be needed.

Since animal models have been used extensively to test the role of LC lesions in
other neurological disorders (especially neurodegeneration [155–157]), hopefully existing
experimental models of LC lesioning might be systematically applied also to models of
NdD to test this link, dissect the potential mechanisms through which LC impairment
might contribute to their pathogenesis, and, eventually, evaluate beneficial effects of ad hoc
developed NA-targeting therapeutic approaches.

Concerning clinical research, the recent development of a reliable neuroimaging tool
to visualize the LC in vivo and assess its integrity, the LC Magnetic Resonance Imaging
(LC-MRI) [1] might offer a chance to explore the alterations this nucleus might suffer from
in NdD. Even though this tool has been used only in adults or elderlies till now, LC-MRI
may also be applied to childhood disorders. A variety of technical and radiological features
support the applicability and informativeness of this technique.

The small and highly variable size of LC may raise questions about the actual appli-
cability of LC-MRI in children, whose brains are smaller than those of adults. Moreover,
the LC of children contains only a small amount of neuromelanin (NM), a pigmented by-
product of NA [158], which by binding metal ions and acquiring paramagnetic properties
might represent a source of LC signal at MRI [159]. However, it should be mentioned
that some studies have been successfully performed on very young subjects [160–162].
Furthermore, a growing amount of evidence is proving that NM might not be the real
source of LC hyperintensity in MRI, and it might be explained in light of the so-called
“Magnetization Transfer” effect [163–165]. The latter is a particular MRI phenomenon that
takes place in small brain structures, densely packed within white matter bundles, as is
the case in LC [166,167]. According to this hypothesis, the low amount of NM occurring
in child LC would not hamper the usefulness of LC-MRI in children. In support of this,
Watanabe and colleagues performed a study in 2019 in mice knocked out for the gene
DBH, thus synthesizing very low amounts of NA and of NM. In MRI, the LC signal was
not affected, and the authors suggested this proved that NM is not its real source [168].
The latter data strongly support the rationale of the possible applicability of LC-MRI also
to children.

Concerning the informativeness of LC-MRI, another potential issue one might face is
that in NdD, LC could undergo a heterogenous variety of alterations significantly different
from the degenerative phenomena occurring in elderly patients [169,170]. Even though
this might be the case of hypoxic/ischemic injuries, in which a reduction in LC signal
might be detected, the data we reported above suggest that in NdD, the LC-NA system
shows an aberrant functioning, which might not be necessarily paralleled by structural
alterations of the LC itself. However, it is worth noting that in studies performed in adults,
LC-MRI signal has been shown to be associated with LC-related cognitive and autonomic
functions, even in the absence of brain pathology [160–162,171,172]. Furthermore, in a
very interesting recent pre-print, Bachman and colleagues found that LC signal can vary in
follow-up assessments, after autonomic biofeedback training [173]. Those studies suggest
that LC-MRI parameters are associated with LC functioning and plasticity, even in the
absence of morphological alterations, which might be a potential scenario occurring in
NdD. In line with this, using this tool also in NdD children may be as informative as it is in
adults and elderlies.

11. Conclusions

In this paper, we reviewed the available evidence about the interplay between the LC-
NA system and NdD; even though the amount of data is not exhaustive, in our opinion, it is
still sufficient to draw a noradrenergic contribution of developmental disorders. The early
origin of the LC during ontogenesis, its important role in modulating brain development,



Int. J. Mol. Sci. 2023, 24, 5805 13 of 19

and its sensitivity to perinatal damage make this nucleus an interesting spot on which
future research might focus, pointing toward a better understanding of the molecular and
pathological mechanisms underlying it.

In conclusion, in the enormous number of polygenic and multifactorial combinations
of risk factors and pathological pathways that might lead to the occurrence of NdD, the
LC-NA system may represent a common pathophysiological and pathogenic mechanism
and a potential target for symptomatic and disease-modifying drugs.
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