Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = 16S rRNA-based metagenomic analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4213 KiB  
Article
Dietary Protein-Induced Changes in Archaeal Compositional Dynamics, Methanogenic Pathways, and Antimicrobial Resistance Profiles in Lactating Sheep
by Maida Mushtaq, Xiaojun Ni, Muhammad Khan, Xiaoqi Zhao, Hongyuan Yang, Baiji Danzeng, Sikandar Ali, Muhammad Hammad Zafar and Guobo Quan
Microorganisms 2025, 13(7), 1560; https://doi.org/10.3390/microorganisms13071560 - 2 Jul 2025
Viewed by 231
Abstract
Dietary protein levels greatly influence gut microbial ecosystems; however, their effects on gut archaea and associated functions in ruminants require further elucidation. This study evaluated the impact of varying dietary protein levels on gut archaeal composition, antimicrobial resistance (AMR) genes, virulence factors, and [...] Read more.
Dietary protein levels greatly influence gut microbial ecosystems; however, their effects on gut archaea and associated functions in ruminants require further elucidation. This study evaluated the impact of varying dietary protein levels on gut archaeal composition, antimicrobial resistance (AMR) genes, virulence factors, and functional capacities in sheep. Eighteen ewes (Yunnan semi-fine wool breed, uniparous, 2 years old, and averaging 50 ± 2 kg body weight) were randomly assigned to diets containing an 8.5 (low; H_1), 10.3 (medium; H_m), or 13.9% (high; H_h) crude protein level from the 35th day of pregnancy to the 90th day postpartum. The total duration of the experiment was approximately 202 days. A total of nine fecal samples (three from each group) were analyzed via 16S rRNA and metagenomics sequencing. Higher archaeal alpha diversity and richness were observed in the H_m and H_h groups compared to the H_l group (p < 0.05). A Beta diversity analysis revealed the archaeal community’s distinct clustering mode based on protein levels. The methanogenic genera Methanobrevibacter and Methanocorpusculum were dominant across the three groups, and their abundance was influenced by protein intake. A functional prediction analysis indicated moderate changes in amino acid and carbohydrate metabolism, which are particularly associated with methane production, an important source of greenhouse gases. AMR genes (e.g., tetA (60), patA, vat, and Erm methyltransferase) and virulence factors (Bacillibactin, LPS) were significantly enriched when animals were fed high-protein diets. Our results demonstrated that dietary protein levels significantly influence gut archaeal composition, AMR gene enrichment, and related functional pathways. Medium-protein diets promoted greater archaeal diversity, whereas high-protein diets favored resistance gene proliferation and enhanced methanogenic activity. Optimizing dietary protein intake may enhance gut health, mitigate antimicrobial resistance risk, and reduce methane emissions, thereby supporting livestock sustainability and environmental protection. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
Show Figures

Graphical abstract

16 pages, 885 KiB  
Article
Avena sativa as a Multifunctional Tool for Phytoremediation and Bioenergy Production in Sulfentrazone Contaminated Soils
by Caique Menezes de Abreu, Guilherme Henrique Fernandes Carneiro, Márcia Regina da Costa, Gabriela Madureira Barroso, Tayna Sousa Duque, Joice Mariana Santos Silva and José Barbosa dos Santos
J. Xenobiot. 2025, 15(3), 87; https://doi.org/10.3390/jox15030087 - 4 Jun 2025
Viewed by 474
Abstract
Phytoremediation using Avena sativa offers a sustainable strategy for mitigating sulfentrazone contamination while integrating bioenergy production. This study proposes an analysis of the bioenergy potential and the microbial metagenomic profile associated with Avena sativa in the presence and absence of sulfentrazone, aiming at [...] Read more.
Phytoremediation using Avena sativa offers a sustainable strategy for mitigating sulfentrazone contamination while integrating bioenergy production. This study proposes an analysis of the bioenergy potential and the microbial metagenomic profile associated with Avena sativa in the presence and absence of sulfentrazone, aiming at the synergistic bioprospecting of microbial communities capable of biodegradation and remediation of contaminated environments. Using a randomized block design, we evaluated the bioenergy potential and rhizospheric microbial dynamics of A. sativa in soils with and without sulfentrazone (600 g ha−1). Herbicide residues were quantified via UHPLC-MS/MS, and metagenomic profiles were obtained through 16S rRNA gene and ITS region sequencing to assess shifts in rhizospheric microbiota. Microbial diversity was analyzed using the Shannon and Gini–Simpson Indices, complemented by Principal Component Analysis (PCA). Bioenergy yields (biogas and ethanol) were estimated based on plant biomass. Over 80 days, the cultivation of A. sativa promoted a 19.7% dissipation of sulfentrazone, associated with rhizospheric enrichment of plant growth-promoting taxa (Bradyrhizobium, Rhodococcus, and Trichoderma), which increased by 68% compared to uncontaminated soils. Contaminated soils exhibited reduced microbial diversity (Gini–Simpson Index = 0.7), with a predominance of Actinobacteria and Ascomycota, suggesting adaptive specialization. Despite herbicide-induced stress (39.3% reduction in plant height and 60% reduction in grain yield), the biomass demonstrated considerable bioenergy potential: 340.6 m3 ha−1 of biogas and 284.4 L ha−1 of ethanol. The findings highlight the dual role of A. sativa in soil rehabilitation and renewable energy systems, supported by plant–microbe synergies. Scalability challenges and regulatory gaps in ecotoxicological assessments were identified, reinforcing the need to optimize microbial consortia and implement region-specific management strategies. These results support the integration of phytoremediation into circular bioeconomy models, balancing ecological recovery with agricultural productivity. Future research should focus on microbial genetic pathways, field-scale validation, and the development of regulatory frameworks to advance this green technology in global soil remediation efforts. Full article
Show Figures

