Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = 11β-HSD1 selective inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2545 KB  
Article
New Derivatives of 2-(Cyclohexylamino)thiazol-4(5H)-one as Strong Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1: Synthesis, Antiproliferative and Redox-Modulating Activity
by Szymon Baumgart, Daria Kupczyk, Anita Płazińska, Oliwia Koszła, Przemysław Sołek, Aneta Archała, Wojciech Płaziński and Renata Studzińska
Int. J. Mol. Sci. 2025, 26(18), 8972; https://doi.org/10.3390/ijms26188972 - 15 Sep 2025
Viewed by 778
Abstract
In the present study, we synthesized nine new derivatives of 2-(cyclohexylamino)thiazol-4(5H)-one and evaluated their inhibitory activity against 11β-hydroxysteroid dehydrogenase type 1 and 2 (11β-HSD1 and 11β-HSD2), an enzyme responsible for the progression of metabolic disorders and cancers. All obtained derivatives showed [...] Read more.
In the present study, we synthesized nine new derivatives of 2-(cyclohexylamino)thiazol-4(5H)-one and evaluated their inhibitory activity against 11β-hydroxysteroid dehydrogenase type 1 and 2 (11β-HSD1 and 11β-HSD2), an enzyme responsible for the progression of metabolic disorders and cancers. All obtained derivatives showed inhibitory potential against 11β-HSD1, and four of them highly inhibited 11β-HSD1 activity with IC50 values in the low micromolar range. The most active compound, 3h with IC50 = 0.04 µM, became a more potent and selective inhibitor than carbenoxolone. In addition to inhibition of 11β-HSD1, we investigated the antitumor potential and effects on intracellular redox homeostasis of all newly synthesized compounds on five cancer cell lines, namely human colon cancer (Caco-2), human pancreatic cancer (PANC-1), human glioma (U-118 MG), human breast cancer (MDA-MB-231), and skin melanoma (SK-MEL-30) and on healthy fibroblasts derived from the skin of a male neonate (BJ). Among the derivatives, all tested compounds were found to cause a decrease in cell viability for the MDA-MB-231 and Caco-2 lines and for compounds 3b3i for SK-MEL-30. The redox-modulating activity was assessed by measuring the levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reduced glutathione (GSH) using the same panel of cancer lines and normal cells. This study showed an increase in ROS levels for SK-MEL-30, Caco-2, and MDA-MB-231 lines, while in the case of GSH levels, its reduction was observed in most experimental sets. The presented data suggest that the tested compounds are promising therapeutic agents with dual action because they offer the possibility of simultaneous regulation of metabolic disorders by inhibiting 11β-HSD1 and play a key role in anticancer therapy, which makes them prospective candidates for further clinical studies. Full article
(This article belongs to the Special Issue Molecular Insights on Drug Discovery, Design, and Treatment)
Show Figures

