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Abstract: We recently found that a cyclohexanecarboxamide derived from 4-azatetracyclo
[5.3.2.02,6.08,10]dodec-11-ene displayed low nanomolar inhibition of 11β-HSD1. In continuation
of our efforts to discover potent and selective 11β-HSD1 inhibitors, herein we explored several
replacements for the cyclohexane ring. Some derivatives exhibited potent inhibitory activity
against human 11β-HSD1, although with low selectivity over the isoenzyme 11β-HSD2, and poor
microsomal stability.
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1. Introduction

Glucocorticoids (GCs) are hormones that play a major role in the modulation of inflammatory
and immune responses, metabolism regulation, cardiovascular homeostasis, and the body’s response
to stress [1,2]. It is well accepted that the local GC concentration in peripheral tissues depends not only
on the circulating levels from adrenal secretion but also on the intracellular metabolism performed
by activating and deactivating enzymes. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)
catalyzes cortisol regeneration from its inactive form cortisone [3]. In contrast, 11β-HSD2 catalyzes
the opposite reaction by oxidizing cortisol to cortisone [4]. 11β-HSD1 predominates in tissues mainly
expressing glucocorticoids receptors, such as liver, adipose, and brain, whereas 11β-HSD2 is found in
tissues mainly expressing mineralocorticoid receptors, such as kidney, colon, and salivary glands [5,6].
Selectivity against the desired 11β-HSD isoform is a key factor to avoid side effects of novel 11β-HSD1
inhibitors in development.

In recent years, both academia and industry have made great efforts to determine the role of
this enzyme in diseases in which elevated cortisol plays an important role [7]. As a result, 11β-HSD1
activity has been found to be important in type 2 diabetes and metabolic syndrome [8], in Alzheimer’s
disease (AD) [9], in osteoporosis [10], and in glaucoma [11]. In light of this evidence, 11β-HSD1 has
been explored as a therapeutic target to decrease cortisol concentrations in target tissues.

In the case of AD, it has been demonstrated that aged mice with cognitive deficits show increased
11β-HSD1 expression in the hippocampus and forebrain, and that overexpression of 11β-HSD1 leads
to a similar premature memory decline [9]. Conversely, 11β-HSD1 knock-out mice perform better in
behavioral tests, suggesting resistance to cognitive decline through a neuroprotective effect [12].
Accordingly, this protection correlates with loss of the age-associated rise in intrahippocampal
corticosterone [9]. As matter of fact, 11β-HSD1 inhibitors in acute and short-term treatments have
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shown memory consolidation and improvements in cognitive function in aged mice and AD
models [13–15]. Overall, these data support the 11β-HSD1 inhibition as a novel approach through
a non-cholinergic mechanism to deal with these cognitive disorders.

2. Results and Discussion

2.1. Design of New Inhibitors

Our previous work on polycyclic substituent optimization of N-(2-adamantyl)amide 1 led to
the identification of pyrrolidine-based amides 2 and 3 as potent 11β-HSD1 inhibitors (Table 1) [16].
When tested against the 11β-HSD2 isoform, 2 had a selectivity index of at least 50-fold (IC50 = 1–10 µM),
while 3 showed poor selectivity (IC50 = 0.1–1 µM). However, 3 possessed high metabolic stability in
human liver microsomes (HLM, 94% of remaining compound after 30-min incubation), whereas
2 was rapidly metabolized (27%). In light of these results, and with the aim of prioritizing the
microsomal stability, 3 was further in vitro characterized in terms of murine enzyme inhibition
(mHSD1 IC50 = 81 nM) and metabolic stability in murine liver microsomes (MLM, 93%). Subsequently,
we performed an in vivo study with 3 in the Senescence-Accelerated Mouse Prone 8 (SAMP8) model of
cognitive dysfunction in order to support the neuroprotective effect of 11β-HSD1 inhibition in cognitive
decline related to the aging process. We found that 3, administered to 12-month-old SAMP8 mice for
four weeks, prevented memory deficits and displayed a neuroprotective action through reduction
of neuroinflammation and oxidative stress, in cognitive decline related to the aging process [17].
These promising results with an early lead without optimal selectivity and DMPK (drug metabolism
and pharmacokinetics) properties led us to investigate additional potent 11β-HSD1 inhibitors that
maintained the optimized polycycle of compound 2 while modifying the right-hand side (RHS)
substituent of the structure.

Table 1. Previous 11β-HSD1 inhibitors reported by the group [15,16] a,b.
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Compound hHSD1
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Parent d

1 86 88% 74 ND ND
2 19 1–10 µM 27 ND ND
3 29 0.1–1 µM 94 81 93

a See Experimental section for further details; b Percentage inhibition was determined relative to a no inhibitor
control; c HEK293 cells stably transfected with the full-length gene coding for human 11β-HSD2 were used;
d The microsomal stability of each compound was determined using either human or mouse liver microsomes
(HLM or MLM).

A series of different substituents were integrated into the RHS moiety, while the amido
linker was retained to enable the key hydrogen bonds in the binding site [17]. A diversity of
substituents was generated including aromatic, heteroaromatic (electron-rich and deficient rings),
branched alkyl, cycloalkenyl, heterocycloalkyl- and other groups inspired in previously reported
11β-HSD1 inhibitors from Abbott (a series of dichoroaniline amides [18], and ABT-384, which contains
a 4-(pyridin-2-yl)piperazin-1-yl ring system) [19].

2.2. Chemistry

The novel compounds were synthesized according to Scheme 1. From 4-azapentacyclo
[5.3.2.02,6.08,10]dodec-11-ene hydrochloride and the corresponding carboxylic acid in combination
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with 1-hydroxybenzotriazole (HOBt) and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC),
amides 4–13 were prepared in moderate to excellent yields. For the synthesis of compounds 14–16,
the chloropyridinyl-containing analogue 10 was used as starting material in a nucleophilic aromatic
substitution with the appropriate N-arylpiperazine delivering the desired compounds in moderate
yields (see Section 3.1. and Supplementary Material for details).
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2.3. In Vitro Pharmacological Evaluation

A preliminary screen was performed using a human microsome assay with compounds at 10 µM
in order to assess their potential inhibition of the target enzyme (Table 2). Percentage of inhibition
was determined by measuring the conversion of 3H-cortisone to 3H-cortisol by capturing liberated
3H-cortisol on anti-cortisol (HyTest Ltd., Turku, Finland)-coated scintillation proximity assay beads.
The assay uses human liver microsomes (HLM), where the enzyme is expressed, and NADPH as the
cofactor needed by the enzyme. Eight of the thirteen new compounds presented 100% inhibition of the
human 11β-HSD1 in this single concentration assay, so dose-response curves were performed to get
their IC50 values.