Graphical abstract

21 pages, 3387 KiB  
Article
Impact of DNA Extraction and 16S rRNA Gene Amplification Strategy on Microbiota Profiling of Faecal Samples
by Francesca Toto, Matteo Scanu, Maurizio Gramegna, Lorenza Putignani and Federica Del Chierico
Int. J. Mol. Sci. 2025, 26(11), 5226; https://doi.org/10.3390/ijms26115226 - 29 May 2025
Viewed by 674
Abstract
High-throughput 16S rRNA metagenomic sequencing has advanced our understanding of the gut microbiome, but its reliability depends on upstream processes such as DNA extraction and bacterial library preparation. In this study, we evaluated the impact of three different DNA extraction methods (a manual [...] Read more.
High-throughput 16S rRNA metagenomic sequencing has advanced our understanding of the gut microbiome, but its reliability depends on upstream processes such as DNA extraction and bacterial library preparation. In this study, we evaluated the impact of three different DNA extraction methods (a manual method with an ad hoc-designed pre-extraction phase (PE-QIA), and two automated magnetic bead-based methods (T180H and TAT132H)) and two bacterial library preparation protocols (home brew and VeriFi) on the 16S rRNA-based metagenomic profiling of faecal samples. T180H and TAT132H produced significantly higher DNA concentrations than PE-QIA, whereas TAT132H yielded DNA of lower purity compared to the others. In the taxonomic analysis, PE-QIA provided a balanced recovery of Gram-positive and Gram-negative bacteria, TAT132H was enriched in Gram-positive taxa, and T180H was enriched in Gram-negative taxa. An analysis of Microbial Community Standard (MOCK) samples showed that PE-QIA and T180H were more accurate than TAT132H. Finally, the VeriFi method yielded higher amplicon concentrations and sequence counts than the home brew protocol, despite the high level of chimeras. In conclusion, a robust performance in terms of DNA yield, purity, and taxonomic representation was obtained by PE-QIA and T180H. Furthermore, it was found that the impact of PCR-based steps on gut microbiota profiling can be minimized by an accurate bioinformatic pipeline. Full article
(This article belongs to the Special Issue Molecular Progression of Gut Microbiota)
Show Figures