Figure 1

12 pages, 1542 KB  
Review
Role of 11β-Hydroxysteroid Dehydrogenase and Mineralocorticoid Receptor on Alzheimer’s Disease Onset: A Systematic Review
by Mariangela Di Vincenzo, Pamela Pellegrino, Genny Schiappa, Anna Campanati, Valerio Del Vescovo, Silvia Piccirillo, Patrizia Ambrogini, Giorgio Arnaldi and Monia Orciani
Int. J. Mol. Sci. 2025, 26(3), 1357; https://doi.org/10.3390/ijms26031357 - 6 Feb 2025
Cited by 4 | Viewed by 3199
Abstract
The role of 11β-HSD1 in Alzheimer’s disease (AD) has garnered significant attention due to its involvement in glucocorticoid metabolism, neuroinflammation, and cognitive decline. This review explores the current understanding of 11β-HSD1 in AD, examining genetic, preclinical, and clinical research. Genetic studies have identified [...] Read more.
The role of 11β-HSD1 in Alzheimer’s disease (AD) has garnered significant attention due to its involvement in glucocorticoid metabolism, neuroinflammation, and cognitive decline. This review explores the current understanding of 11β-HSD1 in AD, examining genetic, preclinical, and clinical research. Genetic studies have identified 11β-HSD1 polymorphisms that may influence AD risk, although findings remain inconsistent. Mechanistically, 11β-HSD1 promotes neurodegeneration through the dysregulation of glucocorticoid activity, contributing to hippocampal atrophy, amyloid plaque formation, and tau pathology. Preclinical studies have shown that 11β-HSD1 inhibitors offer neuroprotective effects, including enhanced cognitive function, reduced inflammation, and improved mitochondrial activity. However, clinical trials, including those involving ABT-384 and Xanamem, have produced mixed results, with no substantial cognitive improvements despite effective enzyme inhibition. These inconsistencies highlight the complexity of AD and the challenges in translating preclinical findings into clinical outcomes. Moreover, while 11β-HSD1 inhibition holds therapeutic potential, other strategies targeting neuroinflammation, autophagy, and glucocorticoid signaling are also being explored. Ongoing research is focusing on optimizing 11β-HSD1 inhibitors, identifying biomarkers for patient selection, and investigating combination therapies to enhance treatment efficacy. Ultimately, 11β-HSD1’s role in AD presents a promising therapeutic target, but further studies are required to fully understand its potential in managing the disease. Full article
Show Figures

Figure 1

13 pages, 2208 KB  
Article
The Effect of Prolactin on Gene Expression and the Secretion of Reproductive Hormones in Ewes during the Estrus Cycle
by Sicong Yue, Jiaxin Chen, Chunhui Duan, Xiangyun Li, Ruochen Yang, Meijing Chen, Yu Li, Zhipan Song, Yingjie Zhang and Yueqin Liu
Animals 2024, 14(13), 1873; https://doi.org/10.3390/ani14131873 - 25 Jun 2024
Cited by 2 | Viewed by 2803
Abstract
Prolactin (PRL) plays an important role in animal follicle development and ovulation. However, its regulatory effects on the different stages of the estrus cycle in ewes are unclear. In this study, bromocriptine (BCR, PRL inhibitor) was used to study the effect of PRL [...] Read more.
Prolactin (PRL) plays an important role in animal follicle development and ovulation. However, its regulatory effects on the different stages of the estrus cycle in ewes are unclear. In this study, bromocriptine (BCR, PRL inhibitor) was used to study the effect of PRL on the secretion of reproductive hormones and gene expressions in order to explore its regulatory effects on the sexual cycle of ewes. Eighty healthy ewes with the same parity and similar weights were randomly assigned to the control group (C, n = 40) and the treatment group (T, n = 40, fed bromocriptine). After estrus synchronization, thirty-one ewes with overt signs of estrus were selected from each group. Six blood samples were randomly obtained by jugular venipuncture to measure the concentration of PRL, estrogen (E2), progesterone (P4), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH) in the proestrus, estrus, metestrus, and diestrus. At the same time, we collected the ovaries of the six ewes in vivo after anesthesia in order to detect follicle and corpus luteum (CL) counts and measure the expression of hormone-receptor and apoptosis-related genes. The results show that PRL inhibition had no significant effects on the length of the estrus cycle (p > 0.05). In proestrus, the number of large and small follicles, the levels of E2, FSH, and GnRH, and the expressions of ER, FSHR, and the apoptotic gene Caspase-3 were increased (p < 0.05); and the number of middle follicles and the expression of anti-apoptotic gene Bcl-2 were decreased (p < 0.05) in the T group. In estrus, the number of large follicles, the levels of E2 and GnRH, and the expressions of the StAR, CYP19A1, and Bcl-2 genes were increased (p < 0.05), and the number of middle follicles was decreased (p < 0.05) in the T group. In metestrus, the number of small follicles and the expression of LHR (p < 0.05) and the pro-apoptotic gene Bax were increased (p < 0.05); the number of middle follicles was decreased (p < 0.05) in the T group. In diestrus, the number of large follicles, middle follicles, and CL, the level of P4, and the expressions of PR, 3β-HSD, StAR, Caspase-3, and Bax were increased (p < 0.05); the number of small follicles and the expression of Bcl-2 were decreased (p < 0.05) in the T group. In summary, PRL inhibition can affect the secretion of reproductive hormones, the follicle count, and the gene expression during the estrus cycle. These results provide a basis for understanding the mechanisms underlying the regulation of the ewe estrus cycle by PRL. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

