Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = 2-Furoic Acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2791 KiB  
Article
Assessment of Biodegradation Mechanisms of Ceftiofur Sodium by Escherichia sp. CS-1 and Insights from Transcriptomic Analysis
by Meng-Yang Yan, Cai-Hong Zhao, Jie Wu, Adil Mohammad, Yi-Tao Li, Liang-Bo Liu, Yi-Bo Cao, Xing-Mei Deng, Jia Guo, Hui Zhang, Hong-Su He and Zhi-Hua Sun
Microorganisms 2025, 13(6), 1404; https://doi.org/10.3390/microorganisms13061404 - 16 Jun 2025
Viewed by 485
Abstract
Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes [...] Read more.
Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). This situation poses substantial challenges to both environmental integrity and public health. Currently, research on the biodegradation of CFS is limited. In this study, we isolated a strain of Escherichia coli, designated E. coli CS-1, a Gram-negative, rod-shaped bacterium capable of utilizing CFS as its sole carbon source, from fecal samples collected from hog farms. We investigated the effects of initial CFS concentration, pH, temperature, and inoculum size on the degradation of CFS by E. coli CS-1 through a series of single-factor experiments conducted under aerobic conditions. The results indicated that E. coli CS-1 achieved the highest CFS degradation rate under the following optimal conditions: an initial CFS concentration of 50 mg/L, a pH of 7.0, a temperature of 37 °C, and an inoculum size of 6% (volume fraction). Under these conditions, E. coli CS-1 was able to completely degrade CFS within 60 h. Additionally, E. coli CS-1 exhibited significant capabilities for CFS degradation. In this study, six major degradation products of (CFS) were identified by UPLC–MS/MS: desfuroyl ceftiofur, 5-hydroxymethyl-2-furaldehyde, 7-aminodesacetoxycephalosporanic acid, 5-hydroxy-2-furoic acid, 2-furoic acid, and CEF-aldehyde. Based on these findings, two degradation pathways are proposed. Pathway I: CFS is hydrolyzed to break the sulfur–carbon (S–C) bond, generating two products. These products undergo subsequent hydrolysis and redox reactions for gradual transformation. Pathway II: The β-lactam bond of CFS is enzymatically cleaved, forming CEF-aldehyde as the primary degradation product, which is consistent with the biodegradation mechanism of most β-lactam antibiotics via β-lactam ring cleavage. Transcriptome sequencing revealed that 758 genes essential for degradation were upregulated in response to the hydrolysis and redox processes associated with CFS. Furthermore, the differentially expressed genes (DEGs) of E. coli CS-1 were functionally annotated using a combination of genomics and bioinformatics approaches. This study highlights the potential of E. coli CS-1 to degrade CFS in the environment and proposes hypotheses regarding the possible biodegradation mechanisms of CFS for future research. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Figure 1

17 pages, 1924 KiB  
Article
Conversion of Furfural as a Bio-Oil Model Compound over Calcium-Based Materials as Sacrificial Low-Cost Catalysts for Bio-Oil Upgrading
by Moritz Böhme, Peter A. Jensen, Martin Høj, Brian B. Hansen, Magnus Z. Stummann and Anker D. Jensen
Catalysts 2025, 15(6), 554; https://doi.org/10.3390/catal15060554 - 3 Jun 2025
Viewed by 608
Abstract
The stabilization and upgrading of biomass and waste-derived pyrolysis oils requires development of reliable, active and low-cost upgrading catalysts. Basic natural materials can act as such catalysts and convert reactive oxygenates present in biomass pyrolysis oils. The conversion of furfural as a model [...] Read more.
The stabilization and upgrading of biomass and waste-derived pyrolysis oils requires development of reliable, active and low-cost upgrading catalysts. Basic natural materials can act as such catalysts and convert reactive oxygenates present in biomass pyrolysis oils. The conversion of furfural as a model compound has been conducted in an autoclave reactor at 200 °C to 300 °C using different calcium-based materials. CaCO3, Ca(OH)2, CaO, cement raw meal (CRM) and calcined cement raw meal (cCRM) were screened for their catalytic activity and characterized using X-ray powder diffraction (XRD) and X-ray fluorescence (XRF), nitrogen physisorption, carbon dioxide temperature programmed desorption (CO2-TPD) and thermogravimetric analysis (TGA). CaCO3 and CRM had low basicity and showed no catalytic activity at 200 to 300 °C. Notably, 90% conversion of furfural was achieved at 200 °C using Ca(OH)2 with products being mostly furfural di- and trimers. For the basic CaO and cCRM, a temperature of 250 °C or above caused rapid polymerization of furfural. The proposed mechanism follows the Cannizzaro reaction of furfural, catalyzed by basic sites, polymerization of furfuryl alcohol, decarboxylation of furoic acid and decarbonylation of furfural, releasing CO, CO2 and H2O. Calcined cement raw meal showed the most promise for application as low-cost, sacrificial, basic catalyst. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Graphical abstract

