Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease
Abstract
:1. Introduction
2. 23Na MRI Evaluation of the Skin Sodium Content
3. Emerging 23Na MRI and CKD-Related Cardiomyopathy
4. Emerging Renal Functional 23Na MRI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, F.J.; Li, J.; Macgregor, G.A. Effect of Longer Term Modest Salt Reduction on Blood Pressure: Cochrane Systematic Review and Meta-Analysis of Randomised Trials. BMJ 2013, 346, f1325. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; MacGregor, G.A. Salt Reduction Lowers Cardiovascular Risk: Meta-Analysis of Outcome Trials. Lancet 2011, 378, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; D’Elia, L.; Kandala, N.-B.; Cappuccio, F.P. Salt Intake, Stroke, and Cardiovascular Disease: Meta-Analysis of Prospective Studies. BMJ 2009, 339, b4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garofalo, C.; Borrelli, S.; Pacilio, M.; Minutolo, R.; Chiodini, P.; de Nicola, L.; Conte, G. Hypertension and Prehypertension and Prediction of Development of Decreased Estimated GFR in the General Population: A Meta-Analysis of Cohort Studies. Am. J. Kidney Dis. 2016, 67, 89–97. [Google Scholar] [CrossRef]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Streeten, D.H.; Rapoport, A.; Conn, J.W. Existence of a slowly exchangeable pool of body sodium in normal subjects and its diminution in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 1963, 23, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Titze, J.; Lang, R.; Ilies, C.; Schwind, K.H.; Kirsch, K.A.; Dietsch, P.; Luft, F.C.; Hilgers, K.F. Osmotically Inactive Skin Na+ Storage in Rats. Am. J. Physiol.-Ren. Physiol. 2003, 285, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Nikpey, E.; Karlsen, T.V.; Rakova, N.; Titze, J.M.; Tenstad, O.; Wiig, H. High-Salt Diet Causes Osmotic Gradients and Hyperosmolality in Skin without Affecting Interstitial Fluid and Lymph. Hypertension 2017, 69, 660–668. [Google Scholar] [CrossRef]
- Fischereder, M.; Michalke, B.; Schmöckel, E.; Habicht, A.; Kunisch, R.; Pavelic, I.; Szabados, B.; Schönermarck, U.; Nelson, P.J.; Stangl, M. Sodium Storage in Human Tissues Is Mediated by Glycosaminoglycan Expression. Am. J. Physiol. Renal Physiol. 2017, 313, F319–F325. [Google Scholar] [CrossRef]
- Madelin, G.; Regatte, R.R. Biomedical Applications of Sodium MRI In Vivo. J. Magn. Reson. Imaging 2013, 38, 511–529. [Google Scholar] [CrossRef] [Green Version]
- Hilal, S.K.; Maudsley, A.A.; Ra, J.B.; Simon, H.E.; Roschmann, P.; Wittekoek, S.; Cho, Z.H.; Mun, S.K. In Vivo NMR Imaging of Sodium-23 in the Human Head. J. Comput. Assist. Tomogr. 1985, 9, 1–7. [Google Scholar] [CrossRef]
- Boada, F.E.; Gillen, J.S.; Shen, G.X.; Chang, S.Y.; Thulborn, K.R. Fast Three Dimensional Sodium Imaging. Magn. Reson. Med. 1997, 37, 706–715. [Google Scholar] [CrossRef]
- Gurney, P.T.; Hargreaves, B.A.; Nishimura, D.G. Design and Analysis of a Practical 3D Cones Trajectory. Magn. Reson. Med. 2006, 55, 575–582. [Google Scholar] [CrossRef]
- Nagel, A.M.; Laun, F.B.; Weber, M.-A.; Matthies, C.; Semmler, W.; Schad, L.R. Sodium MRI Using a Density-Adapted 3D Radial Acquisition Technique. Magn. Reson. Med. 2009, 62, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Kopp, C.; Linz, P.; Wachsmuth, L.; Dahlmann, A.; Horbach, T.; Schöfl, C.; Renz, W.; Santoro, D.; Niendorf, T.; Müller, D.N.; et al. 23Na Magnetic Resonance Imaging of Tissue Sodium. Hypertension 2012, 59, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlmann, A.; Dörfelt, K.; Eicher, F.; Linz, P.; Kopp, C.; Mössinger, I.; Horn, S.; Büschges-Seraphin, B.; Wabel, P.; Hammon, M.; et al. Magnetic Resonance-Determined Sodium Removal from Tissue Stores in Hemodialysis Patients. Kidney Int. 2015, 87, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.; Tan, S.-J.; Toussaint, N.D. Magnetic Resonance Imaging Determination of Tissue Sodium in Patients with Chronic Kidney Disease. Nephrology 2022, 27, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Penny, J.D.; Salerno, F.R.; Akbari, A.; McIntyre, C.W. Pruritus: Is There a Grain of Salty Truth? Hemodial. Int. 2021, 25, E10–E14. [Google Scholar] [CrossRef] [PubMed]
- Dahlmann, A.; Linz, P.; Zucker, I.; Haag, V.; Jantsch, J.; Dienemann, T.; Nagel, A.M.; Neubert, P.; Rosenhauer, D.; Rauh, M.; et al. Reduction of Tissue Na+ Accumulation after Renal Transplantation. Kidney Int. Rep. 2021, 6, 2338–2347. [Google Scholar] [CrossRef]
- Lemoine, S.; Salerno, F.R.; Akbari, A.; McKelvie, R.S.; McIntyre, C.W. Tissue Sodium Storage in Patients with Heart Failure: A New Therapeutic Target? Circ. Cardiovasc. Imaging 2021, 14, e012910. [Google Scholar] [CrossRef] [PubMed]
- Salerno, F.R.; Akbari, A.; Lemoine, S.; Filler, G.; Scholl, T.J.; McIntyre, C.W. Outcomes and Predictors of Skin Sodium Concentration in Dialysis Patients. Clin. Kidney J. 2022, 27708, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, A.-C.; Linz, P.; Nagel, A.M.; Rosenhauer, D.; Horn, S.; Schiffer, M.; Uder, M.; Kopp, C.; Dahlmann, A. Hemodialysis Patients with Cardiovascular Disease Reveal Increased Tissue Na+ Deposition. Kidney Blood Press. Res. 2022, 47, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Lemoine, S.; Salerno, F.; Marcus, T.L.; Duffy, T.; Scholl, T.J.; Filler, G.; House, A.A.; McIntyre, C.W. Functional Sodium MRI Helps to Measure Corticomedullary Sodium Content in Normal and Diseased Human Kidneys. Radiology 2022, 303, 384–389. [Google Scholar] [CrossRef]