The analysis of these potencies showed some structure-activity relationships (SAR).
First, the introduction of a double bond in the cyclohexyl substituent of 2 delivered compound 9
which maintained nanomolar potency (IC50 = 0.056 µM) comparable to compound 2. Second,
introduction of a phenyl group or few other aryl groups (either electron rich or electron-deficient,
see compounds 7 or 5, 10, 11, respectively) on the RHS of the molecule did not improve or was
deleterious for the activity (IC50 = 0.546 µM for RHS = phenyl, 4; 49% inhibition at 10 µM for
RHS = 2-thiophenyl, 7; IC50 = 4.3 µM for RHS = 2-pyridinyl, 5; and 0 and 23% inhibition at 10 µM for
RHS = 4-chloro-3-pyridinyl, 10, and RHS = 3-chloro-4-pyridinyl, 11, respectively). Fortunately, when
the phenyl group was substituted by a previously reported dichloroaniline group [17], the potency was
substantially increased to deliver a low nanomolar inhibitor (8, IC50 = 0.045 µM). Third, introduction
of N-substituted piperidinyl groups was again deleterious for the 11β-HSD1 inhibitory activity
(12 and 13, 3% and 0% inhibition at 10 µM, respectively). Fourth, a branched alkyl substituent,
such as the tert-butyl group, delivered amide 6 with a moderate potency (IC50 = 0.666 µM). Finally,
compounds 14–16 containing a 6-(4-phenylpiperazin-1-yl)pyridin-3-yl system showed interesting
SAR while completely inhibiting the target enzyme at 10 µM. Compound 14, featuring a terminal
non-substituted phenyl ring in its structure, exhibited an IC50 of 5.44 µM. Surprisingly, introduction
of the trifluoromethyl group in the para position mimicking the ABT-384 structure [18] reduced
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considerably the activity (compound 15, IC50 = 11.60 µM) while a cyano group increased the potency
(compound 16, IC50 = 0.377 µM).

Table 2. Novel 11β-HSD1 inhibitors featuring the 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene polycycle a,b.
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Those compounds with submicromolar IC50 values (4, 6, 8, 9 and 16) were further evaluated in
terms of cellular potency, selectivity over 11β-HSD2, and metabolic stability as follows (Table 2, 5th,
6th, and 7th column, respectively). Cellular potency was assessed using Human Embryonic Kidney
293 (HEK293) cells stably transfected with the 11β-HSD1 gene. Cells were incubated with substrate
(cortisone) and percentage of inhibition was determined by measuring the conversion of cortisone to
cortisol by LC/MS. The results were in line with the previous results obtained in the microsomal assay.
The most potent compounds, 8, 9 and 16, presented complete inhibition at 10 µM in the cell-based



Molecules 2018, 23, 536 5 of 14

assay, whereas compounds with IC50 values between 0.5 and 1 µM, i.e., 4 and 6, showed a moderate
cellular potency (77% and 41%, respectively).

Selectivity over 11β-HSD2 was also assessed in a cell-based assay using the same methodology
as before (HEK293 stably transfected with the 11β-HSD2 gene). Although all the tested compounds
presented a poor selectivity (>50% inhibition at 10 µM), it must be highlighted that compound 16
(IC50 = 0.377 µM) exhibited a 54% inhibition, indicating that its IC50 against 11β-HSD2 is approximately
10 µM, having a selectivity index of 30-fold. Finally, metabolic stability was determined using
HLM, which are widely used to predict the degree of primary metabolic clearance in the liver.
Each compound was incubated over 30 min with HLM and the percentage of remaining compound
after this incubation period was determined by calculating compound concentration after and before
by LC/MS. Compounds 6 and 4 displayed moderate to high microsomal stabilities (60% and 85% of
remaining compound after 30-min incubation, respectively), while 8, 9 and 16 presented low stabilities
(13%, 44% and 13%, respectively).

3. Materials and Methods

3.1. Chemical Synthesis

3.1.1. General Methods

Melting points were determined in open capillary tubes with a MFB 595010 M Gallenkamp.
400 MHz 1H/100.6 MHz 13C-NMR spectra were recorded on a Varian Mercury 400 (Varian Inc.,
Palo Alto, CA, USA). The chemical shifts are reported in ppm (δ scale) relative to internal
tetramethylsilane, and coupling constants are reported in Hertz (Hz). Assignments given for the NMR
spectra of the new compounds were carried out on the basis of COSY 1H/13C (gHSQC sequences)
experiments. IR spectra were run on Perkin-Elmer Spectrum RX I spectrophotometer (Waltham,
MA, USA). Absorption values are expressed as wave-numbers (cm−1); only significant absorption
bands are given. High-resolution mass spectrometry (HRMS) analyses were performed with
an LC/MSD TOF Agilent Technologies spectrometer (Agilent Technologies Inc., Santa Clara, CA, USA).
Column chromatography was performed either on silica gel 60 Å (35–70 mesh) (Merck, Darmstadt,
Germany) or on aluminum oxide, neutral, 60 Å (50–200 µm, Brockmann I) (Merck, Darmstadt,
Germany). Thin-layer chromatography was performed with aluminum-backed sheets with silica
gel 60 F254 (Merck, Darmstadt, Germany, ref 1.05554), and spots were visualized with UV light and
1% aqueous solution of KMnO4. The analytical samples of all of the new compounds which were
subjected to pharmacological evaluation possessed purity ≥95% as evidenced by their elemental
analyses. The elemental analyses were carried out in a Flash 1112 series Thermo Finnigan (San Jose,
CA, USA) elemental microanalyzator (A5) to determine C, H, and N.