14 pages, 3337 KiB  
Article
Elucidating the Fundamental Process of Methyl-(5hydroxymethyl) Furan-2-Carboxylate Toxin Biosynthesis in Curvularia lunata Causing Maize Leaf Spot
by Zhixiang Lu, Bo Lang, Shaoqing Wang, Hongyi Liu, Xinhua Wang and Jie Chen
J. Fungi 2024, 10(10), 688; https://doi.org/10.3390/jof10100688 - 30 Sep 2024
Viewed by 1255
Abstract
Maize leaf spot, which is caused by Curvularia lunata (Wakkre) Boedijn, was epidemic in the maize-growing regions of northeastern and northern China in the mid-1990s, where it led to large yield losses. Since then, the epidemic has evolved into a kind of common [...] Read more.
Maize leaf spot, which is caused by Curvularia lunata (Wakkre) Boedijn, was epidemic in the maize-growing regions of northeastern and northern China in the mid-1990s, where it led to large yield losses. Since then, the epidemic has evolved into a kind of common disease. In recent years, however, a tendency of becoming an epidemic disease again has been observed in some areas in China due to significant changes in climate, farming, systems and crop varieties. The significance of methyl-(5hydroxymethyl) furan-2-carboxylate (M5HF2C) as a nonspecific host toxin in causing maize leaf spot disease has been demonstrated in previous research. However, the key enzymes involved in M5HF2C toxin synthesis remain unclear. In our study, we demonstrate that the synthesis of M5HF2C toxin starts from a precursor substrate in the pathogen, furfural, which is then catalytically dehydrogenated into furoic acid via an alcohol dehydrogenase (CLADH6). The furoic acid was further confirmed as one of the raw materials for the biosynthesis of M5HF2C toxin based on deletion mutants of the alcohol dehydrogenase gene (Cladh6) in C. lunata, which had reduced M5HF2C toxin-producing ability; however, this ability could be restored in all deletion mutants through complementation with furoic acid, thereby confirming that furoic acid is an intermediate in the biosynthesis of M5HF2C toxin. In summary, the biosynthesis process of M5HF2C toxin in C. lunata involves three transformation steps: (1) from xylose to furfural; (2) then from furfural to furoic acid; and (3) eventually from furoic acid to M5HF2C toxin. Our research findings provide new clues in elucidating the major steps in the process of M5HF2C toxin biosynthesis in C. lunata. Full article
(This article belongs to the Special Issue Toxigenic Fungi and Mycotoxins)
Show Figures

