Fatal Fulminant Epstein–Barr Virus (EBV) Encephalitis in Immunocompetent 5.5-Year-Old Girl—A Case Report with the Review of Diagnostic and Management Dilemmas
Abstract
:1. Introduction
2. Case Report
3. Discussion
Algorithm 1. Suspicion of acute encephalitis—Initial management algorithm. |
Clinical suspicion of acute encephalitis—Initial management algorithm |
1. Obligatory hospital admission—fulminant course possible |
2. Administer |
a. Acyclovir (until other than herpes simplex virus (HSV) causative factor is found or HSV negative on 2nd LP done after 72 h from the onset) |
b. Antiepileptic drug(s) if seizures present |
c. Hyperosmolar therapy with a first-line bolus of 3% NaCl (3–6 mL/kg) if increased ICP and brain edema confirmed or suspected. |
d. III gen cephalosporine (after LP if possible) unless bacterial cause can be ruled out |
3. CT/MRI scan to exclude other causes or confirm encephalitis (of note: normal scan does not exclude encephalitis) |
4. Consider lumbar puncture (LP)—a CT/MRI necessary before LP? Other contraindications to LP? [34] |
5. Electroencephalography- EEG |
6. Repeat imaging as clinically indicated and safe for the patient, especially if the first scans are not conclusive. |
7. Consider (potential, though not confirmed benefit) |
a. Prophylactic administration of antiepileptic drugs if diagnosis of encephalitis highly probable even in the absence of seizures |
b. Corticosteroids |
c. Iv Immunoglobulins In case of GCS (Glasgow Coma Scale) < 8 p., confirmed brain edema and the need for PICU admission act as above, additionally: |
8. Provide: |
a. Sedation and analgesia (some of the sedative drugs have antiepileptic activity but consult neurologist about the use of typical antiepileptic non-sedative drugs like e.g., levetiracetam.) |
b. Mechanical ventilation: normoxia, normocapnia- target pCO2 35–40 mmHg |
9. Maintain normal or slightly elevated arterial blood pressure having in mind cerebral perfusion pressure (CPP) CPP = MAP- ICP |
a. In case of hypotension: start from low dose noradrenaline 0.03 mcg/kg/min titrated to effect. |
b. If low dose noradrenaline ineffective perform POC-echocardiography to exclude neurogenic stunned myocardium/stress-related cardiomyopathy. |
10. Consider |
a. Invasive ICP monitoring |
b. Non-invasive ICP monitoring may be useful to observe trends if feasible in your clinical setting. |
c. Continuous bedside EEG and sedation monitoring level (BIS, Sedline) |
d. In case of refractory intracranial hypertension, seek neurosurgical help: decompressive craniectomy may be a life-saving option. |
Acute alteration in consciousness, cognition, personality or behavior > 24 h plus any of (fever/prodromal illness, seizures, focal neurological signs, CSF pleocytosis > 4/μL, CT/MRI compatible with active encephalitis, EEG compatible with active encephalitis (Encephalitis case definition used in ChiMES and ECEPH-UK studies) [51]. |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AFCE | Acute Fulminant Cerebral Edema |
CAEBV | chronic active EBV |
CEP | California Encephalitis Project |
CNS | central nervous system |
CPP | cerebral perfusion pressure |
CRP | C-reactive protein |
CSF | cerebrospinal fluid |
CT | computed tomography |
DC | decompressive craniectomy |
EBNA | Epstein–Barr nuclear antigen |
EBV | Epstein–Barr Virus |
ED | emergency department |