3.1.2. (4-Azatetracyclo[5.3.2.02,6.08,10]dodec-11-en-4-yl)(phenyl)methanone 4

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (400 mg, 2.07 mmol)
in EtOAc (20 mL) were added benzoic acid (230 mg, 1.88 mmol), HOBt (381 mg, 2.82 mmol),
EDC (437 g, 2.82 mmol), and triethylamine (1.2 mL, 8.27 mmol). The reaction mixture was stirred
at room temperature overnight. To the resulting suspension was then added water (20 mL) and the
phases were separated. The organic phase was washed with saturated aqueous NaHCO3 solution
(20 mL) and brine (20 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of the organics
gave 4 as an orange oil (479 mg, 96% yield). Column chromatography (hexane/EtOAc mixture)
gave 4 as a white solid (385 mg), m.p. 65–66 ◦C. IR (ATR) ν: 660, 700, 715, 763, 794, 814, 847, 986,
1029, 1135, 1170, 1231, 1378, 1423, 1572, 1618, 2845, 2865, 2921, 2946 cm−1. 1H-NMR (400 MHz,
CDCl3) δ: 0.10–0.18 (complex signal, 2H, 9′-H2), 0.82–0.98 (complex signal, 2H, 8′-H and 10′-H),
2.50–2.66 (complex signal, 2H, 2′-H and 6′-H), 2.71 (m, 1H, 1′-H or 7′-H), 2.91 (m, 1H, 7′-H or 1′-H),
3.09 (dd, J = 11.6 Hz, J’ = 4.4 Hz, 1 H, 3′-Ha or 5′-Ha), 3.42–3.56 (complex signal, 2H, 5′-Ha or 3′-Ha
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and 3′-Hb or 5′-Hb), 3.74 (dd, J = 13.0 Hz, J’ = 8.6 Hz, 1 H, 5′-Hb or 3′-Hb), 5.70 (m, 1H, 11′-H or 12′-H),
5.86 (m, 1H, 12′-H or 11′-H), 7.32–7.41 (complex signal, 5H, Ar-H). 13C-NMR (100.5 MHz, CDCl3)
δ: 3.9 (CH2, C9′), 9.2 (CH, C8′ or C10′), 10.2 (CH, C10′ or C8′), 35.5 (CH, C1′ or C7′), 35.6 (CH, C7′ or
C1′), 42.8 (CH, C2′ or C6′), 44.8 (CH, C6′ or C2′), 49.3 (CH2, C3′ or C5′), 53.3 (CH2, C5′ or C3′), 126.8
[CH, C2(6)], 128.1 [CH, C3(5)], 128.2 (CH, C11′ or C12′), 129.2 (CH, C12′ or C11′), 129.4 (CH, C4), 137.4
(C, C1), 168.9 (C, CO). Calcd. for C18H19NO: C, 81.47; H, 7.22; N, 5.28. Found: C, 81.52; H, 7.34; N 5.25.

3.1.3. (4-Azatetracyclo[5.3.2.02,6.08,10]dodec-11-en-4-yl)(pyridin-2-yl)methanone 5

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (400 mg, 2.07 mmol)
in EtOAc (20 mL) were added picolinic acid (231 mg, 1.88 mmol), HOBt (381 mg, 2.82 mmol),
EDC (437 mg, 2.82 mmol), and triethylamine (1.2 mL, 8.27 mmol). The reaction mixture was stirred
at room temperature overnight. To the resulting suspension was then added water (20 mL) and the
phases were separated. The organic phase was washed with saturated aqueous NaHCO3 solution
(20 mL) and brine (20 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of the organics
gave 5 as an orange oil (466 mg, 93% yield). Column chromatography (hexane/EtOAc mixture) gave
5 as a white solid (326 mg), m.p. 110–111 ◦C. IR (ATR) ν: 682, 720, 753, 796, 814, 844, 912, 988, 1041,
1082, 1142, 1165, 1201, 1226, 1269, 1294, 1302, 1340, 1378, 1400, 1441, 1474, 1562, 1585, 1618, 2850, 2870,
2926, 3007, 3048 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.10–0.19 (complex signal, 2H, 9′-H2), 0.84–0.97
(complex signal, 2H, 8′-H and 10′-H), 2.57–2.69 (complex signal, 2H, 2′-H and 6′-H), 2.75 (m, 1H,
1′-H or 7′-H), 2.90 (m, 1H, 7′-H or 1′-H), 3.31 (dd, J = 12.4 Hz, J’ = 4.8 Hz, 1H, 3′-Ha or 5′-Ha), 3.42
(dd, J = 13.0 Hz, J’ = 4.8 Hz, 1H, 5′-Ha or 3′-Ha), 3.82 (dd, J = 13.6 Hz, J’ = 8.8 Hz, 1H, 3′-Hb or 5′-Hb),
3.85 (dd, J = 12.8 Hz, J’ = 8.8 Hz, 1H, 5′-Hb or 3′-Hb), 5.71 (m, 1H, 11′-H or 12′-H), 5.83 (m, 1H, 12′-H or
11′-H), 7.30 (ddd, J = 12.4 Hz, J’ = 4.8 Hz, J” = 1.6 Hz, 1H, 5-H), 7.67–7.80 (complex signal, 2H, 4-H
and 3-H), 8.54 (ddd, J = 4.8 Hz, J’ = 1.6 Hz, J” = 1.0 Hz, 1H, 6-H). 13C-NMR (100.5 MHz, CDCl3) δ: 4.1
(CH2, C9′), 10.0 (CH, C8′ or C10′), 10.2 (CH, C10′ or C8′), 35.4 (CH, C1′ and C7′), 42.5 (CH, C2′ or C6′),
45.2 (CH, C6′ or C2′), 50.2 (CH2, C3′ or C5′), 52.8 (CH2, C5′ or C3′), 123.6 (CH, C3), 124.3 (CH, C5),
128.6 (CH, C11′ or C12′), 129.1 (CH, C12′ or C11′), 136.7 (CH, C4), 147.9 (CH, C6), 154.8 (C, C2), 165.8
(C, CO). Calcd. for C17H18N2O: C, 76.66; H, 6.81; N, 10.52. Found: C, 76.47; H, 7.01; N, 10.21.

3.1.4. (4-Azatetracyclo[5.3.2. 02,6.08,10]dodec-11-en-4-yl)(tert-butyl)methanone 6

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (200 mg, 1.03 mmol) in
EtOAc (10 mL) were added pivalic acid (105 mg, 0.94 mmol), HOBt (190 mg, 1.41 mmol), EDC (218 mg,
1.41 mmol), and triethylamine (0.6 mL, 4.14 mmol). The reaction mixture was stirred at room
temperature overnight. To the resulting suspension was then added water (10 mL) and the phases
were separated. The organic phase was washed with saturated aqueous NaHCO3 solution (10 mL)
and brine (10 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of the organics gave
6 as a yellowish solid (216 mg, 94% yield). The analytical sample was obtained by crystallization
from hot EtOAc (69 mg), m.p. 91–92 ◦C. IR (ATR) ν: 720, 756, 766, 809, 829, 849, 912, 943, 988, 1036,
1069, 1094, 1165, 1193, 1239, 1274, 1340, 1362, 1380, 1405, 1461, 1476, 1507, 1610, 2870, 2896, 2936, 2951,
2992 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.10–0.18 (complex signal, 2H, 9′-H2), 0.91 [m, 2H, 8′(10′)-H],
1.18 [s, 9H, C(CH3)3], 2.56 [m, 2H, 2′(6′)-H], 2.84 [m, 2H, 1′(7′)-H], 3.27 [dd, J = 11.8 Hz, J’ = 4.2 Hz, 2H,
3′(5′)-Ha], 3.63 [m, 2H, 3′(5′)-Hb], 5.74 [t, J = 4.0 Hz, 2H, 11′(12′)-H]. 13C-NMR (100.5 MHz, CDCl3)
δ: 3.9 (CH2, C9′), 10.1 [CH, C8′(10′)], 27.5 [CH3, C(CH3)3], 35.6 [CH, C1′(7′)], 38.6 [C, C(CH3)3], 51.7
[CH2, C3′(5′)], 128.6 [CH, C11′(12′)], 175.7 (C, CO). The signal of C2′(6′) was not observed. Anal. Calcd.
for C16H23NO: C, 78.32; H, 9.45; N, 5.71. Found: C, 78.16; H, 9.52; N, 5.86.