Figure 1

18 pages, 7206 KiB  
Article
Extraction Optimization and Anti-Tumor Activity of Polysaccharides from Chlamydomonas reinhardtii
by Zhongwen Liang, Lan Xiong, Ying Zang, Zhijuan Tang, Zhenyu Shang, Jingyu Zhang, Zihan Jia, Yanting Huang, Xiaoyu Ye, Hongquan Liu and Mei Li
Mar. Drugs 2024, 22(8), 356; https://doi.org/10.3390/md22080356 - 2 Aug 2024
Cited by 7 | Viewed by 2491
Abstract
Chlamydomonas reinhardtii polysaccharides (CRPs) are bioactive compounds derived from C. reinhardtii, yet their potential in cancer therapy remains largely unexplored. This study optimized the ultrasound-assisted extraction conditions using response surface methodology and proceeded with the isolation and purification of these polysaccharides. The [...] Read more.
Chlamydomonas reinhardtii polysaccharides (CRPs) are bioactive compounds derived from C. reinhardtii, yet their potential in cancer therapy remains largely unexplored. This study optimized the ultrasound-assisted extraction conditions using response surface methodology and proceeded with the isolation and purification of these polysaccharides. The optimal extraction conditions were identified as a sodium hydroxide concentration of 1.5%, ultrasonic power of 200 W, a solid-to-liquid ratio of 1:25 g/mL, an ultrasonic treatment time of 10 min, and a water bath duration of 2.5 h, yielding an actual extraction rate of 5.71 ± 0.001%, which closely aligns with the predicted value of 5.639%. Infrared analysis revealed that CRP-1 and CRP-2 are α-pyranose structures containing furoic acid, while CRP-3 and CRP-4 are β-pyranose structures containing furoic acid. Experimental results demonstrated that all four purified polysaccharides inhibited the proliferation of cervical (HeLa) hepatoma (HepG-2) and colon (HCT-116) cancer cells, with CRP-4 showing the most significant inhibitory effect on colon cancer and cervical cancer, achieving inhibition rates of 60.58 ± 0.88% and 40.44 ± 1.44%, respectively, and significantly reducing the migration of HeLa cells. DAPI staining confirmed that the four purified polysaccharides inhibit cell proliferation and migration by inducing apoptosis in HeLa cells. CRP-1 has the most significant inhibitory effect on the proliferation of liver cancer cells. This study not only elucidates the potential application of C. reinhardtii polysaccharides in cancer therapy but also provides a scientific basis for their further development and utilization. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

15 pages, 1360 KiB  
Article
Bioconversion of Furanic Compounds by Chlorella vulgaris—Unveiling Biotechnological Potentials
by Ricarda Kriechbaum, Oliver Spadiut and Julian Kopp
Microorganisms 2024, 12(6), 1222; https://doi.org/10.3390/microorganisms12061222 - 18 Jun 2024
Cited by 1 | Viewed by 1194
Abstract
Lignocellulosic biomass is abundant on Earth, and there are multiple acidic pretreatment options to separate the cellulose, hemicellulose, and lignin fraction. By doing so, the fermentation inhibitors 5-Hydroxymethylfurfural (HMF) and furfural (FF) are produced in varying concentrations depending on the hydrolyzed substrate. In [...] Read more.
Lignocellulosic biomass is abundant on Earth, and there are multiple acidic pretreatment options to separate the cellulose, hemicellulose, and lignin fraction. By doing so, the fermentation inhibitors 5-Hydroxymethylfurfural (HMF) and furfural (FF) are produced in varying concentrations depending on the hydrolyzed substrate. In this study, the impact of these furanic compounds on Chlorella vulgaris growth and photosynthetic activity was analyzed. Both compounds led to a prolonged lag phase in Chlorella vulgaris growth. While the photosynthetic yield Y(II) was not significantly influenced in cultivations containing HMF, FF significantly reduced Y(II). The conversion of 5-Hydroxymethylfurfural and furfural to 5-Hydroxymethyl-2-Furoic Acid and 2-Furoic Acid was observed. In total, 100% of HMF and FF was converted in photoautotrophic and mixotrophic Chlorella vulgaris cultivations. The results demonstrate that Chlorella vulgaris is, as of now, the first known microalgal species converting furanic compounds. Full article
(This article belongs to the Special Issue The Application Potential of Microalgae in Green Biotechnology)
Show Figures