Figure 1

18 pages, 5346 KiB  
Article
Metagenome Analysis Identified Novel Microbial Diversity of Sandy Soils Surrounded by Natural Lakes and Artificial Water Points in King Salman Bin Abdulaziz Royal Natural Reserve, Saudi Arabia
by Yahya S. Al-Awthan, Rashid Mir, Fuad A. Alatawi, Abdulaziz S. Alatawi, Fahad M. Almutairi, Tamer Khafaga, Wael M. Shohdi, Amal M. Fakhry and Basmah M. Alharbi
Life 2024, 14(12), 1692; https://doi.org/10.3390/life14121692 - 20 Dec 2024
Viewed by 4974
Abstract
Background: Soil microbes play a vital role in the ecosystem as they are able to carry out a number of vital tasks. Additionally, metagenomic studies offer valuable insights into the composition and functional potential of soil microbial communities. Furthermore, analyzing the obtained data [...] Read more.
Background: Soil microbes play a vital role in the ecosystem as they are able to carry out a number of vital tasks. Additionally, metagenomic studies offer valuable insights into the composition and functional potential of soil microbial communities. Furthermore, analyzing the obtained data can improve agricultural restoration practices and aid in developing more effective environmental management strategies. Methodology: In November 2023, sandy soil samples were collected from ten sites of different geographical areas surrounding natural lakes and artificial water points in the Tubaiq conservation area of King Salman Bin Abdulaziz Royal Natural Reserve (KSRNR), Saudi Arabia. In addition, genomic DNA was extracted from the collected soil samples, and 16S rRNA sequencing was conducted using high-throughput Illumina technology. Several computational analysis tools were used for gene prediction and taxonomic classification of the microbial groups. Results: In this study, sandy soil samples from the surroundings of natural and artificial water resources of two distinct natures were used. Based on 16S rRNA sequencing, a total of 24,563 OTUs were detected. The metagenomic information was then categorized into 446 orders, 1036 families, 4102 genera, 213 classes, and 181 phyla. Moreover, the phylum Pseudomonadota was the most dominant microbial community across all samples, representing an average relative abundance of 34%. In addition, Actinomycetes was the most abundant class (26%). The analysis of clustered proteins assigned to COG categories provides a detailed understanding of the functional capabilities and adaptation of microbial communities in soil samples. Amino acid metabolism and transport were the most abundant categories in the soil environment. Conclusions: Metagenome analysis of sandy soils surrounding natural lakes and artificial water points in the Tubaiq conservation area of KSRNR (Saudi Arabia) has unveils rich microbial activity, highlighting the complex interactions and ecological roles of microbial communities in these environments. Full article
(This article belongs to the Special Issue Trends in Microbiology 2025)
Show Figures

Figure 1

14 pages, 3965 KiB  
Article
Soil Bacteria in Archaeology: What Could Rank Abundance Functions Tell Us About Ancient Human Impacts on Microbial Communities?
by J. Michael Köhler, Linda Ehrhardt, P. Mike Günther and Jialan Cao
Microorganisms 2024, 12(11), 2243; https://doi.org/10.3390/microorganisms12112243 - 6 Nov 2024
Cited by 1 | Viewed by 1018
Abstract
Metagenomic analysis of soil bacterial communities based on 16S rRNA reflects a typical community composition containing a low number of high-abundance types and a very high number of low-abundance types. Here, the formation of characteristic rank order functions of bacterial abundance is investigated [...] Read more.
Metagenomic analysis of soil bacterial communities based on 16S rRNA reflects a typical community composition containing a low number of high-abundance types and a very high number of low-abundance types. Here, the formation of characteristic rank order functions of bacterial abundance is investigated by modelling the dynamics of soil bacterial communities, assuming a succession of different bacterial populations that grow rapidly and decay more slowly. We found that the characteristic shape of typical rank order functions is well reflected by simulations. In addition, our model allowed us to investigate strong disturbances in the soil, which could be expected in cases of strongly changing local environmental conditions in soil, e.g., after translocation and covering of soil material. Such events could lead to the formation of shoulders in the rank order functions. Abundance rank orders observed in cases of some archaeological soil samples do indeed show such a shoulder and could be well interpreted by simulated rank order functions. As a result, it can be concluded that the investigations herein support our hypothesis that abundance rank orders contain information about the temporal order of developing bacterial types in changing communities and thus store information about local environmental conditions in the past, including ancient humans’ impact on soil. This information can be used for interpretation of archeological findings and for reconstruction of different former human activities, as well as knowledge on the translocation of soil material in the past. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 2950 KiB  
Article
Application of PCR-Based Techniques for the Identification of Genetic Fingerprint Diversity of Dominant Bacteria in Fecal Samples of Children with Diarrhea in Vietnam
by Thi Quy Nguyen, Trong Khoa Dao, Hong Duong Nguyen, Thi Bich Thuy Phung, Thi Thanh Nga Pham, Thi Viet Ha Nguyen, Thi Huong Trinh, Huu Cuong Le, Thi Thu Hong Le and Thi Huyen Do
Infect. Dis. Rep. 2024, 16(5), 932-951; https://doi.org/10.3390/idr16050075 - 29 Sep 2024
Cited by 1 | Viewed by 2541
Abstract
In Vietnam, diarrhea, especially persistent diarrhea, is one of the most common diseases in children, while a significant proportion of cases are negative with pathogens; thus, there is an urgent need to understand gut bacterial dysbiosis. In this study, bacteria in the fecal [...] Read more.
In Vietnam, diarrhea, especially persistent diarrhea, is one of the most common diseases in children, while a significant proportion of cases are negative with pathogens; thus, there is an urgent need to understand gut bacterial dysbiosis. In this study, bacteria in the fecal samples of five healthy and ten diarrheal children were separated from other residues, then adopted to extract their metagenomic DNA for evaluating their diversity based on V3 and V6–V8 regions and the 16S rRNA gene by PCR-RFLP and PCR-DGGE. As a result, bacterial metagenomic DNAs with high quality, quantity and diversity were successfully extracted using a GeneJET kit and a chemical protocol. A sequence analysis of 73 representative DNA fragments from gels indicated a remarkable bacterial dysbiosis in all groups of diarrhea. Viral diarrhea was characterized by extremely reduced bacterial diversity with the blossom of Bifidobacterium and Streptococcus. Streptococcus was also the most abundant in persistent diarrhea. Beneficial bacteria that may play a role in the self- rebalance in intestinal bacterial communities, such as Bifidobacterium, Lactobacillus, and Enterococcus, were seen in all diarrheal groups, while Bacteroides and Akkermansia muciniphila were seen in the healthy group but absent in the diarrheal groups. This study provides additional evidence for a relationship between intestinal bacterial dysbiosis and diarrhea in children, emphasizing an increase in Streptococcus. Full article
Show Figures