EEG | electroencephalography |
GCS | Glasgow Coma Scale |
HSV | herpes simplex virus |
ICP | intracranial pressure |
IgG | Immunoglobulin G |
IgM | immunoglobulin M (a class of immunoglobulins of high molecular weight that initiates the antibody response to the primary infection) |
IV | intravenous |
IVIG | intravenous immunoglobulins |
IM | infectious mononucleosis |
LP | Lumbar Puncture |
MAP | mean arterial pressure |
MRI | magnetic resonance imaging |
NaCl | natrium chloride |
NMDA-R | N-methyl-D-aspartate receptor |
ONSD | ocular nerve sheath diameter |
PCT | procalcitonin |
PICU | pediatric intensive care unit |
PI | pulsatility index |
PCR | polymerase chain reaction |
qPCR | quantitative PCR |
RSI | rapid sequence induction |
TCD | transcranial doppler |
VCA | viral capsid antigen |
WES | whole exome sequencing |
References
- Dunmire, S.K.; Hogquist, K.A.; Balfour, H.H. Infectious Mononucleosis. In Epstein Barr Virus Volume 1: One Herpes Virus: Many Diseases; Münz, C., Ed.; Current Topics in Microbiology and Immunology; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 211–240. [Google Scholar]
- Sixbey, J.W.; Nedrud, J.G.; Raab-Traub, N.; Hanes, R.A.; Pagano, J.S. Epstein-Barr virus replication in oropharyngeal epithelial cells. N. Engl. J. Med. 1984, 310, 1225–1230. [Google Scholar] [CrossRef]
- Sixbey, J.W.; Lemon, S.M.; Pagano, J.S. A second site for Epstein-Barr virus shedding: The uterine cervix. Lancet 1986, 328, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Klein, E. The changing faces of EBV research. Prog. Med. Virol. 1984, 30, 87–106. [Google Scholar]
- Dunmire, S.K.; Verghese, P.S.; Balfour, H.H., Jr. Primary Epstein-Barr virus infection. J. Clin. Virol. 2018, 102, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Lamy, A.E.; Favart, A.M.; Cornu, C.; Mendez, M.; Segas, M.; Bortonboy, G. Study of Epstein-Barr virus (EBV) antibodies. Acta Clin. Belg. 1982, 37, 281–298. [Google Scholar] [CrossRef]
- Takeuchi, K.; Tanaka-Taya, K.; Kazuyama, Y.; Ito, Y.M.; Hashimoto, S.; Fukayama, M.; Mori, S. Prevalence of Epstein-Barr virus in Japan: Trends and future prediction. Pathol. Int. 2006, 56, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Schuster, V.; Kreth, H.W. Epstein-Barr virus infection and associated diseases in children. I. Pathogenesis, epidemiology and clinical aspects. Eur. J. Pediatr. 1992, 151, 718–725. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, L.; Zhong, H.; Cao, L.; Fu, P.; Xu, J. Epidemiology and clinical characteristics of Epstein-Barr virus infection among children in Shanghai, China, 2017–2022. Front. Cell. Infect. Microbiol. 2023, 13, 1139068. [Google Scholar] [CrossRef]
- Kimura, H.; Cohen, J.I. Chronic Active Epstein-Barr Virus Disease. Front. Immunol. 2017, 8, 1867. [Google Scholar] [CrossRef]
- Gequelin, L.C.; Riediger, I.N.; Nakatani, S.M.; Biondo, A.W.; Bonfim, C.M. Epstein-Barr virus: General factors, virus-related diseases and measurement of viral load after transplant. Rev. Bras. Hematol. Hemoter. 2011, 33, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Kawada, J.-I.; Ito, Y.; Yamada, M.; Kataoka, S.; Muramatsu, H.; Sawada, A.; Wada, T.; Imadome, K.-I.; Arai, A.; Iwatsuki, K.; et al. Updated guidelines for chronic active Epstein–Barr virus disease. Int. J. Hematol. 2023, 118, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Le Maréchal, M.; Mailles, A.; Seigneurin, A.; Tattevin, P.; Stahl, J.-P.; Abgrall, S.; Argaud, L.; Argemi, X.; Asseray, N.; Baille, G.; et al. A Prospective Cohort Study to Identify Clinical, Biological, and Imaging Features That Predict the Etiology of Acute Encephalitis. Clin. Infect. Dis. 2021, 73, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, K.J.; Cummings, C.L. Herpesvirus infections of the Nervous System. Neuroinfect. Dis. 2018, 24, 1349–1369. [Google Scholar] [CrossRef] [PubMed]