3.1.5. (4-Azatetracyclo[5.3.2.02,6.08,10]dodec-11-en-4-yl)(thien-2-yl)methanone 7

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (200 mg, 1.03 mmol)
in EtOAc (10 mL) were added 2-thiophenecarboxylic acid (121 mg, 0.94 mmol), HOBt (190 mg,
1.41 mmol), EDC (218 mg, 1.41 mmol), and triethylamine (0.6 mL, 4.14 mmol). The reaction mixture
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was stirred at room temperature overnight. To the resulting suspension was then added water (10 mL)
and the phases were separated. The organic phase was washed with saturated aqueous NaHCO3

solution (10 mL) and brine (10 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of
the organics gave 7 as a yellowish solid (219 mg, 86% yield). The analytical sample was obtained
by crystallization from hot EtOAc (87 mg), m.p. 104–105 ◦C. IR (ATR) ν: 667, 703, 720, 738, 786, 814,
849, 890, 915, 950, 1008, 1031, 1057, 1087, 1132, 1239, 1254, 1279, 1312, 1352, 1380, 1403, 1431, 1519,
1580, 1598, 2921, 2936, 3002, 3037 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.12–0.20 (complex signal,
2H, 9′-H2), 0.86–1.02 (complex signal, 2H, 8′-H and 10′-H), 2.63 (m, 1H, 2′-H or 6′-H), 2.73 (m, 1H,
6′-H or 2′-H), 2.81–2.98 (complex signal, 2H, 1′-H and 7′-H), 3.36–3.48 (complex signal, 2H, 3′-Ha and
5′-Ha), 3.72–3.96 (complex signal, 2H, 3′-Hb and 5′-Hb), 5.75 (m, 1H, 11′-H or 12′-H), 5.83 (m, 1H, 12′-H
or 11′-H), 7.03 (dd, J = 5.0 Hz, J’ = 3.4, 1 H, 4-H), 7.40 (dd, J = 3.4 Hz, J’ = 1.0 Hz, 1H, 3-H or 5-H),
7.43 (dd, J = 5.0 Hz, J’ = 1.0 Hz, 1H, 5-H or 3-H). 13C-NMR (100.5 MHz, CDCl3) δ: 4.1 (CH2, C9′),
10.0 (CH, C8′ or C10′), 10.1 (CH, C10′ or C8′), 35.6 (broad s, CH, C1′ and C7′), 42.1 (CH, C2′ or C6′),
45.4 (CH, C6′ or C2′), 50.9 (CH2, C3′ or C5′), 52.9 (CH2, C5′ or C3′), 126.8 (CH, C3), 128.3 (broad s, CH,
C11′ or C12′), 129.1 (CH, C4), 129.3 (CH, C5), 129.4 (broad s, CH, C12′ or C11′), 139.4 (C, C2), 161.2
(C, CO). Anal. Calcd. for C16H17NOS: C, 70.81; H, 6.31; N, 5.16. Found: C, 70.70; H, 6.28; N, 5.12.

3.1.6. (4-Amino-3,5-dichlorophenyl)(4-azatetracyclo[5.3.2. 02,6.08,10]dodec-11-en-4-yl)methanone 8

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (200 mg, 1.03 mmol)
in EtOAc (10 mL) were added 3,5-dichloro-4-aminobenzoic acid (194 mg, 0.94 mmol), HOBt (190 mg,
1.41 mmol), EDC (218 mg, 1.41 mmol), and triethylamine (0.6 mL, 4.14 mmol). The reaction mixture
was stirred at room temperature overnight. To the resulting suspension was then added water (10 mL)
and the phases were separated. The organic phase was washed with saturated aqueous NaHCO3

solution (10 mL) and brine (10 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of
the organics gave 8 as a yellowish solid (322 mg, 89% yield). The analytical sample was obtained by
crystallization from hot EtOAc, m.p. 186–187 ◦C. IR (ATR) ν: 680, 718, 743, 763, 783, 809, 844, 864, 892,
915, 955, 991, 1034, 1097, 1173, 1223, 1246, 1297, 1347, 1416, 1469, 1501, 1537, 1595, 2875, 2921, 3194,
3240, 3301, 3458 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.10–0.19 (complex signal, 2H, 9′-H2), 0.84–0.98
(complex signal, 2H, 8′-H and 10′-H), 2.52–2.64 (complex signal, 2H, 2′-H and 6′-H), 2.76 (m, 1H,
1′-H or 7′-H), 2.88 (m, 1H, 7′-H or 1′-H), 3.16 (m, 1H, 3′-Ha or 5′-Ha), 3.44 (m, 1H, 5′-Ha or 3′-Ha),
3.58 (m, 1H, 3′-Hb or 5′-Hb), 3.68 (m, 1H, 5′-Hb or 3′-Hb), 4.63 (s, 2H, NH2), 5.70 (m, 1H, 11′-H or
12′-H), 5.83 (m, 1H, 12′-H or 11′-H), 7.30 [s, 2H, 2(6)-H]. 13C-NMR (100.5 MHz, CDCl3) δ: 4.0 (CH2, C9′),
10.0 (CH, C8′ or C10′), 10.1 (CH, C10′ or C8′), 35.5 (CH, C1′ and 7′), 42.6 (CH, C2′ or C6′), 45.0 (CH, C6′

or C2′), 49.6 (CH2, C3′ or C5′), 53.6 (CH2, C5′ or C3′), 118.7 [C, C3(5)], 126.8 (C, C1), 127.2 [CH, C2(6)],
128.2 (CH, C11′ or C12′), 129.3 (CH, C12′ or C11′), 141.3 (C, C4), 166.4 (C, CO). Anal. Calcd. for
C18H18Cl2N2O: C, 61.90; H, 5.20; N, 8.02. Found: C, 62.10; H, 5.20; N, 7.92.