Graphical abstract

6 pages, 1175 KiB  
Short Note
Hept-6-en-1-yl Furan-2-carboxylate
by Zhongwei Wang, Lin Song and Yukun Qin
Molbank 2024, 2024(2), M1828; https://doi.org/10.3390/M1828 - 27 May 2024
Viewed by 1512
Abstract
This study aims to develop an efficient and green one-pot method for the synthesis of 6-en-1-yl furan-2-carboxylic acid heptyl ester. Initially, using furfural as the starting substrate, hept-6-en-1-yl furan-2-carboxylate was prepared using a one-pot method. This study developed a new experimental scheme for [...] Read more.
This study aims to develop an efficient and green one-pot method for the synthesis of 6-en-1-yl furan-2-carboxylic acid heptyl ester. Initially, using furfural as the starting substrate, hept-6-en-1-yl furan-2-carboxylate was prepared using a one-pot method. This study developed a new experimental scheme for preparing ester compounds, using cuprous chloride as a catalyst and tert butyl hydrogen peroxide as an oxidant to prepare furoic acid. Without the need for intermediate treatment, the target product can be directly obtained from furfural by adding 7-bromo-1-heptene, TBAB, and potassium carbonate. This method effectively utilizes furfural as a platform chemical, demonstrating its potential for synthesizing high-value chemicals. The entire synthesis process is simple and efficient, following the principles of green chemistry. Full article
Show Figures

Figure 1

15 pages, 3633 KiB  
Article
Proline and Proline Analogues Improve Development of Mouse Preimplantation Embryos by Protecting Them against Oxidative Stress
by Madeleine L. M. Hardy, Dheerja Lakhiani, Michael B. Morris and Margot L. Day
Cells 2023, 12(22), 2640; https://doi.org/10.3390/cells12222640 - 16 Nov 2023
Cited by 4 | Viewed by 2265
Abstract
The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with [...] Read more.
The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with tetramethylrhodamine methyl ester and 2′,7′-dichlorofluorescein diacetate showed that the culture of embryos in the presence of Pro, or either of these analogues, reduced mitochondrial activity and reactive oxygen species (ROS), respectively, indicating potential mechanisms by which embryo development is improved. Inhibition of the Pro metabolism enzyme, proline oxidase, by tetrahydro-2-furoic-acid prevented these reductions and concomitantly prevented the improved development. The ways in which Pro, PA and L4T reduce mitochondrial activity and ROS appear to differ, despite their structural similarity. Specifically, the results are consistent with Pro reducing ROS by reducing mitochondrial activity while PA and L4T may be acting as ROS scavengers. All three may work to reduce ROS by contributing to the GSH pool. Overall, our results indicate that reduction in mitochondrial activity and oxidative stress are potential mechanisms by which Pro and its analogues act to improve pre-implantation embryo development. Full article
Show Figures

Figure 1

30 pages, 6533 KiB  
Review
Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization
by Joëlle Thuriot-Roukos, Camila Palombo Ferraz, Hisham K. Al Rawas, Svetlana Heyte, Sébastien Paul, Ivaldo Itabaiana Jr, Mariusz Pietrowski, Michal Zieliński, Mohammed N. Ghazzal, Franck Dumeignil and Robert Wojcieszak
Materials 2023, 16(19), 6357; https://doi.org/10.3390/ma16196357 - 22 Sep 2023
Cited by 4 | Viewed by 1979
Abstract
Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve [...] Read more.
Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve as catalysts by providing surfaces for furfural molecules to adsorb onto and facilitating electron transfer between the substrate and the oxidizing agent. The role of the support in this reaction has been widely studied, and gold–support interactions have been found to be beneficial. However, the exact mechanism of furfural oxidation under base-free conditions remains an active area of research and is not yet fully understood. In this review, we delve into the essential factors that influence the selectivity of furfural oxidation. We present an optimization process that highlights the significant role of machine learning in identifying the best catalyst for this reaction. The principal objective of this study is to provide a comprehensive review of research conducted over the past five years concerning the catalytic oxidation of furfural under base-free conditions. By conducting tree decision making on experimental data from recent articles, a total of 93 gold-based catalysts are compared. The relative variable importance chart analysis reveals that the support preparation method and the pH of the solution are the most crucial factors determining the yield of furoic acid in this oxidation process. Full article
Show Figures