- Peuchmaur, M.; Voisin, J.; Vaillant, M.; Truffot, A.; Lupo, J.; Morand, P.; Le Maréchal, M.; Germi, R. Epstein-Barr Virus Encephalitis: A Review of Case Reports from the Last 25 Years. Microorganisms 2023, 11, 2825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zuo, Y.; Jiang, L.; Peng, Y.; Huang, X.; Zuo, L. Epstein-Barr Virus and Neurological Diseases. Front. Mol. Biosci. 2022, 8, 816098. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Li, S.; Palmer, M.; Tyler, K.L. Quantitative CSF PCR in Epstein-Barr virus infections of the central nervous system. Ann. Neurol. 2002, 52, 543–548. [Google Scholar] [CrossRef]
- Uribe, F.R.; González, V.P.I.; Kalergis, A.M.; Soto, J.A.; Bohmwald, K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci. 2024, 14, 59. [Google Scholar] [CrossRef]
- Wang, H.; Munger, K.L.; Reindl, M.; O’reilly, E.J.; Levin, L.I.; Berger, T.; Ascherio, A. Myelin oligodendrocyte glycoprotein antibodies and multiple sclerosis in healthy young adults. Neurology 2008, 71, 1142–1146. [Google Scholar] [CrossRef]
- Nakamura, Y.; Nakajima, H.; Tani, H.; Hosokawa, T.; Ishida, S.; Kimura, F.; Kaneko, K.; Takahashi, T.; Nakashima, I. Anti-MOG antibody-positive ADEM following infectious mononucleosis due to a primary EBV infection: A case report. BMC Neurol. 2017, 17, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chen, D.; Peng, X.; Wu, P.; Jiang, L.; Hu, Y. Clinical characteristics of Epstein–Barr virus infection in the pediatric nervous system. BMC Infect. Dis. 2020, 20, 886. [Google Scholar] [CrossRef]
- Abul-Kasim, K.; Palm, L.; Maly, P.; Sundgren, P.C. The neuroanatomic localization of Epstein-Barr virus encephalitis may be a predictive factor for its clinical outcome: A case report and review of 100 cases in 28 reports. J. Child. Neurol. 2009, 24, 720–726. [Google Scholar] [CrossRef]
- Vyas, S.; Suthar, R.; Bhatia, V.; Bhardwaj, N.; Aggarwal, R.; Singhi, P.; Singhi, S. Brain MRI in Epstein-Barr Virus Meningoencephalitis in Children. Ann. Indian. Acad. Neurol. 2020, 23, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Soni, N.; Ora, M.; Singh, R.; Mehta, P.; Agarwal, A.; Bathla, G. Unpacking the CNS Manifestations of Epstein-Barr Virus: An Imaging Perspective. AJNR Am. J. Neuroradiol. 2023, 44, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, P.; Glenn, O.A.; Samuel, M.C.; Sheriff, H.; Foster-Barber, A.; Sejvar, J.J.; Roy-Burman, A.; Wadford, D.A.; Preas, C.P.; Tureen, J.H.; et al. Acute Fulminant Cerebral Edema: A Newly Recognized Phenotype in Children With Suspected Encephalitis. J. Pediatr. Infect. Dis. Soc. 2021, 10, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.Y.; Lin, J.J.; Hsia, S.H.; Wang, H.S.; Chiu, C.H.; Lin, K.L. Analysis of Fulminant Cerebral Edema in Acute Pediatric Encephalitis. Pediatr. Neonatol. 2016, 57, 402–407. [Google Scholar] [CrossRef]