3.1.7. (4-Azatetracyclo[5.3.2. 02,6.08,10]dodec-11-en-4-yl)(cyclohex-3-en-1-yl)methanone 9

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (200 mg, 1.03 mmol)
in EtOAc (10 mL) were added 3-cyclohexene carboxylic acid (119 mg, 0.94 mmol), HOBt (190 mg,
1.41 mmol), EDC (218 mg, 1.41 mmol), and triethylamine (0.6 mL, 4.14 mmol). The reaction mixture
was stirred at room temperature overnight. To the resulting suspension was then added water (10 mL)
and the phases were separated. The organic phase was washed with saturated aqueous NaHCO3

solution (10 mL) and brine (10 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of
the organics gave RL-135 as a yellowish solid (259 mg, quantitative yield). Column chromatography
(hexane/EtOAc mixture) gave 9 as a white solid (199 mg), m.p. 78–79 ◦C. IR (ATR) ν: 682, 710, 763,
816, 839, 854, 887, 915, 940, 981, 1016, 1034, 1087, 1135, 1168, 1203, 1221, 1274, 1292, 1332, 1355, 1380,
1431, 1620, 1651, 2870, 2926, 3022 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.10–0.19 (complex signal,
2H, 9′-H2), 0.86–0.96 (complex signal, 2H, 8′-H and 10′-H), 1.56–2.38 (complex signal, 6H, 2-Hax,
5-Hax, 6-Hax, 2-Heq, 5-Heq, 6-Heq), 2.47 (m, 1H, 1-H), 2.56 (m, 1H, 2′-H or 6′-H), 2.67 (m, 1H, 6′-H or
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2′-H), 2.81–2.89 (complex signal, 2H, 1′-H and 7′-H), 3.11–3.24 (complex signal, 2H, 3′-Ha and 5′-Ha),
3.52–3.64 (complex signal, 2H, 3′-Hb and 5′-Hb), 3.50–3.64 (complex signal, 2H, 3′-Hb and 5′-Hb),
5.61–5.84 (complex signal, 4H, 11′-H, 12′-H, 3-H and 4-H). 13C-NMR (100.5 MHz, CDCl3) δ: 4.03 and
4.06 (CH2, C9′), 9.9 (CH, C8′ or C10′), 10.1 (CH, C10′ or C8′), 24.96 and 24.99 (CH2, C5 or C6), 25.1 and
25.2 (CH2, C6 or C5), 27.40 and 27.43 (CH2, C2), 35.6 (CH, C1′ or C7′), 35.7 (CH, 7′ or C1′), 38.36 and
38.38 (CH, C1), 42.7 (CH, C2′ or C6′), 44.72 and 44.73 (CH, C6′ or C2′), 49.68 and 49.74 (CH2, C3′

or C5′), 50.6 (CH2, C5′ or C3′), 125.88 and 125.94 (CH, C3 or C4), 126.3 and 126.4 (CH, C4 or C3),
128.1 (CH, C11′ or C12′), 129.5 and 129.6 (CH, C12′ or C11′), 173.66 and 173.69 (C, CO). Anal. Calcd,
for C18H23NO: C, 80.26; H, 8.61; N, 5.20. Found: C, 80.24; H, 8.73; N 5.19.

3.1.8. (4-Azatetracyclo[5.3.2. 02,6.08,10]dodec-11-en-4-yl) (6-chloropyridin-3-yl)methanone 10

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (500 mg, 2.58 mmol)
in EtOAc (25 mL) were added 6-choloronicotinic acid (370 mg, 2.35 mmol), HOBt (477 mg, 3.53 mmol),
EDC (547 mg, 3.53 mmol), and triethylamine (1.4 mL, 10.34 mmol). The reaction mixture was stirred
at room temperature overnight. To the resulting suspension was then added water (25 mL) and the
phases were separated. The organic phase was washed with saturated aqueous NaHCO3 solution
(25 mL) and brine (25 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of the organics
gave 10 as a yellowish solid (664 mg, 86% yield). Column chromatography (hexane/EtOAc mixture)
gave 10 as a white solid (457 mg), m.p. 101–102 ◦C. IR (ATR) ν: 712, 736, 759, 793, 814, 835, 924, 940,
985, 1030, 1097, 1129, 1156, 1174, 1215, 1239, 1251, 1271, 1283, 1350, 1372, 1430, 1455, 1563, 1583, 1612,
2914, 2948, 3002 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.12–0.20 (complex signal, 2H, 9′-H2), 0.85–0.98
(complex signal, 2H, 8′-H and 10′-H), 2.54–2.68 (complex signal, 2H, 2′-H and 6′-H), 2.75 (m, 1 H, 1′-H
or 7′-H), 2.92 (m, 1 H, 7′-H or 1′-H), 3.10 (dd, J = 10.8 Hz, J’ = 3.2 Hz, 1 H, 5′-Ha or 3′-Ha), 3.42–3.58
(complex signal, 2H, 3′-Ha or 5′-Ha and 5′-Hb or 3′-Hb), 3.71 (m, 1H, 3′-Hb or 5′-Hb), 5.69 (t, J = 7.2 Hz,
1H, 11′-H or 12′-H), 5.86 (t, J = 7.2 Hz, 1H, 12′-H or 11′-H), 7.35 (dd, J = 8.4 Hz, J’ = 0.8 Hz, 1H,
5-H), 7.71 (dd, J = 8.4 Hz, J’ = 2.6 Hz, 1H, 4-H), 8.43 (dd, J = 2.6 Hz, J’ = 0.8 Hz, 1H, 2-H). 13C-NMR
(100.5 MHz, CDCl3) δ: 3.9 (CH2, C9′), 9.8 (CH, C8′ or C10′), 10.1 (CH, C10′ or C8′), 35.5 (CH, C1′

or C7′), 35.6 (CH, C7′ or C1′), 42.7 (CH, C2′ or C6′), 44.8 (CH, C6′ or C2′), 49.7 (CH2, C3′ or C5′), 53.4
(CH2, C5′ or C3′), 124.1 (CH, C5), 128.1 (CH, C11′ or C12′), 129.4 (CH, C12′ or C11′), 131.8 (C, C3),
137.7 (CH, C4), 148.1 (CH, C2), 152.3 (C, C6), 165.2 (C, CO). Anal. Calcd. for C17H17ClN2O: C, 67.88; H,
5.70; N, 9.31. Found: C, 68.14; H, 5.84; N, 9.00.