Graphical abstract

15 pages, 3074 KiB  
Article
Current Design of Mixed-Ligand Complexes of Magnesium(II): Synthesis, Crystal Structure, Thermal Properties and Biological Activity against Mycolicibacterium Smegmatis and Bacillus Kochii
by Marina E. Nikiforova, Dmitriy S. Yambulatov, Yulia V. Nelyubina, Petr V. Primakov, Olga B. Bekker, Konstantin B. Majorov, Maxim A. Shmelev, Andrey V. Khoroshilov, Igor L. Eremenko and Irina A. Lutsenko
Crystals 2023, 13(9), 1306; https://doi.org/10.3390/cryst13091306 - 27 Aug 2023
Cited by 3 | Viewed by 2399
Abstract
The interaction of Mg2+ with 2-furoic acid (HFur) and oligopyridines, depending on the synthesis conditions, leads to the formation of mixed-ligand complexes [Mg(H2O)4(phen)]·2HFur·phen·H2O (1), [Mg(NO3)2(phen)2] (2) [...] Read more.
The interaction of Mg2+ with 2-furoic acid (HFur) and oligopyridines, depending on the synthesis conditions, leads to the formation of mixed-ligand complexes [Mg(H2O)4(phen)]·2HFur·phen·H2O (1), [Mg(NO3)2(phen)2] (2) and [Mg3(Fur)6(bpy)2]·3CH3CN (3); these structures were determined with an SC X-ray analysis. According to the X-ray diffraction data, in complex 1, obtained in ambient conditions, the magnesium cation coordinated four water molecules and one phenanthroline fragment, while in complexes 2 and 3 (synthesized in an inert atmosphere), the ligand environment of the complexing agent was represented by neutral oligopyridine molecules and acid anions. The thermal behavior of 1 and 2 was studied using a simultaneous thermal analysis (STA). The in vitro biological activity of complexes 13 was studied in relation to the non-pathogenic Mycolicibacterium smegmatis and the virulent strain Mycobacterium tuberculosis H37Rv. Full article
(This article belongs to the Special Issue Feature Papers in Crystals 2023)
Show Figures

Figure 1

5 pages, 1439 KiB  
Short Note
N′-(5-Bromofuran-2-carbonyl)isonicotinohydrazide
by Ersya Yanu Ramadhani, Nur Pasca Aijijiyah, Eko Santoso, Lukman Atmaja and Mardi Santoso
Molbank 2023, 2023(3), M1706; https://doi.org/10.3390/M1706 - 1 Aug 2023
Viewed by 1682
Abstract
N′-(5-bromofuran-2-carbonyl)isonicotinohydrazide (1) was obtained in the form of a colorless solid from the 2-methyl-6-nitrobenzoic anhydride (MNBA)/4-dimethylaminopyridine (DMAP)-catalyzed reaction of 5-bromofuran-2-carboxylic acid and isoniazid in dichloromethane at room temperature with a yield of 83%. The structure of N′-(5-bromofuran-2-carbonyl)isonicotinohydrazide (1 [...] Read more.
N′-(5-bromofuran-2-carbonyl)isonicotinohydrazide (1) was obtained in the form of a colorless solid from the 2-methyl-6-nitrobenzoic anhydride (MNBA)/4-dimethylaminopyridine (DMAP)-catalyzed reaction of 5-bromofuran-2-carboxylic acid and isoniazid in dichloromethane at room temperature with a yield of 83%. The structure of N′-(5-bromofuran-2-carbonyl)isonicotinohydrazide (1) was elucidated using 1H NMR, 13C NMR, FTIR, and high-resolution mass spectrometry. Molecular docking screening of the title compound (1) on cyclooxygenase-2 (COX-2) protein (PDB ID: 5IKR) indicated that compound (1) has a good binding affinity, suggesting that further structure optimization and in-depth research can be carried out on compound (1) as a potential COX-2 inhibitor. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