- Salerno, F.R.; Akbari, A.; Lemoine, S.; Scholl, T.J.; McIntyre, C.W.; Filler, G. Effects of Pediatric Chronic Kidney Disease and Its Etiology on Tissue Sodium Concentration: A Pilot Study. Pediatr. Nephrol. 2023, 38, 499–507. [Google Scholar] [CrossRef]
- Moon, C.H.; Furlan, A.; Kim, J.H.; Zhao, T.; Shapiro, R.; Bae, K.T. Quantitative Sodium MR Imaging of Native versus Transplanted Kidneys Using a Dual-Tuned Proton/Sodium (1H/23Na) Coil: Initial Experience. Eur. Radiol. 2014, 24, 1320–1326. [Google Scholar] [CrossRef]
- Schneider, M.P.; Raff, U.; Kopp, C.; Scheppach, J.B.; Toncar, S.; Wanner, C.; Schlieper, G.; Saritas, T.; Floege, J.; Schmid, M.; et al. Skin Sodium Concentration Correlates with Left Ventricular Hypertrophy in CKD. J. Am. Soc. Nephrol. 2017, 28, 1867–1876. [Google Scholar] [CrossRef] [Green Version]
- Hammon, M.; Grossmann, S.; Linz, P.; Seuss, H.; Hammon, R.; Rosenhauer, D.; Janka, R.; Cavallaro, A.; Luft, F.C.; Titze, J.; et al. 3 Tesla 23Na Magnetic Resonance Imaging During Acute Kidney Injury. Acad. Radiol. 2017, 24, 1086–1093. [Google Scholar] [CrossRef]
- Deger, S.M.; Wang, P.; Fissell, R.; Ellis, C.D.; Booker, C.; Sha, F.; Morse, J.L.; Stewart, T.G.; Gore, J.C.; Siew, E.D.; et al. Tissue Sodium Accumulation and Peripheral Insulin Sensitivity in Maintenance Hemodialysis Patients. J. Cachexia Sarcopenia Muscle 2017, 8, 500–507. [Google Scholar] [CrossRef]
- Kopp, C.; Linz, P.; Maier, C.; Wabel, P.; Hammon, M.; Nagel, A.M.; Rosenhauer, D.; Horn, S.; Uder, M.; Luft, F.C.; et al. Elevated Tissue Sodium Deposition in Patients with Type 2 Diabetes on Hemodialysis Detected by 23Na Magnetic Resonance Imaging. Kidney Int. 2018, 93, 1191–1197. [Google Scholar] [CrossRef]
- Mitsides, N.; Alsehli, F.M.S.; Mc Hough, D.; Shalamanova, L.; Wilkinson, F.; Alderdice, J.; Mitra, R.; Swiecicka, A.; Brenchley, P.; Parker, G.J.M.; et al. Salt and Water Retention Is Associated with Microinflammation and Endothelial Injury in Chronic Kidney Disease. Nephron 2019, 143, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Qirjazi, E.; Salerno, F.R.; Akbari, A.; Hur, L.; Penny, J.; Scholl, T.; McIntyre, C.W. Tissue Sodium Concentrations in Chronic Kidney Disease and Dialysis Patients by Lower Leg Sodium-23 Magnetic Resonance Imaging. Nephrol. Dial. Transplant. 2021, 36, 1234–1243. [Google Scholar] [CrossRef]
- Sahinoz, M.; Tintara, S.; Deger, S.M.; Alsouqi, A.; Crescenzi, R.L.; Mambungu, C.; Vincz, A.; Mason, O.J.; Prigmore, H.L.; Guide, A.; et al. Tissue Sodium Stores in Peritoneal Dialysis and Hemodialysis Patients Determined by Sodium-23 Magnetic Resonance Imaging. Nephrol. Dial. Transplant. 2021, 36, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, S.; Salerno, F.R.; Akbari, A.; McIntyre, C.W. Influence of Dialysate Sodium Prescription on Skin and Muscle Sodium Concentration. Am. J. Kidney Dis. 2021, 78, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Guyton, A.C. Blood Pressure Control--Special Role of the Kidneys and Body Fluids. Science 1991, 252, 1813–1816. [Google Scholar] [CrossRef]
- Kopp, C.; Linz, P.; Dahlmann, A.; Hammon, M.; Jantsch, J.; Müller, D.N.; Schmieder, R.E.; Cavallaro, A.; Eckardt, K.-U.; Uder, M.; et al. 23Na Magnetic Resonance Imaging-Determined Tissue Sodium in Healthy Subjects and Hypertensive Patients. Hypertension 2013, 61, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Titze, J.; Shakibaei, M.; Schafflhuber, M.; Schulze-Tanzil, G.; Porst, M.; Schwind, K.H.; Dietsch, P.; Hilgers, K.F. Glycosaminoglycan Polymerization May Enable Osmotically Inactive Na+ Storage in the Skin. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H203–H208. [Google Scholar] [CrossRef]
- Wiig, H.; Luft, F.C.; Titze, J.M. The Interstitium Conducts Extrarenal Storage of Sodium and Represents a Third Compartment Essential for Extracellular Volume and Blood Pressure Homeostasis. Acta Physiol. 2018, 222, e13006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jantsch, J.; Schatz, V.; Friedrich, D.; Schröder, A.; Kopp, C.; Siegert, I.; Maronna, A.; Wendelborn, D.; Linz, P.; Binger, K.J.; et al. Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense. Cell Metab. 2015, 21, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Schatz, V.; Neubert, P.; Schröder, A.; Binger, K.; Gebhard, M.; Müller, D.N.; Luft, F.C.; Titze, J.; Jantsch, J. Elementary Immunology: Na+ as a Regulator of Immunity. Pediatr. Nephrol. 2017, 32, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Wilck, N.; Balogh, A.; Markó, L.; Bartolomaeus, H.; Müller, D.N. The Role of Sodium in Modulating Immune Cell Function. Nat. Rev. Nephrol. 2019, 15, 546–558. [Google Scholar] [CrossRef]