3.1.9. (4-Azatetracyclo[5.3.2. 02,6.08,10]dodec-11-en-4-yl)(2-chloropyridin-4-yl)methanone, 11

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (500 mg, 2.58 mmol)
in EtOAc (25 mL) were added 6-choloronicotinic acid (370 mg, 2.35 mmol), HOBt (477 mg, 3.53 mmol),
EDC (547 mg, 3.53 mmol) and triethylamine (1.4 mL, 10.34 mmol). The reaction mixture was stirred
at room temperature overnight. To the resulting suspension was then added water (25 mL) and the
phases were separated. The organic phase was washed with saturated aqueous NaHCO3 solution
(25 mL) and brine (25 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of the organics
gave 11 as a yellowish solid (614 mg, 79% yield). Column chromatography (hexane/EtOAc mixture)
gave 11 as a white solid (445 mg), m.p. 135–136 ◦C. IR (ATR) ν: 669, 708, 720, 741, 753, 771, 817, 844,
915, 942, 987, 1041, 1091, 1118, 1163, 1176, 1203, 1232, 1245, 1269, 1287, 1342, 1373, 1437, 1464, 1476,
1530, 1593, 1632, 2868, 2932, 3003, 3057 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.12–0.22 (complex signal,
2H, 9′-H2), 0.85–1.00 (complex signal, 2H, 8′-H and 10′-H), 2.56–2.70 (complex signal, 2H, 2′-H and
6′-H), 2.76 (m, 1H, 1′-H or 7′-H), 2.92 (m, 1H, 7′-H or 1′-H), 3.01 (dd, J = 11.0 Hz, J’ = 3.8 Hz, 1H,
5′-Ha or 3′-Ha), 3.40–3.52 (complex signal, 2H, 3′-Ha or 5′-Ha and 5′-Hb or 3′-Hb), 3.68 (m, 1H, 3′-Hb
or 5′-Hb), 5.71 (m, 1H, 11′-H or 12′-H), 5.87 (m, 1H, 12′-H or 11′-H), 7.18 (dd, J = 5.0 Hz, J’ = 1.4 Hz,
1H, 5-H), 7.30 (dd, J = 1.4 Hz, J’ = 0.8 Hz, 1H, 3-H), 8.42 (dd, J = 5.0 Hz, J’ = 0.8 Hz, 1H, 6-H). 13C-NMR
(100.5 MHz, CDCl3) δ: 4.0 (CH2, C9′), 9.8 (CH, C8′ or C10′), 10.1 (CH, C10′ or C8′), 35.5 (CH, C1′ or C7′),
35.6 (CH, C7′ or C1′), 42.7 (CH, C2′ or C6′), 44.6 (CH, C6′ or C2′), 49.6 (CH2, C3′ or C5′), 53.1 (CH2, C5′
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or C3′), 119.8 (CH, C5), 121.9 (CH, C3), 128.2 (CH, C11′ or C12′), 129.4 (CH, C12′ or C11′), 147.6 (C, C4),
150.1 (CH, C6), 151.9 (C, C2), 164.8 (C, CO). Anal. Calcd. for C17H17ClN2O: C, 67.88; H, 5.70; N, 9.31.
Found: C, 67.98; H, 5.77; N, 9.09.

3.1.10. (4-Azatetracyclo[5.3.2. 02,6.08,10]dodec-11-en-4-yl)(1-methylpiperidin-4-yl)methanone 12

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (200 mg, 1.03 mmol) in
EtOAc (10 mL) were added 1-methylpiperidine-4-carboxylic acid (135 mg, 0.94 mmol), HOBt (190 mg,
1.41 mmol), EDC (218 g, 1.41 mmol), and triethylamine (0.6 mL, 4.14 mmol). The reaction mixture
was stirred at room temperature overnight. To the resulting suspension was then added water (10
mL) and the phases were separated. The organic phase was washed with saturated aqueous NaHCO3

solution (10 mL) and brine (10 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of
the organics gave a yellowish solid (129 mg). Column chromatography (hexane/EtOAc/methanol
mixture) gave 12 as a yellowish solid (86 mg, 32% yield). The analytical sample was obtained by
crystallization from hot EtOAc (50 mg), m.p. 100–101 ◦C. IR (ATR) ν: 718, 767, 819, 835, 850, 876,
915, 987, 1013, 1041, 1067, 1090, 1129, 1150, 1191, 1214, 1250, 1276, 1305, 1359, 1374, 1431, 1447, 1625,
2780, 2857, 2914, 2940, 3328 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.10–0.18 (complex signal, 2H,
9′-H2), 0.86–0.96 (complex signal, 2H, 8′-H and 10′-H), 1.58–1.68 (complex signal, 2H, 3-Hax and 5-Hax),
1.71–1.87 (complex signal, 2H, 3-Heq and 5-Heq), 1.88–1.98 (complex signal, 2H, 2-Hax and 6-Hax), 2.18
(tt, J = 11.2 Hz, J’ = 3.6 Hz, 1 H, 1-H), 2.24 (s, 3 H, N-CH3), 2.55 (m, 1H, 2′-H or 6′-H), 2.66 (m, 1H, 6′-H
or 2′-H), 2.81–2.96 (complex signal, 4H, 1′-H, 7′-H, 2-Heq and 6-Heq), 3.11 (dd, J = 11.0 Hz, J’ = 5.0 Hz,
1H, 3′-Ha or 5′-Ha), 3.16 (dd, J = 13.0 Hz, J’ = 5.0 Hz, 1H, 5′-Ha or 3′-Ha), 3.50–3.64 (complex signal,
2 H, 3′-Hb and 5′-Hb), 5.74 (complex signal, 2 H, 11′-H and 12′-H). 13C-NMR (100.5 MHz, CDCl3) δ: 4.1
(CH2, C9′), 9.4 (CH, C8′ or C10′), 10.2 (CH, C10′ or C8′), 27.9 (CH2, C3 or C5), 28.0 (CH2, C5 or C3),
35.6 (CH, C1′ or C7′), 35.7 (CH, 7′ or C1′), 39.9 (CH, C4), 42.7 (CH, C2′ or C6′), 44.8 (CH, C6′ or C2′),
46.4 (CH3, N–CH3), 49.8 (CH2, C3′ or C5′), 50.6 (CH2, C5′ or C3′), 55.2 (CH2, C2 or C6), 55.3 (CH2, C6
or C2), 128.1 (CH, C11′ or C12′), 129.6 (CH, C12′ or C11′), 172.9 (C, CO). HRMS-ESI+ m/z [M + H]+:
Calcd. for [C18H26N2O+H]+: 287.2118, found: 287.2113.