17 pages, 4314 KiB  
Article
Adenophora Stricta Root Extract Alleviates Airway Inflammation in Mice with Ovalbumin-Induced Allergic Asthma
by Cheol-Jong Jung, Seok-Man Park, Dae-Geon Lee, Yeong-Eun Yu, Tae-Hun Ku, Im-Joung La, Il-Je Cho and Sae-Kwang Ku
Antioxidants 2023, 12(4), 922; https://doi.org/10.3390/antiox12040922 - 13 Apr 2023
Cited by 3 | Viewed by 3121
Abstract
Adenophora stricta Miq. (Campanulaceae family) is a traditional herb used for relieving cough and phlegm in East Asia. This study explored the effects of A. stricta root extract (AsE) in ovalbumin (OVA)-induced allergic asthma and lipopolysaccharide (LPS)-stimulated macrophages. Administration of 100–400 mg/kg [...] Read more.
Adenophora stricta Miq. (Campanulaceae family) is a traditional herb used for relieving cough and phlegm in East Asia. This study explored the effects of A. stricta root extract (AsE) in ovalbumin (OVA)-induced allergic asthma and lipopolysaccharide (LPS)-stimulated macrophages. Administration of 100–400 mg/kg AsE dose-dependently decreased pulmonary congestion and suppressed the reduction of alveolar surface area in mice with OVA-mediated allergic asthma. Histopathological analysis of lung tissue and cytological analysis of bronchioalveolar lavage fluid showed that AsE administration significantly attenuated inflammatory cell infiltration into the lungs. In addition, AsE also alleviated OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5 production, which are essential for OVA-dependent activation of T helper 2 lymphocytes. In Raw264.7 macrophage cells, AsE significantly blocked nitric oxide, tumor necrosis factor-α, IL-1β, IL-6, and monocyte chemoattractant factor-1 production in response to LPS. Results from an immunoblot assay revealed that AsE inhibited the phosphorylation of c-jun N-terminal kinase, inhibitory-κB kinase α/β, and p65 in LPS-stimulated cells. Furthermore, 2-furoic acid, 5-hydroxymethylfurfural, and vanillic acid 4-β-D-glucopyranoside in AsE were shown to inhibit the production of proinflammatory mediators by LPS. Taken together, the present results suggest that A. stricta root will be a useful herb for relieving allergic asthma through managing airway inflammation. Full article
(This article belongs to the Special Issue Flavonoids and Chronic Diseases - 2nd Edition)
Show Figures

Figure 1

16 pages, 3233 KiB  
Article
Effect of MnO2 Crystal Type on the Oxidation of Furfural to Furoic Acid
by Xu Wu, Heqin Guo, Litao Jia, Yong Xiao, Bo Hou and Debao Li
Catalysts 2023, 13(4), 663; https://doi.org/10.3390/catal13040663 - 28 Mar 2023
Cited by 7 | Viewed by 2693
Abstract
The base-free oxidation of furfural by non-noble metal systems has been challenging. Although MnO2 emerges as a potential catalyst application in base-free conditions, its catalytic efficiency still needs to be improved. The crystalline form of MnO2 is an important factor affecting [...] Read more.
The base-free oxidation of furfural by non-noble metal systems has been challenging. Although MnO2 emerges as a potential catalyst application in base-free conditions, its catalytic efficiency still needs to be improved. The crystalline form of MnO2 is an important factor affecting the oxidation ability of furfural. For this reason, four crystalline forms of MnO2 (α, β, γ, and δ-MnO2) were selected. Their oxidation performance and surface functional groups were analyzed and compared in detail. Only δ-MnO2 exhibited excellent activity, achieving 99.04% furfural conversion and 100% Propo.FA (Only furoic acid was detected by HPLC in the product) under base-free conditions, while the furfural conversion of α, β, and γ-MnO2 was below 10%. Characterization by XPS, IR, O2-TPD and other means revealed that δ-MnO2 has the most abundant active oxygen species and surface hydroxyl groups, which are responsible for the best performance of δ-MnO2. This work achieves the green and efficient oxidation of furfural to furoic acid over non-noble metal catalysts. Full article
(This article belongs to the Special Issue Recent Trends in Catalysis for Syngas Production and Conversion)
Show Figures