- Binger, K.J.; Gebhardt, M.; Heinig, M.; Rintisch, C.; Schroeder, A.; Neuhofer, W.; Hilgers, K.; Manzel, A.; Schwartz, C.; Kleinewietfeld, M.; et al. High Salt Reduces the Activation of IL-4- and IL-13-Stimulated Macrophages. J. Clin. Investig. 2015, 125, 4223–4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinewietfeld, M.; Manzel, A.; Titze, J.; Kvakan, H.; Yosef, N.; Linker, R.A.; Muller, D.N.; Hafler, D.A. Sodium Chloride Drives Autoimmune Disease by the Induction of Pathogenic TH17 Cells. Nature 2013, 496, 518–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Yosef, N.; Thalhamer, T.; Zhu, C.; Xiao, S.; Kishi, Y.; Regev, A.; Kuchroo, V.K. Induction of Pathogenic TH17 Cells by Inducible Salt-Sensing Kinase SGK1. Nature 2013, 496, 513–517. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.-C.; Zheng, X.-J.; Du, L.-J.; Sun, J.-Y.; Shen, Z.-X.; Shi, C.; Sun, S.; Zhang, Z.; Chen, X.-Q.; Qin, M.; et al. High Salt Primes a Specific Activation State of Macrophages, M(Na). Cell Res. 2015, 25, 893–910. [Google Scholar] [CrossRef] [PubMed]
- Machnik, A.; Dahlmann, A.; Kopp, C.; Goss, J.; Wagner, H.; van Rooijen, N.; Eckardt, K.-U.; Müller, D.N.; Park, J.-K.; Luft, F.C.; et al. Mononuclear Phagocyte System Depletion Blocks Interstitial Tonicity-Responsive Enhancer Binding Protein/Vascular Endothelial Growth Factor C Expression and Induces Salt-Sensitive Hypertension in Rats. Hypertension 2010, 55, 755–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machnik, A.; Neuhofer, W.; Jantsch, J.; Dahlmann, A.; Tammela, T.; Machura, K.; Park, J.-K.; Beck, F.-X.; Müller, D.N.; Derer, W.; et al. Macrophages Regulate Salt-Dependent Volume and Blood Pressure by a Vascular Endothelial Growth Factor-C-Dependent Buffering Mechanism. Nat. Med. 2009, 15, 545–552. [Google Scholar] [CrossRef]
- Wiig, H.; Schröder, A.; Neuhofer, W.; Jantsch, J.; Kopp, C.; Karlsen, T.V.; Boschmann, M.; Goss, J.; Bry, M.; Rakova, N.; et al. Immune Cells Control Skin Lymphatic Electrolyte Homeostasis and Blood Pressure. J. Clin. Investig. 2013, 123, 2803–2815. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J. Aging, Cellular Senescence, and Cancer. Annu. Rev. Physiol. 2013, 75, 685–705. [Google Scholar] [CrossRef] [Green Version]
- Petreski, T.; Piko, N.; Ekart, R.; Hojs, R.; Bevc, S. Review on Inflammation Markers in Chronic Kidney Disease. Biomedicines 2021, 9, 182. [Google Scholar] [CrossRef]
- Tang, J.; Ye, L.; Yan, Q.; Zhang, X.; Wang, L. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Water and Sodium Metabolism. Front. Pharmacol. 2022, 13, 800490. [Google Scholar] [CrossRef]
- Van der Aart-van der Beek, A.B.; de Boer, R.A.; Heerspink, H.J.L. Kidney and Heart Failure Outcomes Associated with SGLT2 Inhibitor Use. Nat. Rev. Nephrol. 2022, 18, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Svenningsen, P.; Bistrup, C.; Friis, U.G.; Bertog, M.; Haerteis, S.; Krueger, B.; Stubbe, J.; Jensen, O.N.; Thiesson, H.C.; Uhrenholt, T.R.; et al. Plasmin in Nephrotic Urine Activates the Epithelial Sodium Channel. J. Am. Soc. Nephrol. 2009, 20, 299–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artunc, F.; Wörn, M.; Schork, A.; Bohnert, B.N. Proteasuria-The Impact of Active Urinary Proteases on Sodium Retention in Nephrotic Syndrome. Acta Physiol. 2019, 225, e13249. [Google Scholar] [CrossRef]
- Spoto, B.; Pisano, A.; Zoccali, C. Insulin Resistance in Chronic Kidney Disease: A Systematic Review. Am. J. Physiol. Renal Physiol. 2016, 311, F1087–F1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, A.; Kato, K.; Ohkido, I.; Yokoo, T. Role and Treatment of Insulin Resistance in Patients with Chronic Kidney Disease: A Review. Nutrients 2021, 13, 4349. [Google Scholar] [CrossRef]
- Liao, M.-T.; Sung, C.-C.; Hung, K.-C.; Wu, C.-C.; Lo, L.; Lu, K.-C. Insulin Resistance in Patients with Chronic Kidney Disease. J. Biomed. Biotechnol. 2012, 2012, 691369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, I.H.; Mehrotra, R. Insulin Resistance in Chronic Kidney Disease: A Step Closer to Effective Evaluation and Treatment. Kidney Int. 2014, 86, 243–245. [Google Scholar] [CrossRef] [Green Version]
- Siew, E.D.; Pupim, L.B.; Majchrzak, K.M.; Shintani, A.; Flakoll, P.J.; Ikizler, T.A. Insulin Resistance Is Associated with Skeletal Muscle Protein Breakdown in Non-Diabetic Chronic Hemodialysis Patients. Kidney Int. 2007, 71, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Siew, E.D.; Ikizler, T.A. Insulin Resistance and Protein Energy Metabolism in Patients with Advanced Chronic Kidney Disease. Semin. Dial. 2010, 23, 378–382. [Google Scholar] [CrossRef]
- Kempner, W. Treatment of Heart and Kidney Disease and of Hypertensive and Arteriosclerotic Vascular Disease with the Rice Diet. Ann. Intern. Med. 1949, 31, 821–856. [Google Scholar] [CrossRef] [PubMed]
- Mc Causland, F.R.; Waikar, S.S.; Brunelli, S.M. Increased Dietary Sodium Is Independently Associated with Greater Mortality among Prevalent Hemodialysis Patients. Kidney Int. 2012, 82, 204–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleyer, A.J.; Russell, G.B.; Satko, S.G. Sudden and Cardiac Death Rates in Hemodialysis Patients. Kidney Int. 1999, 55, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, R.N. Clinical Epidemiology of Cardiac Disease in Dialysis Patients: Left Ventricular Hypertrophy, Ischemic Heart Disease, and Cardiac Failure. Semin. Dial. 2003, 16, 111–117. [Google Scholar] [CrossRef]
- Weir, M.A.; Herzog, C.A. Beta Blockers in Patients with End-Stage Renal Disease-Evidence-Based Recommendations. Semin. Dial. 2018, 31, 219–225. [Google Scholar] [CrossRef]