3.1.11. 1-[[4-(4-Azatetracyclo[5.3.2. 02,6.08,10]dodec-11-en-4-yl)carbonyl]piperidin-1-yl]ethan-1-one 13

To a solution of 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene hydrochloride (200 mg, 1.03 mmol)
in EtOAc (10 mL) were added 1-acetyl-4-piperidinecarboxylic acid (161 mg, 0.94 mmol), HOBt (190 mg,
1.41 mmol), EDC (218 g, 1.41 mmol), and triethylamine (0.6 mL, 4.14 mmol). The reaction mixture was
stirred at room temperature overnight. To the resulting suspension was then added water (10 mL)
and the phases were separated. The organic phase was washed with saturated aqueous NaHCO3

solution (10 mL) and brine (10 mL), dried over anh. Na2SO4 and filtered. Evaporation in vacuo of the
organics gave a yellowish solid (182 mg). Column chromatography (hexane/EtOAc mixture) gave 13
as a white solid (134 mg, 45% yield), m.p. 134–135 ◦C. IR (ATR) ν: 605, 703, 762, 814, 829, 920, 956, 977,
997, 1041, 1098, 1116, 1168, 1222, 1271, 1307, 1356, 1426, 1620, 1640, 2852, 2925, 2992 cm–1. 1H-NMR
(400 MHz, CDCl3) δ: 0.11–0.19 (complex signal, 2H, 9′-H2), 0.88–0.98 (complex signal, 2H, 8′-H and
10′-H), 1.50–1.84 (complex signal, 4H, 3-H2, 5-H2), 2.06 (s, 3H, COCH3), 2.46 (tt, J = 10.6 Hz, J’ = 4.0 Hz,
1 H, 4-H), 2.52–2.74 (complex signal, 3 H, 2′-H, 6′-H and 2-Hax or 6-Hax), 2.81–2.89 (complex signal, 2H,
1′-H and 7′-H), 3.05 (m, 1H, 6-Hax or 2-Hax), 3.11–3.22 (complex signal, 2H, 3′-Ha and 5′-Ha), 3.50–3.64
(complex signal, 2H, 3′-Hb or 5′-Hb), 3.84 (dm, J = 13.6 Hz, 1H, 2-Heq or 6-Heq), 4.54 (dm, J = 13.6 Hz,
1H, 6-Heq or 2-Heq), 5.75 (complex signal, 2H, 11′-H and 12′-H). 13C-NMR (100.5 MHz, CDCl3) δ: 4.1
(CH2, C9′), 9.9 (CH, C8′ or C10′), 10.1 (CH, C10′ or C8′), 21.4 (CH3, COCH3), 27.6 and 27.7 (CH2, C3 or
C5), 28.1 and 28.2 (CH2, C5 or C3), 35.6 (CH, C1′ or C7′), 35.7 (CH, 7′ or C1′), 40.1 (CH, C4), 40.9 and
41.0 (CH2, C2 or C6), 42.62 and 42.64 (CH, C2′ or C6′), 44.69 and 44.70 (CH, C6′ or C2′), 45.7 and 45.8
(CH2, C6 or C2), 49.8 (CH2, C3′ or C5′), 50.63 and 50.64 (CH2, C5′ or C3′), 128.0 (CH, C11′ or C12′),
129.65 and 129.68 (CH, C12′ or C11′), 168.8 (C, COCH3), 171.82 and 171.85 (C, CO). Anal. Calcd. for
C19H26N2O2: C 72.58; H, 8.34; N, 8.91. Found: C, 72.65; H 8.60; N 8.48.
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3.1.12. (4-Azatetracyclo[5.3.2.02,6.08,10]dodec-11-en-4-yl)[6-(4-phenylpiperazin-1-yl)pyridin-
3-yl]methanone 14

To a solution of 10 (100 mg, 0.33 mmol) and 1-phenylpiperazine (60 mg, 0.37 mmol) in DMF
(0.5 mL) was added solid K2CO3 (82 mg, 0.59 mmol). The resulting suspension was stirred at 90 ◦C for
48 h. Water (5 mL) and dichloromethane (DCM) (5 mL) were added and the phases were separated.
The aqueous phase was then extracted with further DCM (2× 5 mL). The organics were dried over anh.
Na2SO4, filtered and evaporated in vacuo to give a yellowish solid (137 mg). Column chromatography
(hexane/EtOAc mixture) gave 14 as a white solid (56 mg, 39% yield). The analytical sample was
obtained by washing this solid with cold pentane (45 mg), m.p. 90–91 ◦C. IR (ATR) ν: 661, 695, 739, 754,
814, 822, 845, 948, 987, 1013, 1028, 1041, 1095, 1152, 1227, 1310, 1349, 1349, 1395, 1413, 1491, 1594, 1617,
2847, 2919, 2997 cm–1. 1H-NMR (400 MHz, CDCl3) δ: 0.12–0.20 (complex signal, 2H, 9-H2), 0.86–1.00
(complex signal, 2H, 8-H and 10-H), 2.54–2.66 (complex signal, 2H, 2-H and 6-H), 2.76 (m, 1H, 1-H
or 7-H), 2.90 (m, 1H, 7-H or 1-H), 3.18–3.36 [complex signal, 6H, 3-Ha, 5-Ha, 2”(6”)-H2], 3.38–3.84
[complex signal, 6H, 3-Hb, 5-Hb, 3”(5”)-H2], 5.70 (m, 1H, 11-H or 12-H), 5.84 (m, 1H, 12-H or 11-H),
6.66 (d, J = 8.8 Hz, 1H, 5′-H), 6.90 (t, J = 7.2 Hz, 1 H, 4”’-H), 6.97 [d, J = 8.6 Hz, 2 H, 2”’(6”’)-H], 7.28
[dd, J = 8.6 Hz, J’ = 7.2 Hz, 2 H, 3”’(5”’)-H], 7.66 (dd, J = 8.8 Hz, J’ = 2.4 Hz, 1 H, 4′-H), 8.31 (d, J = 2.4 Hz,
1 H, 2′-H). 13C-NMR (100.5 MHz, CDCl3) δ: 3.9 (CH2, C9), 10.2 (broad s, CH, C8 and C10), 35.5
(CH, C1 and C7), 42.6 (CH, C2 or C6), 44.9 [CH2, C3”(5”)], 45.0 (CH, C6 or C2), 49.1 [CH2, C2”(6”)],
49.6 (CH2, C3 or C5), 53.6 (CH2, C5 or C3), 105.8 (CH, C5′), 116.4 [CH, C2”’(6”’)], 120.2 (CH, C4”’),
121.9 (C, C3′), 128.2 (CH, C11 or C12), 129.19 [CH, C3”’(5”’)], 129.24 (CH, C12 or C11), 137.5 (CH, C4′),
147.5 (CH, C2′), 151.1 (C, C1”’), 159.3 (C, C6′), 167.1 (C, CO). HRMS-ESI+ m/z [M + H]+ calcd. for
[C27H30N4O+H]+: 427.2494, found: 427.2492.