Figure 1

16 pages, 2770 KiB  
Article
Nasal Microbiome in Granulomatosis with Polyangiitis Compared to Chronic Rhinosinusitis
by Eliza Brożek-Mądry, Zofia Burska, Katarzyna Życińska and Janusz Sierdziński
Diagnostics 2024, 14(15), 1673; https://doi.org/10.3390/diagnostics14151673 - 2 Aug 2024
Cited by 2 | Viewed by 1513
Abstract
Rhinosinusitis in granulomatosis with polyangiitis (GPA) is categorised as a secondary, diffuse and inflammatory chronic rhinosinusitis (CRS). It is one of the conditions that impacts the nasal microbiota. This study aimed to compare the nasal microbiomes of patients with GPA, CRS and NSP. [...] Read more.
Rhinosinusitis in granulomatosis with polyangiitis (GPA) is categorised as a secondary, diffuse and inflammatory chronic rhinosinusitis (CRS). It is one of the conditions that impacts the nasal microbiota. This study aimed to compare the nasal microbiomes of patients with GPA, CRS and NSP. A total of 31 patients were included in the study (18 GPA, 6 CRS and 7 nasal septum perforation (NSP)). In all patients, SNOT 22, a nasal endoscopy (Lund–Kennedy scale) and a brush swab were performed. The metagenomic analysis was carried out based on the hypervariable V3-V4 region of the 16S rRNA gene. At the genus level, statistically significant differences were observed in two comparisons: the GPA/NSP and the GPA/CRS groups. In the GPA/NSP group, the differences were related to four genera (Actinomyces, Streptococcus, Methylobacterium-Methylorubrum, Paracoccus), while in the GPA/CRS group, they were related to six (Kocuria, Rothia, Cutibacterium, Streptococcus, Methylobacterium-Methylorubrum, Tepidimonas). Patients with GPA had lower diversity compared to CRS and NSP patients. There were no statistically significant differences found for the Staphylococcus family and Staphylococcus aureus between the three groups. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Treatment in Otolaryngology)
Show Figures

Figure 1

19 pages, 2633 KiB  
Article
Elucidating Key Microbial Drivers for Methane Production during Cold Adaptation and Psychrophilic Anaerobic Digestion of Cattle Manure and Food Waste
by Haripriya Rama, Busiswa Ndaba, Mokhotjwa Simon Dhlamini, Nicolene Cochrane, Malik Maaza and Ashira Roopnarain
Fermentation 2024, 10(7), 370; https://doi.org/10.3390/fermentation10070370 - 19 Jul 2024
Cited by 6 | Viewed by 2106
Abstract
At psychrophilic temperatures (<20 °C), anaerobic digestion produces less methane (CH4). For psychrophilic anaerobic digestion (PAD) to be successful, investigation of cold-adapted microbial consortia involved in methane production is critical. This study aimed to investigate the microbial community driving enhanced methane [...] Read more.
At psychrophilic temperatures (<20 °C), anaerobic digestion produces less methane (CH4). For psychrophilic anaerobic digestion (PAD) to be successful, investigation of cold-adapted microbial consortia involved in methane production is critical. This study aimed to investigate the microbial community driving enhanced methane production from the cold-adaptation process and bioaugmentation of PAD with cold-adapted inoculum (BI). Microbial consortia in cattle manure (CM) and food waste (FW) were adapted and applied during batch PAD of CM and FW to bioaugment methane production at 15 °C. Cold adaptation and PAD with BI resulted in cumulative specific methane yields of 0.874 ± 0.231 and 0.552 ± 0.089 L CH4 g−1 volatile solids, respectively, after 14 weeks, while the absence of BI (control) led to acidification and no methane production during PAD. Following 16S rRNA V4–V5 amplicon sequencing and metagenomic analyses, Methanosarcina was revealed as a key driver of methanogenesis during cold adaptation and PAD bioaugmentation. Furthermore, based on the predictive functional and metabolic analysis of the communities, possible synergies were proposed in terms of substrate production and utilization by the dominant microbial groups. For instance, during methane production, Bacteroides and Methanobrevibacter were possibly involved in a syntrophic relationship, which promoted methanogenesis by Methanosarcina. These findings provide insight into the prospective microbial synergies that can be harnessed and/or regulated in cold-adapted inoculum for the improvement of methane production during PAD. Full article
(This article belongs to the Special Issue New Research on Anaerobic Digestion: Second Edition)
Show Figures