19 pages, 1828 KB  
Review
11β-Hydroxysteroid Dehydrogenase Type 1 as a Potential Treatment Target in Cardiovascular Diseases
by Daria Kupczyk, Renata Studzińska, Renata Kołodziejska, Szymon Baumgart, Martyna Modrzejewska and Alina Woźniak
J. Clin. Med. 2022, 11(20), 6190; https://doi.org/10.3390/jcm11206190 - 20 Oct 2022
Cited by 9 | Viewed by 5462
Abstract
Glucocorticoids (GCs) belong to the group of steroid hormones. Their representative in humans is cortisol. GCs are involved in most physiological processes of the body and play a significant role in important biological processes, including reproduction, growth, immune responses, metabolism, maintenance of water [...] Read more.
Glucocorticoids (GCs) belong to the group of steroid hormones. Their representative in humans is cortisol. GCs are involved in most physiological processes of the body and play a significant role in important biological processes, including reproduction, growth, immune responses, metabolism, maintenance of water and electrolyte balance, functioning of the central nervous system and the cardiovascular system. The availability of cortisol to the glucocorticoid receptor is locally controlled by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Evidence of changes in intracellular GC metabolism in the pathogenesis of obesity, metabolic syndrome (MetS) and cardiovascular complications highlights the role of selective 11β-HSD1 inhibition in the pharmacotherapy of these diseases. This paper discusses the role of 11β-HSD1 in MetS and its cardiovascular complications and the importance of selective inhibition of 11β-HSD1. Full article
(This article belongs to the Special Issue Biomarkers for Cardiovascular Risk)
Show Figures