- Cuculich, P.S.; Sánchez, J.M.; Kerzner, R.; Greenberg, S.L.; Sengupta, J.; Chen, J.; Faddis, M.N.; Gleva, M.J.; Smith, T.W.; Lindsay, B.D. Poor Prognosis for Patients with Chronic Kidney Disease despite ICD Therapy for the Primary Prevention of Sudden Death. Pacing Clin. Electrophysiol. 2007, 30, 207–213. [Google Scholar] [CrossRef]
- Amin, M.S.; Fox, A.D.; Kalahasty, G.; Shepard, R.K.; Wood, M.A.; Ellenbogen, K.A. Benefit of Primary Prevention Implantable Cardioverter-Defibrillators in the Setting of Chronic Kidney Disease: A Decision Model Analysis. J. Cardiovasc. Electrophysiol. 2008, 19, 1275–1280. [Google Scholar] [CrossRef]
- Fu, L.; Zhou, Q.; Zhu, W.; Lin, H.; Ding, Y.; Shen, Y.; Hu, J.; Hong, K. Do Implantable Cardioverter Defibrillators Reduce Mortality in Patients with Chronic Kidney Disease at All Stages? Int. Heart J. 2017, 58, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, A.; Montalvo, J.; Medendorp, S.; Lloyd-Jones, D.M.; Ghossein, C.; Goldberger, J.; Passman, R. Increased Complication Rates of Cardiac Rhythm Management Devices in ESRD Patients. Am. J. Kidney Dis. 2007, 49, 656–663. [Google Scholar] [CrossRef]
- Hayer, M.K.; Radhakrishnan, A.; Price, A.M.; Liu, B.; Baig, S.; Weston, C.J.; Biasiolli, L.; Ferro, C.J.; Townend, J.N.; Steeds, R.P.; et al. Defining Myocardial Abnormalities Across the Stages of Chronic Kidney Disease: A Cardiac Magnetic Resonance Imaging Study. JACC Cardiovasc. Imaging 2020, 13, 2357–2367. [Google Scholar] [CrossRef]
- Finsen, A.V.; Lunde, I.G.; Sjaastad, I.; Østli, E.K.; Lyngra, M.; Jarstadmarken, H.O.; Hasic, A.; Nygård, S.; Wilcox-Adelman, S.A.; Goetinck, P.F.; et al. Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway. PLoS ONE 2011, 6, e28302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waehre, A.; Vistnes, M.; Sjaastad, I.; Nygård, S.; Husberg, C.; Lunde, I.G.; Aukrust, P.; Yndestad, A.; Vinge, L.E.; Behmen, D.; et al. Chemokines Regulate Small Leucine-Rich Proteoglycans in the Extracellular Matrix of the Pressure-Overloaded Right Ventricle. J. Appl. Physiol. 2012, 112, 1372–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyakawa, H.; Woo, S.K.; Dahl, S.C.; Handler, J.S.; Kwon, H.M. Tonicity-Responsive Enhancer Binding Protein, a Rel-like Protein That Stimulates Transcription in Response to Hypertonicity. Proc. Natl. Acad. Sci. USA 1999, 96, 2538–2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, J.H.; Woo, S.K.; Han, K.H.; Kim, Y.H.; Handler, J.S.; Kim, J.; Kwon, H.M. Hydration Status Affects Nuclear Distribution of Transcription Factor Tonicity Responsive Enhancer Binding Protein in Rat Kidney. J. Am. Soc. Nephrol. 2001, 12, 2221–2230. [Google Scholar] [CrossRef]
- Edwards, N.C.; Moody, W.E.; Yuan, M.; Hayer, M.K.; Ferro, C.J.; Townend, J.N.; Steeds, R.P. Diffuse Interstitial Fibrosis and Myocardial Dysfunction in Early Chronic Kidney Disease. Am. J. Cardiol. 2015, 115, 1311–1317. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, E.; Talle, M.A.; Mangion, K.; Bell, E.; Rauhalammi, S.M.; Roditi, G.; McComb, C.; Radjenovic, A.; Welsh, P.; Woodward, R.; et al. Defining Myocardial Tissue Abnormalities in End-Stage Renal Failure with Cardiac Magnetic Resonance Imaging Using Native T1 Mapping. Kidney Int. 2016, 90, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Frohlich, E.D.; Chien, Y.; Sesoko, S.; Pegram, B.L. Relationship between Dietary Sodium Intake, Hemodynamics, and Cardiac Mass in SHR and WKY Rats. Am. J. Physiol. 1993, 264, R30–R34. [Google Scholar] [CrossRef]
- Yu, H.C.; Burrell, L.M.; Black, M.J.; Wu, L.L.; Dilley, R.J.; Cooper, M.E.; Johnston, C.I. Salt Induces Myocardial and Renal Fibrosis in Normotensive and Hypertensive Rats. Circulation 1998, 98, 2621–2628. [Google Scholar] [CrossRef] [Green Version]
- Bottomley, P.A. Sodium MRI in Human Heart: A Review. NMR Biomed. 2016, 29, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.; Venetsanou, K.; Chedrese, P.J.; Pinto, V.; Takemori, H.; Franco-Cereceda, A.; Eriksson, P.; Mochizuki, N.; Soares-da-Silva, P.; Bertorello, A.M. Increases in Intracellular Sodium Activate Transcription and Gene Expression via the Salt-Inducible Kinase 1 Network in an Atrial Myocyte Cell Line. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H57–H65. [Google Scholar] [CrossRef] [Green Version]
- Christa, M.; Weng, A.M.; Geier, B.; Wörmann, C.; Scheffler, A.; Lehmann, L.; Oberberger, J.; Kraus, B.J.; Hahner, S.; Störk, S.; et al. Increased Myocardial Sodium Signal Intensity in Conn’s Syndrome Detected by 23Na Magnetic Resonance Imaging. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Schelling, J.R. Tubular Atrophy in the Pathogenesis of Chronic Kidney Disease Progression. Pediatr. Nephrol. 2016, 31, 693–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabibzadeh, N.; Wagner, S.; Metzger, M.; Flamant, M.; Houillier, P.; Boffa, J.-J.; Vrtovsnik, F.; Thervet, E.; Stengel, B.; Haymann, J.-P.; et al. Fasting Urinary Osmolality, CKD Progression, and Mortality: A Prospective Observational Study. Am. J. Kidney Dis. 2019, 73, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Hebert, L.A.; Greene, T.; Levey, A.; Falkenhain, M.E.; Klahr, S. High Urine Volume and Low Urine Osmolality Are Risk Factors for Faster Progression of Renal Disease. Am. J. Kidney Dis. 2003, 41, 962–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamison, R.L. The Renal Concentrating Mechanism: Micropuncture Studies of the Renal Medulla. Fed. Proc. 1983, 42, 2392–2397. [Google Scholar] [PubMed]