Figure 1

19 pages, 4245 KiB  
Article
Analysis of Human Milk Microbiota in Northern Greece by Comparative 16S rRNA Sequencing vs. Local Dairy Animals
by Margaritis Tsifintaris, Michail Sitmalidis, Maria Tokamani, Christina Anastasiadi, Maria Georganta, Ilias Tsochantaridis, Dimitrios Vlachakis, Panagiotis Tsikouras, Nikolaos Nikolettos, George P. Chrousos, Raphael Sandaltzopoulos and Antonis Giannakakis
Nutrients 2024, 16(14), 2175; https://doi.org/10.3390/nu16142175 - 9 Jul 2024
Cited by 2 | Viewed by 2664
Abstract
Milk is a biological fluid with a dynamic composition of micronutrients and bioactive molecules that serves as a vital nutrient source for infants. Milk composition is affected by multiple factors, including genetics, geographical location, environmental conditions, lactation phase, and maternal nutrition, and plays [...] Read more.
Milk is a biological fluid with a dynamic composition of micronutrients and bioactive molecules that serves as a vital nutrient source for infants. Milk composition is affected by multiple factors, including genetics, geographical location, environmental conditions, lactation phase, and maternal nutrition, and plays a key role in dictating its microbiome. This study addresses a less-explored aspect, comparing the microbial communities in human breast milk with those in mature milk from species that are used for milk consumption. Since mature animal milk is used as a supplement for both the infant (formula) and the child/adolescent, our main aim was to identify shared microbial communities in colostrum and mature human milk. Using 16S rRNA metagenomic sequencing, we focused on characterizing the milk microbiota in the Northern Greek population by identifying shared microbial communities across samples and comparing the relative abundance of prevalent genera. We analyzed ten human milk samples (from five mothers), with five collected three days postpartum (colostrum) and five collected thirty to forty days postpartum (mature milk) from corresponding mothers. To perform an interspecies comparison of human milk microbiota, we analyzed five goat and five bovine milk samples from a local dairy industry, collected fifty to seventy days after birth. Alpha diversity analysis indicated moderate diversity and stability in bovine milk, high richness in goat milk, and constrained diversity in breast milk. Beta diversity analysis revealed significant distinctions among mammalian species, emphasizing both presence/absence and abundance-based clustering. Despite noticeable differences, shared microbial components underscore fundamental aspects across all mammalian species, highlighting the presence of a core microbiota predominantly comprising the Proteobacteria, Firmicutes, and Actinobacteriota phyla. At the genus level, Acinetobacter, Gemella, and Sphingobium exhibit significant higher abundance in human milk compared to bovine and goat milk, while Pseudomonas and Atopostipes are more prevalent in animal milk. Our comparative analysis revealed differences and commonalities in the microbial communities of various mammalian milks and unraveled the existence of a common fundamental milk core microbiome. We thus revealed both species-specific and conserved microbial communities in human, bovine, and goat milk. The existence of a common core microbiome with conserved differences between colostrum and mature human milk underscores fundamental similarities in the microbiota of milk across mammalian species, which could offer valuable implications for optimizing the nutritional quality and safety of dairy products as well as supplements for infant health. Full article
(This article belongs to the Special Issue Breastmilk for Healthy Development)
Show Figures