- Monteiro, S.; Teixeira, B.; Fraga, C.; Dias, A.; Cardoso, A.L.; Meireles, D.; Sarmento, A.; Ferreira, P.R.; Silva, J.; Garrido, C.; et al. Acute Fulminant Cerebral Edema in a Child With Suspected Meningoencephalitis. Cureus 2023, 15, e45339. [Google Scholar] [CrossRef]
- Hardy d Gentile, C.P.; Beslow, L.A.; Santi, M.; Agarwal, S. Acute Fulminant Cerebral Edema: A Case Series at a Large Pediatric Tertiary Center. J. Pediatr. Neurol. 2022, 20, 052–056. [Google Scholar] [CrossRef]
- Doja, A.; Bitnun, A.; Lee EJones, F.; Richardson, S.; Tellier, R.; Petric, M.; Heurter, H.; MacGregor, D. Pediatric Epstein-Barr virus-associated encephalitis: 10-year review. J. Child Neurol. 2006, 21, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Mierzewska-Schmidt, M.; Baranowski, A.; Szymanska, K.; Ciaston, M.; Kuchar, E.; Ploski, R.; Kosinska, J.; Pagowska-Klimek, I. The case of fatal acute hemorrhagic necrotizing encephalitis in a two-month-old boy with COVID-19. Int. J. Infect. Dis. 2022, 116, 151–153. [Google Scholar] [CrossRef]
- Mizuguchi, M.; Shibata, A.; Kasai, M.; Hoshino, A. Genetic and environmental risk factors of acute infection-triggered encephalopathy. Front. Neurosci. 2023, 17, 1119708. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solheim, O.; Vik, A.; Gulati, S.; Eide, P. Rapid and severe rise in static and pulsatile intracranial pressures during a generalized epileptic seizure. Seizure 2008, 8, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Kalita, J.; Misra, U.K. Raised intracranial pressure in acute viral encephalitis. Clin. Neurol. Neurosurg. 2009, 111, 399–406. [Google Scholar] [CrossRef]
- Kneen, R.; Michael, B.D.; Manson, E.; Carrol, E.; Solomon, T. Management of suspected viral encephalitis in children—Association of British Neurologists and British Paediatric Allergy, Immunology and Infection Group National Guidelines. J. Infect. 2012, 65, 449–477. [Google Scholar] [CrossRef]
- Andersen, O.; Ernberg, I.; Hedstrom, A.K. Treatment Options for Epstein-Barr Virus-Related Disorders of the Central Nervous System. Infect. Drug Resist. 2023, 16, 4599–4620. [Google Scholar] [CrossRef]
- Hodzic, E.; Hasbun, R.; Granillo, A.; Troscher, A.; Wagner, H.; von Oertzen, T.J.; Wagner, J.N. Steroids for the treatment of viral encephalitis: A systematic literature review and meta-analysis. J. Neurol. 2023, 270, 3603–3615. [Google Scholar] [CrossRef]
- Iro, M.A.; Martin, N.G.; Absoud, M.; Pollard, A.J. Intravenous immunoglobulin for the treatment of childhood encephalitis. Cochrane Database Syst. Rev. 2017, 10, CD011367. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.N.; Leibetseder, A.; Troescher, A.; Panholzer, J.; von Oertzen, T.J. Efficacy and safety of intravenous immunoglobulins for the treatment of viral encephalitis: A systematic literature review. J. Neurol. 2022, 269, 712–724. [Google Scholar] [CrossRef]
- Kochanek, P.M.; Tasker, R.C.; Carney, N.; Totten, A.M.; Adelson, P.D.; Selden, N.R.; Davis-O’Reilly, C.; Hart, E.L.; Bell, M.J.; Bratton, S.L.; et al. Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines, Executive Summary. Neurosurgery 2019, 84, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Tasker, R.C. Elevated Intracranial Pressure (ICP) in Children: Management UptoDate Updated November 2024. Available online: https://www.uptodate.com/contents/elevated-intracranial-pressure-icp-in-children-management (accessed on 16 November 2024).