- Buerkert, J.; Martin, D.; Prasad, J.; Trigg, D. Role of Deep Nephrons and the Terminal Collecting Duct in a Mannitol-Induced Diuresis. Am. J. Physiol. 1981, 240, F411–F422. [Google Scholar] [CrossRef]
- Gennari, F.J.; Johns, C.; Caflisch, C.R.; Cortell, S. Dissociation of Saline-Induced Natriuresis from Urea Washout in the Rat. Am. J. Physiol. 1981, 241, F250–F256. [Google Scholar] [CrossRef]
- Maril, N.; Margalit, R.; Mispelter, J.; Degani, H. Functional Sodium Magnetic Resonance Imaging of the Intact Rat Kidney. Kidney Int. 2004, 65, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Maril, N.; Margalit, R.; Mispelter, J.; Degani, H. Sodium Magnetic Resonance Imaging of Diuresis: Spatial and Kinetic Response. Magn. Reson. Med. 2005, 53, 545–552. [Google Scholar] [CrossRef]
- Grist, J.T.; Riemer, F.; Hansen, E.S.S.; Tougaard, R.S.; McLean, M.A.; Kaggie, J.; Bøgh, N.; Graves, M.J.; Gallagher, F.A.; Laustsen, C. Visualization of Sodium Dynamics in the Kidney by Magnetic Resonance Imaging in a Multi-Site Study. Kidney Int. 2020, 98, 1174–1178. [Google Scholar] [CrossRef]
- Maril, N.; Rosen, Y.; Reynolds, G.H.; Ivanishev, A.; Ngo, L.; Lenkinski, R.E. Sodium MRI of the Human Kidney at 3 Tesla. Magn. Reson. Med. 2006, 56, 1229–1234. [Google Scholar] [CrossRef]
- Haneder, S.; Konstandin, S.; Morelli, J.N.; Nagel, A.M.; Zoellner, F.G.; Schad, L.R.; Schoenberg, S.O.; Michaely, H.J. Quantitative and Qualitative (23)Na MR Imaging of the Human Kidneys at 3 T: Before and after a Water Load. Radiology 2011, 260, 857–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.J.; Chang, T.I.; Lee, J.; Kim, Y.H.; Oh, K.-H.; Lee, S.W.; Kim, S.W.; Park, J.T.; Yoo, T.-H.; Kang, S.-W.; et al. Urine Osmolality and Renal Outcome in Patients with Chronic Kidney Disease: Results from the KNOW-CKD. Kidney Blood Press. Res. 2019, 44, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Shafi, T.; Levey, A.S. Measurement and Estimation of Residual Kidney Function in Patients on Dialysis. Adv. Chronic Kidney Dis. 2018, 25, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadban, S.J.; Atkins, R.C. Glomerulonephritis. Lancet 2008, 365, 1797–1806. [Google Scholar] [CrossRef]
- Bellomo, R.; Kellum, J.A.; Ronco, C. Acute Kidney Injury. Lancet 2012, 380, 756–766. [Google Scholar] [CrossRef]
- VA/NIH Acute Renal Failure Trial Network; Palevsky, P.M.; Zhang, J.H.; O’Connor, T.Z.; Chertow, G.M.; Crowley, S.T.; Choudhury, D.; Finkel, K.; Kellum, J.A.; Paganini, E.; et al. Intensity of Renal Support in Critically Ill Patients with Acute Kidney Injury. N. Engl. J. Med. 2008, 359, 7–20. [Google Scholar] [CrossRef]
- RENAL Replacement Therapy Study Investigators; Bellomo, R.; Cass, A.; Cole, L.; Finfer, S.; Gallagher, M.; Lo, S.; McArthur, C.; McGuinness, S.; Myburgh, J.; et al. Intensity of Continuous Renal-Replacement Therapy in Critically Ill Patients. N. Engl. J. Med. 2009, 361, 1627–1638. [Google Scholar] [CrossRef] [Green Version]
- Maril, N.; Margalit, R.; Rosen, S.; Heyman, S.N.; Degani, H. Detection of Evolving Acute Tubular Necrosis with Renal 23Na MRI: Studies in Rats. Kidney Int. 2006, 69, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.M.; Mariager, C.Ø.; Rasmussen, D.G.K.; Mølmer, M.; Genovese, F.; Karsdal, M.A.; Laustsen, C.; Nørregaard, R. Noninvasive Assessment of Fibrosis Following Ischemia/Reperfusion Injury in Rodents Utilizing Na Magnetic Resonance Imaging. Pharmaceutics 2020, 12, 775. [Google Scholar] [CrossRef]
- Rasmussen, C.W.; Bøgh, N.; Bech, S.K.; Thorsen, T.H.; Hansen, E.S.S.; Bertelsen, L.B.; Laustsen, C. Fibrosis Imaging with Multiparametric Proton and Sodium MRI in Pig Injury Models. NMR Biomed. 2023, 36, e4838. [Google Scholar] [CrossRef]
- Rosen, Y.; Lenkinski, R.E. Sodium MRI of a Human Transplanted Kidney. Acad. Radiol. 2009, 16, 886–889. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, E.B.; Danielsen, H.; Nielsen, A.H.; Knudsen, F.; Jensen, T.; Kornerup, H.J.; Madsen, M. Relationship between Urinary Concentrating Ability, Arginine Vasopressin in Plasma and Blood Pressure after Renal Transplantation. Scand. J. Clin. Lab. Investig. 1985, 45, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.M.; Torres, V.E. Polycystic Kidney Disease. Nat. Rev. Dis. Prim. 2018, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- Sommerer, C.; Zeier, M. Clinical Manifestation and Management of ADPKD in Western Countries. Kidney Dis. 2016, 2, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Chebib, F.T.; Perrone, R.D.; Chapman, A.B.; Dahl, N.K.; Harris, P.C.; Mrug, M.; Mustafa, R.A.; Rastogi, A.; Watnick, T.; Yu, A.S.L.; et al. A Practical Guide for Treatment of Rapidly Progressive ADPKD with Tolvaptan. J. Am. Soc. Nephrol. 2018, 29, 2458–2470. [Google Scholar] [CrossRef] [Green Version]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S.; et al. Tolvaptan in Patients with Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2012, 367, 2407–2418. [Google Scholar] [CrossRef] [Green Version]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Perrone, R.D.; Koch, G.; Ouyang, J.; McQuade, R.D.; Blais, J.D.; Czerwiec, F.S.; et al. Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2017, 377, 1930–1942. [Google Scholar] [CrossRef]