Figure 1

14 pages, 2252 KiB  
Article
The Conservation Implications of the Gut Microbiome for Protecting the Critically Endangered Gray Snub-Nosed Monkey (Rhinopithecus brelichi)
by Yanqing Guo, Paul A. Garber, Yijun Yang, Siwei Wang and Jiang Zhou
Animals 2024, 14(13), 1917; https://doi.org/10.3390/ani14131917 - 28 Jun 2024
Cited by 3 | Viewed by 1482
Abstract
The gut microbiota plays a crucial role in regulating energy metabolism, facilitating nutrient absorption, and supporting immune function, thereby assisting the host in adapting to seasonal dietary changes. Here, we compare the gut microbiome composition of wild gray snub-nosed monkeys during winter (from [...] Read more.
The gut microbiota plays a crucial role in regulating energy metabolism, facilitating nutrient absorption, and supporting immune function, thereby assisting the host in adapting to seasonal dietary changes. Here, we compare the gut microbiome composition of wild gray snub-nosed monkeys during winter (from October to December) and spring (from January to March) to understand differences in seasonal nutrient intake patterns. Snub-nosed monkeys are foregut fermenters and consume difficult-to-digest carbohydrates and lichen. To examine the digestive adaptations of gray snub-nosed monkeys, we collected 14 fresh fecal samples for DNA analysis during the winter and spring. Based on 16S rRNA sequencing, metagenomic sequencing, and functional metagenomic analyses, we identified that Firmicutes, Actinobacteria, Verrucomicrobia, and Bacteroidetes constitute a keystone bacterial group in the gut microbiota during winter and spring and are responsible for degrading cellulose. Moreover, the transition in dietary composition from winter to spring was accompanied by changes in gut microbiota composition, demonstrating adaptive responses to varying food sources and availability. In winter, the bacterial species of the genera Streptococcus were found in higher abundance. At the functional level, these bacteria are involved in fructose and mannose metabolism and galactose metabolism c-related pathways, which facilitate the breakdown of glycogen, starch, and fiber found in fruits, seeds, and mature leaves. During spring, there was an increased abundance of bacteria species from the Prevotella and Lactobacillus genera, which aid the digestion of protein-rich buds. Combined, these findings reveal how the gut microbiota adjusts to fluctuations in energy balance and nutrient intake across different seasons in this critically endangered species. Moreover, we also identified Pseudomonas in two samples; the presence of potential pathogens within the gut could pose a risk to other troop members. Our findings highlight the necessity of a conservation plan that focuses on protecting vegetation and implementing measures to prevent disease transmission for this critically endangered species. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

12 pages, 3154 KiB  
Article
Annual Change in the Composition of Bulk Tank Milk Microbiota in Northern Kanagawa Prefecture, Japan
by Reina Ishikawa, Kazuhiro Kawai, Yuko Shimizu, Tomomi Kurumisawa and Yasunori Shinozuka
Ruminants 2024, 4(3), 292-303; https://doi.org/10.3390/ruminants4030021 - 28 Jun 2024
Cited by 1 | Viewed by 1760
Abstract
Bulk tank milk microbiota (BTMM) is affected by various factors, including the characteristics of raw milk, microflora on teat surfaces, and the milking system. Clarifying the influence of these factors is important for producing high-quality dairy products. This longitudinal study describes the annual [...] Read more.
Bulk tank milk microbiota (BTMM) is affected by various factors, including the characteristics of raw milk, microflora on teat surfaces, and the milking system. Clarifying the influence of these factors is important for producing high-quality dairy products. This longitudinal study describes the annual changes in BTMM at six dairy farms in northern Kanagawa Prefecture, Japan. Bulk tank milk samples were collected six times a year (in February, April, June, August, October, and December of 2022) to give a total of thirty-six samples. After bulk tank somatic cell counts (BTSCC) had been determined, we performed 16S rRNA gene amplicon sequence analysis to clarify the composition of the BTMM. Although no annual changes were observed in the BTSCC and alpha-diversity index, a significant difference in the beta-diversity index was observed between February and August (p = 0.0315). In February, the proportions of the psychrophilic genera Listeria and Enterococcus were significantly increased (p < 0.05). Similarly, in August, the proportion of commensal milk microbiota in the genera Catenibacterium and Acetobacter were significantly increased (p < 0.05). The results of this study suggest that the composition of BTMM in this region changed throughout the year, which may have been influenced by psychrophilic bacteria in winter. Full article
Show Figures