Graphical abstract

11 pages, 2639 KiB  
Article
Identification of a Novel Dehydrogenase from Gluconobacter oxydans for Degradation of Inhibitors Derived from Lignocellulosic Biomass
by Hongsen Zhang, Jiahui Jiang, Conghui Quan, Guizhong Zhao, Guotao Mao, Hui Xie, Fengqin Wang, Zhimin Wang, Jian Zhang, Pingping Zhou and Andong Song
Fermentation 2023, 9(3), 286; https://doi.org/10.3390/fermentation9030286 - 15 Mar 2023
Cited by 3 | Viewed by 2104
Abstract
Inhibitors from lignocellulosic biomass have become the bottleneck of biorefinery development. Gluconobacter oxydans DSM2003 showed a high performance of inhibitors degradation, which had a short lag time in non-detoxified corn stover hydrolysate and could convert 90% of aldehyde inhibitors to weaker toxic acids. [...] Read more.
Inhibitors from lignocellulosic biomass have become the bottleneck of biorefinery development. Gluconobacter oxydans DSM2003 showed a high performance of inhibitors degradation, which had a short lag time in non-detoxified corn stover hydrolysate and could convert 90% of aldehyde inhibitors to weaker toxic acids. In this study, an aldehyde dehydrogenase gene W826-RS0111485, which plays an important function in the conversion of aldehyde inhibitors in Gluconobacter oxydans DSM2003, was identified. W826-RS0111485 was found by protein profiling, then a series of enzymatic properties were determined and were heterologously expressed in E. coli. The results indicated that NADP is the most suitable cofactor of the enzyme when aldehyde inhibitor is the substrate, and it had the highest oxidation activity to furfural among several aldehyde inhibitors. Under the optimal reaction conditions (50 °C, pH 7.5), the Km and Vmax of the enzyme under furfural stress were 2.45 and 80.97, respectively, and the Kcat was 232.22 min−1. The biodetoxification performance experiments showed that the recombinant E. coli containing the target gene completely converted 1 g/L furfural to furoic acid within 8 h, while the control E. coli only converted 18% furfural within 8 h. It was further demonstrated that W826-RS0111485 played an important role in the detoxification of furfural. The mining of this inhibitor degradation gene could provide a theoretical basis for rational modification of industrial strains to enhance its capacity of inhibitor degradation in the future. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Decomposition and Bioconversion)
Show Figures