- Irazabal, M.V.; Torres, V.E.; Hogan, M.C.; Glockner, J.; King, B.F.; Ofstie, T.G.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S. Short-Term Effects of Tolvaptan on Renal Function and Volume in Patients with Autosomal Dominant Polycystic Kidney Disease. Kidney Int. 2011, 80, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Boertien, W.E.; Meijer, E.; de Jong, P.E.; ter Horst, G.J.; Renken, R.J.; van der Jagt, E.J.; Kappert, P.; Ouyang, J.; Engels, G.E.; van Oeveren, W.; et al. Short-Term Effects of Tolvaptan in Individuals with Autosomal Dominant Polycystic Kidney Disease at Various Levels of Kidney Function. Am. J. Kidney Dis. 2015, 65, 833–841. [Google Scholar] [CrossRef]
- Kramers, B.J.; van Gastel, M.D.A.; Boertien, W.E.; Meijer, E.; Gansevoort, R.T. Determinants of Urine Volume in ADPKD Patients Using the Vasopressin V2 Receptor Antagonist Tolvaptan. Am. J. Kidney Dis. 2019, 73, 354–362. [Google Scholar] [CrossRef]
- Borrego Utiel, F.J.; Merino García, E. Glomerular Filtration Rate Is the Main Predictor of Urine Volume in Autosomal Dominant Polycystic Kidney Disease Patients Treated with Tolvaptan When Daily Osmolar Excretion Is Expressed as Urinary Osmolality/Creatinine Ratio. Clin. Kidney J. 2021, 14, 1031–1033. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A.; Philbin, E.F.; Spertus, J.A.; Kaatz, S.; Sandberg, K.R.; Weaver, W.D.; Resource Utilization among Congestive Heart Failure (REACH) Study. Confirmation of a Heart Failure Epidemic: Findings from the Resource Utilization among Congestive Heart Failure (REACH) Study. J. Am. Coll. Cardiol. 2002, 39, 60–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCullough, P.A.; Bakris, G.L.; Owen, W.F.; Klassen, P.S.; Califf, R.M. Slowing the Progression of Diabetic Nephropathy and Its Cardiovascular Consequences. Am. Heart J. 2004, 148, 243–251. [Google Scholar] [CrossRef]
- McCullough, P.A.; Kellum, J.A.; Haase, M.; Müller, C.; Damman, K.; Murray, P.T.; Cruz, D.; House, A.A.; Schmidt-Ott, K.M.; Vescovo, G.; et al. Pathophysiology of the Cardiorenal Syndromes: Executive Summary from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 2013, 182, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.; Müller, C.; Damman, K.; Murray, P.T.; Kellum, J.A.; Ronco, C.; McCullough, P.A. Pathogenesis of Cardiorenal Syndrome Type 1 in Acute Decompensated Heart Failure: Workgroup Statements from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 2013, 182, 99–116. [Google Scholar] [CrossRef]
- Cruz, D.N.; Schmidt-Ott, K.M.; Vescovo, G.; House, A.A.; Kellum, J.A.; Ronco, C.; McCullough, P.A. Pathophysiology of Cardiorenal Syndrome Type 2 in Stable Chronic Heart Failure: Workgroup Statements from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 2013, 182, 117–136. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Hoste, E.A.; Braam, B.; Briguori, C.; Kellum, J.A.; McCullough, P.A.; Ronco, C. Cardiorenal Syndrome Type 3: Pathophysiologic and Epidemiologic Considerations. Contrib. Nephrol. 2013, 182, 137–157. [Google Scholar] [CrossRef] [Green Version]
- Tumlin, J.A.; Costanzo, M.R.; Chawla, L.S.; Herzog, C.A.; Kellum, J.A.; McCullough, P.A.; Ronco, C. Cardiorenal Syndrome Type 4: Insights on Clinical Presentation and Pathophysiology from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 2013, 182, 158–173. [Google Scholar] [CrossRef]
- Clark, A.L.; Kalra, P.R.; Petrie, M.C.; Mark, P.B.; Tomlinson, L.A.; Tomson, C.R. Change in Renal Function Associated with Drug Treatment in Heart Failure: National Guidance. Heart 2019, 105, 904–910. [Google Scholar] [CrossRef]
- Heywood, J.T.; Fonarow, G.C.; Costanzo, M.R.; Mathur, V.S.; Wigneswaran, J.R.; Wynne, J.; ADHERE Scientific Advisory Committee and Investigators. High Prevalence of Renal Dysfunction and Its Impact on Outcome in 118,465 Patients Hospitalized with Acute Decompensated Heart Failure: A Report from the ADHERE Database. J. Card. Fail. 2007, 13, 422–430. [Google Scholar] [CrossRef]
- Chioncel, O.; Mebazaa, A.; Harjola, V.-P.; Coats, A.J.; Piepoli, M.F.; Crespo-Leiro, M.G.; Laroche, C.; Seferovic, P.M.; Anker, S.D.; Ferrari, R.; et al. Clinical Phenotypes and Outcome of Patients Hospitalized for Acute Heart Failure: The ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1242–1254. [Google Scholar] [CrossRef] [Green Version]
- Hoorn, E.J.; Ellison, D.H. Diuretic Resistance. Am. J. Kidney Dis. 2017, 69, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Faris, R.F.; Flather, M.; Purcell, H.; Poole-Wilson, P.A.; Coats, A.J.S. Diuretics for Heart Failure. Cochrane Database Syst. Rev. 2012, 2, CD003838. [Google Scholar] [CrossRef]