Figure 1

19 pages, 15110 KiB  
Article
Phylogeny and Metabolic Potential of New Giant Sulfur Bacteria of the Family Beggiatoaceae from Coastal-Marine Sulfur Mats of the White Sea
by Nikolai V. Ravin, Tatyana S. Rudenko, Alexey V. Beletsky, Dmitry D. Smolyakov, Andrey V. Mardanov, Margarita Yu. Grabovich and Maria S. Muntyan
Int. J. Mol. Sci. 2024, 25(11), 6028; https://doi.org/10.3390/ijms25116028 - 30 May 2024
Cited by 1 | Viewed by 1638
Abstract
The family Beggiatoaceae is currently represented by 25 genera in the Genome Taxonomy Database, of which only 6 have a definite taxonomic status. Two metagenome-assembled genomes (MAGs), WS_Bin1 and WS_Bin3, were assembled from metagenomes of the sulfur mats coating laminaria remnants in the [...] Read more.
The family Beggiatoaceae is currently represented by 25 genera in the Genome Taxonomy Database, of which only 6 have a definite taxonomic status. Two metagenome-assembled genomes (MAGs), WS_Bin1 and WS_Bin3, were assembled from metagenomes of the sulfur mats coating laminaria remnants in the White Sea. Using the obtained MAGs, we first applied phylogenetic analysis based on whole-genome sequences to address the systematics of Beggiatoaceae, which clarify the taxonomy of this family. According to the average nucleotide identity (ANI) and average amino acid identity (AAI) values, MAG WS_Bin3 was assigned to a new genus and a new species in the family Beggiatoaceae, namely, ‘Candidatus Albibeggiatoa psychrophila’ gen. nov., sp. nov., thus providing the revised taxonomic status of the candidate genus ‘BB20’. Analysis of 16S rRNA gene homology allowed us to identify MAG WS_Bin1 as the only currently described species of the genus ‘Candidatus Parabeggiatoa’, namely, ‘Candidatus Parabeggiatoa communis’, and consequently assign the candidate genus ‘UBA10656’, including four new species, to the genus ‘Ca. Parabeggiatoa’. Using comparative whole-genome analysis of the members of the genera ‘Candidatus Albibeggiatoa’ and ‘Ca. Parabeggiatoa’, we expanded information on the central pathways of carbon, sulfur and nitrogen metabolism in the family Beggiatoaceae. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2750 KiB  
Article
Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period
by Elena Ermolenko, Natalia Baryshnikova, Galina Alekhina, Alexander Zakharenko, Oleg Ten, Victor Kashchenko, Nadezhda Novikova, Olga Gushchina, Timofey Ovchinnikov, Anastasia Morozova, Anastasia Ilina, Alena Karaseva, Anna Tsapieva, Nikita Gladyshev, Alexander Dmitriev and Alexander Suvorov
Microorganisms 2024, 12(5), 980; https://doi.org/10.3390/microorganisms12050980 - 13 May 2024
Cited by 4 | Viewed by 1948
Abstract
Despite great advances in the treatment of oncological diseases, the development of medical technologies to prevent or reduce complications of therapy, in particular, those associated with surgery and the introduction of antibiotics, remains relevant. The aim of this study is to evaluate the [...] Read more.
Despite great advances in the treatment of oncological diseases, the development of medical technologies to prevent or reduce complications of therapy, in particular, those associated with surgery and the introduction of antibiotics, remains relevant. The aim of this study is to evaluate the effectiveness of the use of autoprobiotics based on indigenous non-pathogenic strains of Enterococcus faecium and Enterococcus hirae as a personalized functional food product (PFFP) in the complex therapy of colorectal cancer (CRC) in the early postoperative period. A total of 36 patients diagnosed with CRC were enrolled in the study. Study group A comprised 24 CRC patients who received autoprobiotic therapy in the early postoperative period, while the control group C included 12 CRC patients without autoprobiotic therapy. Prior to surgery and between days 14 and 16 post-surgery, comprehensive evaluations were conducted on all patients, encompassing the following: stool and gastroenterological complaints analysis, examination of the gut microbiota (bacteriological study, quantitative polymerase chain reaction, metagenome analysis), and analysis of interleukins in the serum. Results: The use of autoprobiotics led to a decrease in dyspeptic complaints after surgery. It was also associated with the absence of postoperative complications, did not cause any side effects, and led to a decrease in the level of pro-inflammatory cytokines (IL-6 and IL-18) in the blood serum. The use of autoprobiotics led to positive changes in the structure of escherichia and enterococci populations, the elimination of Parvomonas micra and Fusobacterium nucleatum, and a decrease in the quantitative content of Clostridium perfringens and Akkermansia muciniphila. Metagenomic analysis (16S rRNA) revealed an increase in alpha diversity. Conclusion: The introduction of autoprobiotics in the postoperative period is a highly effective and safe approach in the complex treatment of CRC. Future studies will allow the discovery of additional fine mechanisms of autoprobiotic therapy and its impact on the digestive, immune, endocrine, and neural systems. Full article
(This article belongs to the Special Issue Novel Strategies in the Study of the Human Gut Microbiota 2.0)
Show Figures