- Mierzewska-Schmidt, M.; Gawecka, A. Neurogenic stunned myocardium—Do we consider this diagnosis in patients with acute central nervous system injury and acute heart failure? Anaesthesiol. Intensive Ther. 2015, 47, 175–180. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Mackensen, G.B.; Gibbons, E.F.; Vavilala, M.S. Cardiac Dysfunction After Neurologic Injury: What Do We Know and Where Are We Going? Chest 2016, 149, 1325–1331. [Google Scholar] [CrossRef]
- Kumar, R. Understanding and managing acute encephalitis. F1000Research 2020, 9, 60. [Google Scholar] [CrossRef]
- Pérez-Bovet, J.; Garcia-Armengol, R.; Buxó-Pujolràs, M.; Lorite-Díaz, N.; Narváez-Martínez, Y.; Caro-Cardera, J.L.; Rimbau-Muñoz, J.; Joly-Torta, M.C.; Castellví-Joan, M.; Martín-Ferrer, S. Decompressive craniectomy for encephalitis with brain herniation: Case report and review of the literature. Acta Neurochir. 2012, 154, 1717–1724. [Google Scholar] [CrossRef]
- Adamo, M.A.; Deshaies, E.M. Emergency decompressive craniectomy for fulminating infectious encephalitis. J. Neurosurg. 2008, 108, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Nazir, S.; O’Brien, M.; Qureshi, N.H.; Slape, L.; Green, T.; Phillips, P.H. Sensitivity of papilledema as a sign of shunt failure in children. J. AAPOS 2009, 13, 63–66. [Google Scholar] [CrossRef]
- Xu, W.; Gerety, P.; Aleman, T.; Swanson, J.; Taylor, J. Noninvasive methods of detecting increased intracranial pressure. Child’s Nerv. Syst. 2016, 32, 1371–1386. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, F.M.; Adissy, E.N.B.; Rocha, E.; Barros, F.C.D.; Freitas, F.G.R.; Miranda, M.; Valiente, R.A.; de Andrade, J.B.C.; Chaddad-Neto, F.E.A.; Silva, G.S. Multimodal monitoring intracranial pressure by invasive and noninvasive means. Sci. Rep. 2023, 13, 18404. [Google Scholar] [CrossRef] [PubMed]
- Helbok, R.; Olson, D.M.; Le Roux, P.D.; Vespa, P. Articipants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: Special considerations. Neurocrit. Care 2014, 21, 85–94. [Google Scholar] [CrossRef]
- Ahsan, S.; Jafarpour, S.; Khoshnood, M.M.; Nagesh, D.; Ho, E.; Ahsan, N.; Santoro, J.D. Anti-CD20 Therapy in Children with Severe Epstein-Barr Virus-Associated Meningoencephalitis. J. Child Neurol. 2025, 40, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Lemon, J.; Cooper, J.; Defres, S.; Easton, A.; Sadarangani, M.; Griffiths, M.J.; Pollard, A.J.; Solomon, T.; Kneen, R. Understanding parental perspectives on outcomes following paediatric encephalitis: A qualitative study. PLoS ONE 2019, 14, e0220042. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mierzewska-Schmidt, M.; Piwowarczyk, A.; Szymanska, K.; Ciaston, M.; Podsiadly, E.; Przybylski, M.; Pagowska-Klimek, I. Fatal Fulminant Epstein–Barr Virus (EBV) Encephalitis in Immunocompetent 5.5-Year-Old Girl—A Case Report with the Review of Diagnostic and Management Dilemmas. Biomedicines 2024, 12, 2877. https://doi.org/10.3390/biomedicines12122877
Mierzewska-Schmidt M, Piwowarczyk A, Szymanska K, Ciaston M, Podsiadly E, Przybylski M, Pagowska-Klimek I. Fatal Fulminant Epstein–Barr Virus (EBV) Encephalitis in Immunocompetent 5.5-Year-Old Girl—A Case Report with the Review of Diagnostic and Management Dilemmas. Biomedicines. 2024; 12(12):2877. https://doi.org/10.3390/biomedicines12122877
Chicago/Turabian StyleMierzewska-Schmidt, Magdalena, Anna Piwowarczyk, Krystyna Szymanska, Michal Ciaston, Edyta Podsiadly, Maciej Przybylski, and Izabela Pagowska-Klimek. 2024. "Fatal Fulminant Epstein–Barr Virus (EBV) Encephalitis in Immunocompetent 5.5-Year-Old Girl—A Case Report with the Review of Diagnostic and Management Dilemmas" Biomedicines 12, no. 12: 2877. https://doi.org/10.3390/biomedicines12122877
APA StyleMierzewska-Schmidt, M., Piwowarczyk, A., Szymanska, K., Ciaston, M., Podsiadly, E., Przybylski, M., & Pagowska-Klimek, I. (2024). Fatal Fulminant Epstein–Barr Virus (EBV) Encephalitis in Immunocompetent 5.5-Year-Old Girl—A Case Report with the Review of Diagnostic and Management Dilemmas. Biomedicines, 12(12), 2877. https://doi.org/10.3390/biomedicines12122877