- Singh, D.; Shrestha, K.; Testani, J.M.; Verbrugge, F.H.; Dupont, M.; Mullens, W.; Tang, W.H.W. Insufficient Natriuretic Response to Continuous Intravenous Furosemide Is Associated with Poor Long-Term Outcomes in Acute Decompensated Heart Failure. J. Card. Fail. 2014, 20, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testani, J.M.; Hanberg, J.S.; Cheng, S.; Rao, V.; Onyebeke, C.; Laur, O.; Kula, A.; Chen, M.; Wilson, F.P.; Darlington, A.; et al. Rapid and Highly Accurate Prediction of Poor Loop Diuretic Natriuretic Response in Patients with Heart Failure. Circ. Heart Fail. 2016, 9, e002370. [Google Scholar] [CrossRef] [Green Version]
- Bart, B.A.; Goldsmith, S.R.; Lee, K.L.; Givertz, M.M.; O’Connor, C.M.; Bull, D.A.; Redfield, M.M.; Deswal, A.; Rouleau, J.L.; LeWinter, M.M.; et al. Ultrafiltration in Decompensated Heart Failure with Cardiorenal Syndrome. N. Engl. J. Med. 2012, 367, 2296–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbrugge, F.H.; Nijst, P.; Dupont, M.; Penders, J.; Tang, W.H.W.; Mullens, W. Urinary Composition during Decongestive Treatment in Heart Failure with Reduced Ejection Fraction. Circ. Heart Fail. 2014, 7, 766–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wile, D. Diuretics: A Review. Ann. Clin. Biochem. 2012, 49, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Karg, M.V.; Bosch, A.; Kannenkeril, D.; Striepe, K.; Ott, C.; Schneider, M.P.; Boemke-Zelch, F.; Linz, P.; Nagel, A.M.; Titze, J.; et al. SGLT-2-Inhibition with Dapagliflozin Reduces Tissue Sodium Content: A Randomised Controlled Trial. Cardiovasc. Diabetol. 2018, 17, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivey-Miranda, J.B.; Almeida-Gutierrez, E.; Herrera-Saucedo, R.; Posada-Martinez, E.L.; Chavez-Mendoza, A.; Mendoza-Zavala, G.H.; Cigarroa-Lopez, J.A.; Magaña-Serrano, J.A.; Rivera-Leaños, R.; Treviño-Mejia, A.; et al. Sodium Restriction in Patients with Chronic Heart Failure and Reduced Ejection Fraction: A Randomized Controlled Trial. Cardiol. J. 2021, 30, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Linz, B.; Saljic, A.; Hohl, M.; Gawałko, M.; Jespersen, T.; Sanders, P.; Böhm, M.; Linz, D. Inhibition of Sodium-Proton-Exchanger Subtype 3-Mediated Sodium Absorption in the Gut: A New Antihypertensive Concept. Int. J. Cardiol. Heart Vasc. 2020, 29, 100591. [Google Scholar] [CrossRef]
- Rao, V.S.; Turner, J.M.; Griffin, M.; Mahoney, D.; Asher, J.; Jeon, S.; Yoo, P.S.; Boutagy, N.; Feher, A.; Sinusas, A.; et al. First-in-Human Experience with Peritoneal Direct Sodium Removal Using a Zero-Sodium Solution: A New Candidate Therapy for Volume Overload. Circulation 2020, 141, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
Author | Year, Country | Study Type | Sample Size | MRI Measurement | Other Measurements |
---|---|---|---|---|---|
Moon C et al. [26] | 2014, USA | Prospective | HC = 6; renal transplant = 6 | 23Na and 1H MRI of the kidney | N/A |
Findings: Significantly lower sodium concentration and CMG in the transplanted kidneys compared to the native kidneys | |||||
Dahlmann A et al. [17] | 2015, Germany | Cross-sectional | HC = 27; HD = 24 | 23Na and 1H MRI of lower leg skin and muscle pre and post dialysis | Dialysate and ultrafiltrate sodium content; VEGF-C level |
Findings: Increase in tissue sodium content and degrease in VEGF-C correlated to age; Higher sodium and water content in HD > 60 year and lower VEGF-C relative to HC; Post-HD, significantly higher skin sodium content found in patients with lower VEGF-C | |||||
Schneider MP et al. [27] | 2017, Germany | Cross-sectional | Mild to moderate CKD = 99 | 23Na MRI of the lower leg and 1H MRI of the heart | BIS; 24 h BP |
Findings: Skin sodium content correlated with systolic BP and left ventricular mass; Skin sodium content is a strong explanatory variable for left ventricular mass, unaffected by BP and total body overhydration | |||||
Hammon M et al. [28] | 2017, Germany | Observational | HC = 14; AKI = 7 | 23Na/1H-MRI of lower leg | N/A |
Findings: No change in muscle and skin sodium and water content following hemodialysis treatment; Muscle and skin sodium content in AKI patients significantly higher compared to HC | |||||
Deger S et al. [29] | 2017, USA | Cross-sectional | HC = 8; MHD = 11 | 23Na MRI of the lower leg | Body composition; Blood sample |
Findings: Lower glucose, leucine disposal rates, and higher muscle sodium content found in MHD patients; Glucose and leucine disposal rates inversely correlated with muscle sodium content in MHD patients | |||||
Kopp C et al. [30] | 2018, Germany | Prospective | HD with T2DM = 10; HD without T2DM = 30 | 23Na/1H-MRI of lower leg | BIS; BP; Blood sample |
Findings: Higher skin and muscle sodium content in HD with T2DM as compared to control HD; Excess extracellular water correlated with HbA1c; Muscle sodium content was lowered in a greater degree in HD with T2DM post-dialysis | |||||
Mitsides N et al. [31] | 2019, UK | Cross-sectional | HC = 11; CKD (stage 5) = 23 | 23Na MRI of the lower leg | BIS; 24 h BP *; Blood sample |
Findings: CKD patients had FO compared to HC; Higher skin but not muscle sodium content in CKD as compared to HC; Muscle and skin sodium content correlated with FO; CKD patients had elevated levels of vascular cell adhesion molecule, tumor necrosis factor-alpha, and IL-6 and lower levels of VEGF-C; FO in CKD linked to higher IL-8 and inversely associated with E-selectin; Higher skin sodium linked to higher ICAM | |||||