Figure 1

45 pages, 8578 KB  
Article
Substituted Aryl Benzylamines as Potent and Selective Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 3
by Nigel Vicker, Helen V. Bailey, Joanna M. Day, Mary F. Mahon, Andrew Smith, Helena J. Tutill, Atul Purohit and Barry V. L. Potter
Molecules 2021, 26(23), 7166; https://doi.org/10.3390/molecules26237166 - 26 Nov 2021
Cited by 2 | Viewed by 5508
Abstract
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed at high levels in testes and seminal vesicles; it is also present in prostate tissue and involved in gonadal and non-gonadal testosterone biosynthesis. The enzyme is membrane-bound, and a crystal structure is not yet available. Selective [...] Read more.
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed at high levels in testes and seminal vesicles; it is also present in prostate tissue and involved in gonadal and non-gonadal testosterone biosynthesis. The enzyme is membrane-bound, and a crystal structure is not yet available. Selective aryl benzylamine-based inhibitors were designed and synthesised as potential agents for prostate cancer therapeutics through structure-based design, using a previously built homology model with docking studies. Potent, selective, low nanomolar IC50 17β-HSD3 inhibitors were discovered using N-(2-([2-(4-chlorophenoxy)phenylamino]methyl)phenyl)acetamide (1). The most potent compounds have IC50 values of approximately 75 nM. Compound 29, N-[2-(1-Acetylpiperidin-4-ylamino)benzyl]-N-[2-(4-chlorophenoxy)phenyl]acetamide, has an IC50 of 76 nM, while compound 30, N-(2-(1-[2-(4-chlorophenoxy)-phenylamino]ethyl)phenyl)acetamide, has an IC50 of 74 nM. Racemic C-allyl derivative 26 (IC50 of 520 nM) was easily formed from 1 in good yield and, to determine binding directionality, its enantiomers were separated by chiral chromatography. Absolute configuration was determined using single crystal X-ray crystallography. Only the S-(+)-enantiomer (32) was active with an IC50 of 370 nM. Binding directionality was predictable through our in silico docking studies, giving confidence to our model. Importantly, all novel inhibitors are selective over the type 2 isozyme of 17β-HSD2 and show <20% inhibition when tested at 10 µM. Lead compounds from this series are worthy of further optimisation and development as inhibitors of testosterone production by 17β-HSD3 and as inhibitors of prostate cancer cell growth. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 806 KB  
Review
Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 as Potential Drugs for Type 2 Diabetes Mellitus—A Systematic Review of Clinical and In Vivo Preclinical Studies
by Cristiana Almeida, Cristina Monteiro and Samuel Silvestre
Sci. Pharm. 2021, 89(1), 5; https://doi.org/10.3390/scipharm89010005 - 5 Jan 2021
Cited by 23 | Viewed by 11672
Abstract
Diabetes mellitus is a pathology with increasing frequency in society, being one of the main causes of death worldwide. For this reason, new therapeutic targets have been studied over the years. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an enzyme responsible for reducing cortisone [...] Read more.
Diabetes mellitus is a pathology with increasing frequency in society, being one of the main causes of death worldwide. For this reason, new therapeutic targets have been studied over the years. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an enzyme responsible for reducing cortisone to its active form cortisol, which can lead to metabolic changes such as insulin resistance and hyperglycemia. Therefore, 11β-HSD1 inhibition may offer a new therapeutic approach for type 2 diabetes mellitus. This work intends to systematically review the available scientific evidence on this subject. For this, a search was conducted in three databases and 15 clinical and in vivo preclinical studies were included in this review. Despite the high inhibitory and selectivity levels achieved with several molecules and the demonstrated clinical efficacy in diabetes treatment, no phase III clinical trials have yet been conducted. This is important because the long-term effects of 11β-HSD1 inhibitors including the consequences in hypothalamic–pituitary–adrenal axis must be evaluated. However, this enzyme remains a promising target for drug development, including due to its effectiveness in controlling various factors that constitute the metabolic syndrome and its potential for multiple indications in patients with diabetes, including wound healing and weight loss. Full article
Show Figures

Graphical abstract

12 pages, 880 KB  
Article
Synthesis of Novel 2-(Isopropylamino)thiazol-4(5H)-one Derivatives and Their Inhibitory Activity of 11β-HSD1 and 11β-HSD2 in Aspect of Carcinogenesis Prevention
by Daria Kupczyk, Renata Studzińska, Rafał Bilski, Szymon Baumgart, Renata Kołodziejska and Alina Woźniak
Molecules 2020, 25(18), 4233; https://doi.org/10.3390/molecules25184233 - 15 Sep 2020
Cited by 11 | Viewed by 3139
Abstract
Glucocorticoid metabolism at the tissue level is regulated by two isoenzymes 11β-hydroxysteroid dehydrogenase (11β-HSD), which mutually convert biologically active cortisol and inactive cortisone. Recent research is focused on the role of 11β-HSD1 and 11β-HSD2 as autocrine factors of tumor cell proliferation and differentiation. [...] Read more.
Glucocorticoid metabolism at the tissue level is regulated by two isoenzymes 11β-hydroxysteroid dehydrogenase (11β-HSD), which mutually convert biologically active cortisol and inactive cortisone. Recent research is focused on the role of 11β-HSD1 and 11β-HSD2 as autocrine factors of tumor cell proliferation and differentiation. Herein, we report the synthesis of novel 2-(isopropylamino)thiazol-4(5H)-one derivatives and their inhibitory activity for 11β-HSD1 and 11β-HSD2. The derivative containing the spiro system of thiazole and cyclohexane rings shows the highest degree of 11β-HSD1 inhibition (54.53% at 10 µM) and is the most selective inhibitor of this enzyme among the tested compounds. In turn, derivatives containing ethyl and n-propyl group at C-5 of thiazole ring inhibit the activity of 11β-HSD2 to a high degree (47.08 and 54.59% at 10 µM respectively) and are completely selective. Inhibition of the activity of these enzymes may have a significant impact on the process of formation and course of tumors. Therefore, these compounds can be considered as potential pharmaceuticals supporting anti-cancer therapy. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery and Development)
Show Figures