Figure 1

19 pages, 10896 KiB  
Article
Survival of Nematode Larvae Strongyloides papillosus and Haemonchus contortus under the Influence of Various Groups of Organic Compounds
by Olexandra Boyko and Viktor Brygadyrenko
Diversity 2023, 15(2), 254; https://doi.org/10.3390/d15020254 - 11 Feb 2023
Cited by 8 | Viewed by 2210
Abstract
Many chemically synthesized xenobiotics can significantly inhibit the vitality of parasitic nematodes. However, there is yet too little research on the toxicity of such contaminating compounds toward nematodes. Compounds that are present in plants are able to inhibit the vitality of parasitic organisms [...] Read more.
Many chemically synthesized xenobiotics can significantly inhibit the vitality of parasitic nematodes. However, there is yet too little research on the toxicity of such contaminating compounds toward nematodes. Compounds that are present in plants are able to inhibit the vitality of parasitic organisms as well. According to the results of our laboratory studies of toxicity, the following xenobiotics caused no decrease in the vitality of the larvae of Strongyloides papillosus and Haemonchus contortus: methanol, propan-2-ol, propylene glycol-1,2, octadecanol-1, 4-methyl-2-pen-tanol, 2-ethoxyethanol, butyl glycol, 2-pentanone, cyclopentanol, ortho-dimethylbenzene, dibutyl phthalate, succinic anhydride, 2-methylfuran, 2-methyl-5-nitroimidazole. Strong toxicity towards the nematode larvae was exerted by glutaraldehyde, 1,4-diethyl 2-methyl-3-oxobutanedioate, hexylamine, diethyl malonate, allyl acetoacetate, tert butyl carboxylic acid, butyl acrylate, 3-methyl-2-butanone, isobutyraldehyde, methyl acetoacetate, ethyl acetoacetate, ethyl pyruvate, 3-methylbutanal, cyclohexanol, cyclooctanone, phenol, pyrocatechin, resorcinol, naphthol-2, phenyl ether, piperonyl alcohol, 3-furoic acid, maleic anhydrid, 5-methylfurfural, thioacetic acid, butan-1-amine, dimethylformamide, 1-phenylethan-1-amine, 3-aminobenzoic acid. Widespread natural compounds (phytol, 3-hydroxy-2-butanone, maleic acid, oleic acid, hydroquinone, gallic acid-1-hydrate, taurine, 6-aminocaproic acid, glutamic acid, carnitine, ornithine monohydrochloride) had no negative effect on the larvae of S. papillosus and H. contortus. A powerful decrease in the vitality of nematode larvae was produced by 3,7-dimethyl-6-octenoic acid, isovaleric acid, glycolic acid, 2-oxopentanedioic acid, 2-methylbutanoic acid, anisole, 4-hydroxy-3-methoxybenzyl alcohol, furfuryl alcohol. The results of our studies allow us to consider 28 of the 62 compounds we studied as promising for further research on anti-nematode activity in manufacturing conditions. Full article
(This article belongs to the Section Animal Diversity)
11 pages, 1697 KiB  
Article
Benincasa hispida Extract Prevents Ovariectomy-Induced Osteoporosis in Female ICR Mice
by Sun-Il Choi, Xionggao Han, Xiao Men, Se-Jeong Lee, Geon Oh, Ye-Eun Choi, Jung-Mo Yang, Ju-Hyun Cho and Ok-Hwan Lee
Appl. Sci. 2023, 13(2), 832; https://doi.org/10.3390/app13020832 - 7 Jan 2023
Cited by 6 | Viewed by 2492
Abstract
With the increase in bone metabolic diseases owing to the aging of the global population, interest in functional food ingredients for improving bone health is increasing. This study aimed to determine the anti-osteoporosis effect of Benincasa hispida extract (BHE, HR1901-W) and 2-furoic acid [...] Read more.
With the increase in bone metabolic diseases owing to the aging of the global population, interest in functional food ingredients for improving bone health is increasing. This study aimed to determine the anti-osteoporosis effect of Benincasa hispida extract (BHE, HR1901-W) and 2-furoic acid in ovariectomy (OVX)-induced osteoporosis in female ICR mice. Thirty-five female ICR mice underwent OVX or sham operation and were randomized into seven groups of five animals as follows: normal, sham, OVX, OVX with genistein (10 mg/kg), 2-furoic acid (20 mg/kg), LBHE (100 mg/kg), and HBHE (200 mg/kg). After an 8-week treatment period, femur and blood samples were collected from mice. Bone density and bone formation markers were significantly recovered in the 2-furoic acid and HBHE supplementation groups compared with those in the OVX group. In addition, bone resorption markers were increased in OVX mice, whereas they were significantly decreased in the OVX + 2-furoic acid and HBHE supplementation groups. This study suggests that BHE supplementation prevents bone resorption and promotes bone formation in OVX mice. These findings indicate that BHE could be used as a promising natural means to prevent OVX-induced osteoporosis and bone metabolic diseases. Full article
(This article belongs to the Special Issue Nutrition and Health for the Aging Population)
Show Figures

Figure 1

Back to TopTop