Qirjazi E et al. [32] | 2020, Canada | Cross-sectional | HC = 10; CKD = 12; HD = 13, PD = 10 | 23Na MRI of lower leg | Blood sample |
Findings: Elevated skin, soleus, and tibia sodium content in HD and PD patients; Negative correlation between serum albumin and soleus muscle sodium in HD; Negative correlation between eGFR and sodium content in combined HC-CKD; Negative correlation between hemoglobin and sodium tissue concentration in CKD and HD | |||||
Sahinoz M et al. [33] | 2020, USA | Cross-sectional | HC = 119; PD = 10; HD = 33; | 23Na MRI of lower leg | Blood sample |
Findings: Significantly higher skin and muscle sodium in HD and PD compared to HC; Higher muscle and skin sodium content in African American patients on dialysis compared with non-African Americans; Skin and muscle sodium content correlated with age; Higher skin sodium content in male sex; Higher ultrafiltration correlated with lower skin sodium in PD; Higher skin and muscle sodium content correlated with greater plasma IL-6 and hsCRP levels; Higher variability in tissue sodium content in repeated scans from patients with higher sodium in their baseline scan | |||||
Penny J et al. [19] | 2021, Canada | Case report | An 80-year-old male | 23Na MRI of lower leg | Depression score; Anxiety score; Pruritus score |
Findings: Reduction in soft tissue sodium in the lower leg along with lower depression, anxiety, pruritus scores after therapy | |||||
Lemoine S et al. [34] | 2021, Canada | Cross-sectional | HD = 18 with [Na+]D = 137 mmol/L; HD = 18 with [Na+]D = 140 mmol/L | 23Na MRI of lower leg | Blood Pressure |
Findings: Significantly lower skin sodium content in HD group on [Na+]D = 137 mmol/L prescription; Skin sodium content correlated with systolic blood pressure | |||||
Dahlmann A et al. [20] | 2021, Germany | Prospective | HC = 31; CKD (stage 5) undergoing kidney transplant = 31 | 23Na MRI of lower leg | BIS; BP; Blood and urine samples |
Findings: Higher skin and muscle sodium content in CKD compared to HC; No difference in plasma sodium concentration between the two groups; Lower skin and muscle sodium content after kidney transplant was associated with improved renal function, normalization of blood pressure and increase in lymphatic growth-factor concentration | |||||
Lemoine S et al. [21] | 2021, Canada | Cross-sectional | HF = 18; HD = 34; CKD = 31 | 23Na MRI of lower leg | Blood sample; Urine sample; Echocardiography |
Findings: Indistinguishable skin sodium content between the HF and HD groups; Significantly higher skin and muscle sodium content in HD than CKD patients; Significant correlation between skin sodium and urinary sodium; Lower skin sodium content in patients who were volume depleted (sodium excretion fraction <1%) than patients with sodium excretion fraction >1% | |||||
Salerno F et al. [22] | 2022, Canada | Observational | 42 HD = 42; PD = 10 | 23Na MRI of lower leg | Blood sample |
Findings: Skin sodium content associated with all-cause mortality and composite events, independently of age, sex, serum sodium and albumin; Dialysate sodium, serum albumin and congestive heart failure significantly associated with skin sodium content in HD patients (R2adj = 0.62) | |||||
Friedrich AC et al. [23] | 2022, Germany | Observational | HD with CVD = 23; HD without CVD = 29 | 23Na MRI of lower leg | BIS; BP; Blood sample |
Findings: Higher skin and muscle sodium content and inflammation marker interleukin-6 in HD patients with CVD; No significant difference in excess extracellular water between both groups | |||||
Akbari A et al. [24] | 2022, Canada | Exploratory prospective | HC = 10; CKD = 5 | 23Na MRI of the kidney | Urine sample |
Findings: Reduced kidney sodium medulla-to-cortex ratios and mean urinary osmolarity from fasting baseline to peak urine dilution after water-load in healthy volunteers; Kidney sodium medulla-to-cortex ratio and corresponding urinary osmolarity correlated in both groups (r2 = 0.22; p < 0.001) | |||||
Salerno F et al. [25] | 2023, Canada | Case-control exploratory | Pediatric HC = 17; Pediatric CKD = 19; Adult HC = 19 | 23Na MRI of lower leg | Blood sample; Urine sample |
Findings: Significantly higher tissue sodium content in healthy adults compared to pediatric groups; No significant differences between pediatric HC and CKD groups; High whole-leg sodium concentration Z-scores in four patients with glomerular disease and one kidney transplant recipient due to atypical hemolytic-uremic syndrome; Reduced whole-leg sodium concentration Z-scores in two patients with tubular disorders; Proteinuria and hypoalbuminemia significantly associated with tissue sodium concentration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbari, A.; McIntyre, C.W. Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease. J. Clin. Med. 2023, 12, 4381. https://doi.org/10.3390/jcm12134381
Akbari A, McIntyre CW. Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease. Journal of Clinical Medicine. 2023; 12(13):4381. https://doi.org/10.3390/jcm12134381
Chicago/Turabian StyleAkbari, Alireza, and Christopher W. McIntyre. 2023. "Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease" Journal of Clinical Medicine 12, no. 13: 4381. https://doi.org/10.3390/jcm12134381