Graphical abstract

13 pages, 4212 KB  
Article
A Novel Selective 11β-HSD1 Inhibitor, (E)-4-(2-(6-(2,6-Dichloro-4-(Trifluoromethyl)Phenyl)-4-Methyl-1,1-Dioxido-1,2,6-Thiadiazinan-2-yl)Acetamido)Adamantan-1-Carboxamide (KR-67607), Prevents BAC-Induced Dry Eye Syndrome
by Yoon-Ju Na, Kyoung Jin Choi, Won Hoon Jung, Sung Bum Park, Sein Kang, Jin Hee Ahn and Ki Young Kim
Int. J. Mol. Sci. 2020, 21(10), 3729; https://doi.org/10.3390/ijms21103729 - 25 May 2020
Cited by 8 | Viewed by 3570
Abstract
Dry eye syndrome is the most common eye disease and it is caused by various reasons. As the balance of the tear film that protects the eyes is broken due to various causes, it becomes impossible to properly protect the eyes. In this [...] Read more.
Dry eye syndrome is the most common eye disease and it is caused by various reasons. As the balance of the tear film that protects the eyes is broken due to various causes, it becomes impossible to properly protect the eyes. In this study, the protective effects and underlying mechanisms of topical (E)-4-(2-(6-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-methyl-1,1-dioxido-1,2,6-thiadiazinan-2-yl)acetamido)adamantan-1-carboxamide (KR-67607), a novel selective 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor, were investigated in benzalkonium chloride (BAC)-induced dry eye syndrome. BAC-treated rat eyes induced significant increases in ocular surface damage, decreased corneal thickness, corneal basement membrane destruction in the conjunctival epithelium, and expression of pro-inflammatory cytokines tumor necrosis factor-α and 11β-HSD1. These effects of BAC were reversed by topical KR-67607 treatment. Furthermore, KR-67607 decreased 4-hydroxynonenal expression and increased antioxidant and mucus secretion in BAC-treated rat eyes. Taken together, a novel selective 11β-HSD1 inhibitor can prevent BAC-induced dry eye syndrome by inhibiting pro-inflammatory cytokine and reactive oxygen species expression via the inhibition of both 11β-HSD1 activity and expression. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

14 pages, 2797 KB  
Article
Exploring N-acyl-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-enes as 11β-HSD1 Inhibitors
by Rosana Leiva, Andrew McBride, Margaret Binnie, Scott P. Webster and Santiago Vázquez
Molecules 2018, 23(3), 536; https://doi.org/10.3390/molecules23030536 - 28 Feb 2018
Cited by 1 | Viewed by 3755
Abstract
We recently found that a cyclohexanecarboxamide derived from 4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene displayed low nanomolar inhibition of 11β-HSD1. In continuation of our efforts to discover potent and selective 11β-HSD1 inhibitors, herein we explored several replacements for the cyclohexane ring. Some derivatives exhibited [...] Read more.
We recently found that a cyclohexanecarboxamide derived from 4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene displayed low nanomolar inhibition of 11β-HSD1. In continuation of our efforts to discover potent and selective 11β-HSD1 inhibitors, herein we explored several replacements for the cyclohexane ring. Some derivatives exhibited potent inhibitory activity against human 11β-HSD1, although with low selectivity over the isoenzyme 11β-HSD2, and poor microsomal stability. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Scheme 1

Back to TopTop