Figure 1

20 pages, 3577 KiB  
Article
Microbial Signatures in COVID-19: Distinguishing Mild and Severe Disease via Gut Microbiota
by Julia S. Galeeva, Dmitry E. Fedorov, Elizaveta V. Starikova, Alexander I. Manolov, Alexander V. Pavlenko, Oksana V. Selezneva, Ksenia M. Klimina, Vladimir A. Veselovsky, Maxim D. Morozov, Oleg O. Yanushevich, Natella I. Krikheli, Oleg V. Levchenko, Dmitry N. Andreev, Filipp S. Sokolov, Aleksey K. Fomenko, Mikhail K. Devkota, Nikolai G. Andreev, Andrey V. Zaborovskiy, Petr A. Bely, Sergei V. Tsaregorodtsev, Vladimir V. Evdokimov, Igor V. Maev, Vadim M. Govorun and Elena N. Ilinaadd Show full author list remove Hide full author list
Biomedicines 2024, 12(5), 996; https://doi.org/10.3390/biomedicines12050996 - 1 May 2024
Cited by 9 | Viewed by 2473
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus’s effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. [...] Read more.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus’s effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition differences between COVID-19 patients experiencing mild and severe symptoms. We conducted 16S rRNA metagenomic sequencing on fecal samples from 49 mild and 43 severe COVID-19 cases upon hospital admission. Our analysis identified a differential abundance of specific bacterial species associated with the severity of the disease. Severely affected patients showed an association with Enterococcus faecium, Akkermansia muciniphila, and others, while milder cases were linked to Faecalibacterium prausnitzii, Alistipes putredinis, Blautia faecis, and additional species. Furthermore, a network analysis using SPIEC-EASI indicated keystone taxa and highlighted structural differences in bacterial connectivity, with a notable disruption in the severe group. Our study highlights the diverse impacts of SARS-CoV-2 on the gut microbiome among both mild and severe COVID-19 patients, showcasing a spectrum of microbial responses to the virus. Importantly, these findings align, to some extent, with observations from other studies on COVID-19 gut microbiomes, despite variations in methodologies. The findings from this study, based on retrospective data, establish a foundation for future prospective research to confirm the role of the gut microbiome as a predictive biomarker for the severity of COVID-19. Full article
Show Figures

Figure 1

15 pages, 4622 KiB  
Article
Deciphering the Impact of Defecation Frequency on Gut Microbiome Composition and Diversity
by Gwoncheol Park, Seongok Kim, WonJune Lee, Gyungcheon Kim and Hakdong Shin
Int. J. Mol. Sci. 2024, 25(9), 4657; https://doi.org/10.3390/ijms25094657 - 25 Apr 2024
Cited by 6 | Viewed by 2226
Abstract
This study explores the impact of defecation frequency on the gut microbiome structure by analyzing fecal samples from individuals categorized by defecation frequency: infrequent (1–3 times/week, n = 4), mid-frequent (4–6 times/week, n = 7), and frequent (daily, n = 9). Utilizing 16S [...] Read more.
This study explores the impact of defecation frequency on the gut microbiome structure by analyzing fecal samples from individuals categorized by defecation frequency: infrequent (1–3 times/week, n = 4), mid-frequent (4–6 times/week, n = 7), and frequent (daily, n = 9). Utilizing 16S rRNA gene-based sequencing and LC-MS/MS metabolome profiling, significant differences in microbial diversity and community structures among the groups were observed. The infrequent group showed higher microbial diversity, with community structures significantly varying with defecation frequency, a pattern consistent across all sampling time points. The Ruminococcus genus was predominant in the infrequent group, but decreased with more frequent defecation, while the Bacteroides genus was more common in the frequent group, decreasing as defecation frequency lessened. The infrequent group demonstrated enriched biosynthesis genes for aromatic amino acids and branched-chain amino acids (BCAAs), in contrast to the frequent group, which had a higher prevalence of genes for BCAA catabolism. Metabolome analysis revealed higher levels of metabolites derived from aromatic amino acids and BCAA metabolism in the infrequent group, and lower levels of BCAA-derived metabolites in the frequent group, consistent with their predicted metagenomic functions. These findings underscore the importance of considering stool consistency/frequency in understanding the factors influencing the gut microbiome. Full article
(This article belongs to the Special Issue New Molecular Insights into the Gut Microbiome)
Show Figures

Figure 1

Back to TopTop