3.1.13. (4-Azatetracyclo[5.3.2.02,6.08,10]dodec-11-en-4-yl)[6-[4-(4-trifluoromethyl)phenylpiperazin-
1-yl]pyridin-3-yl]methanone 15

To a solution of 10 (100 mg, 0.33 mmol) and 1-(4-trifluoromethylphenyl)piperazine (85 mg,
0.37 mmol) in DMF (0.5 mL) was added solid K2CO3 (82 mg, 0.59 mmol). The resulting suspension
was stirred at 90 ◦C for 48 h. Water (5 mL) and DCM (5 mL) were added and the phases were separated.
The aqueous phase was then extracted with further DCM (2× 5 mL). The organics were dried over anh.
Na2SO4, filtered and evaporated in vacuo to give a yellowish solid (161 mg). Column chromatography
(hexane/EtOAc mixture) gave 15 as a white solid (52 mg, 32% yield). The analytical sample was
obtained by washing with cooled pentane (38 mg), m.p. 157–158 ◦C. IR (ATR) ν: 667, 711, 721, 744,
770, 806, 824, 909, 951, 971, 984, 1039, 1070, 1106, 1157, 1199, 1230, 1330, 1354, 1390, 1429, 1493, 1522,
1594, 1615, 2847, 2919 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.10–0.18 (complex signal, 2H, 9-H2),
0.84–0.98 (complex signal, 2H, 8-H and 10-H), 2.54–2.66 (complex signal, 2H, 2-H and 6-H), 2.75 (m, 1H,
1-H or 7-H), 2.90 (m, 1H, 7-H or 1-H), 3.26 (m, 1H, 3-Ha or 5-Ha), 3.41 [t, J = 5.4 Hz, 4H, 2”(6”)-H2],
3.48 (m, 1H, 5-Ha or 3-Ha), 3.56–3.82 [complex signal, 6H, 3-Hb, 5-Hb, 3”(5”)-H2], 5.69 (m, 1H, 11-H
or 12-H), 5.85 (m, 1H, 12-H or 11-H), 6.65 (d, J = 8.8 Hz, 1H, 5′-H), 6.95 [d, J = 8.6 Hz, 2H, 2”’(6”’)-H],
7.50 [d, J = 8.6 Hz, 2H, 3”’(5”’)-H], 7.66 (dd, J = 8.8 Hz, J’ = 2.2 Hz, 1H, 4′-H), 8.31 (d, J = 2.2 Hz, 1H,
2′-H). 13C-NMR (100.5 MHz, CDCl3) δ: 3.9 (CH2, C9), 10.2 (broad s, CH, C8 and C10), 35.6 (CH, C1
and C7), 42.7 (CH, C2 or C6), 44.5 [CH2, C3”(5”)], 45.1 (CH, C6 or C2), 47.7 [CH2, C2”(6”)], 49.6 (CH2,
C3 or C5), 53.6 (CH2, C5 or C3), 105.8 (CH, C5′), 114.6 [CH, C2”’(6”’)], 120.8 (q, J = 32 Hz, C, C4”’),
122.1 (C, C3′), 124.6 (q, J = 269 Hz, C, CF3), 126.4 [q, J = 4 Hz, CH, C3”’(5”’)], 128.1 (CH, C11 or C12),
129.3 (CH, C12 or C11), 137.5 (CH, C4′), 147.5 (CH, C2′), 153.0 (C, C1”’), 159.1 (C, C6′), 167.0 (C, CO).
HRMS-ESI + m/z [M + H]+ calcd. for [C28H29F3N4O + H]+: 495.2396, found: 495.2369.

3.1.14. 4-[[4-[5-(4-Azatetracyclo[5.3.2. 02,6.08,10]dodec-11-en-4-yl)carbonyl]pyridin-2-yl]piperazin-
1-yl]benzonitrile, 16

To a solution of 10 (100 mg, 0.33 mmol) and 4-piperazinobenzonitrile (69 mg, 0.37 mmol) in DMF
(0.5 mL) was added solid K2CO3 (82 mg, 0.59 mmol). The resulting suspension was stirred at 90◦C for
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48 h. Water (5 mL) and DCM (5 mL) were added and the phases were separated. The aqueous phase
was then extracted with further DCM (2 x 5 mL). The organics were dried over anh. Na2SO4, filtered
and evaporated in vacuo to give a yellowish solid (181 mg). Column chromatography (hexane/EtOAc
mixture) gave 16 as a white solid (72 mg, 48% yield), m.p. 160–161 ◦C. IR (ATR) ν: 656, 692, 713, 742,
773, 811, 912, 951, 1008, 1039, 1176, 1235, 1312, 1392, 1426, 1511, 1537, 1555, 1599, 1648, 1666, 2847,
2925 cm−1. 1H-NMR (400 MHz, CDCl3) δ: 0.10–0.22 (complex signal, 2H, 9”’-H2), 0.84–1.00 (complex
signal, 2H, 8”’-H and 10”’-H), 2.54–2.66 (complex signal, 2H, 2”’-H and 6”’-H), 2.75 (m, 1H, 1”’-H or
7”’-H), 2.90 (m, 1H, 7”’-H or 1”’-H), 3.15–3.56 (complex signal, 6H, 3”’-Ha, 5”’-Ha, 3′(5′)-H2), 3.58–3.84
(complex signal, 6H, 3”’-Hb, 5”’-Hb, 2′(6′)-H2), 5.69 (m, 1H, 11”’-H or 12”’-H), 5.84 (m, 1H, 12”’-H
or 11”’-H), 6.63 (d, J = 8.8 Hz, 1 H, 3”-H), 6.87 [dm, J = 8.8 Hz, 2 H, 3(5)-H], 7.51 [dm, J = 8.8 Hz,
2 H, 2(6)-H], 7.67 (dd, J = 8.8 Hz, J’ = 2.2 Hz, 1 H, 4”-H), 8.31 (d, J = 2.2 Hz, 1 H, 6”-H). 13C-NMR
(100.5 MHz, CDCl3) δ: 3.9 (CH2, C9”’), 10.1 (broad singlet, CH, C8”’ and C10”’), 35.5 (CH, C1”’
and C7”’), 42.7 (CH, C2”’ or C6”’), 44.2 [CH2, C2′(6′)], 45.0 (CH, C6”’ or C2”’), 46.6 [CH2, C3′(5′)],
49.6 (CH2, C3”’ or C5”’), 53.5 (CH2, C5”’ or C3”’), 100.5 (C, C1), 105.7 (CH, C3”), 114.0 [CH, C3(5)],
119.9.2 (C, CN), 122.2 (C, C5”), 128.1 (CH, C11”’ or C12”’), 129.3 (CH, C12”’ or C11”’), 133.5 [CH,
C2(6)], 137.6 (CH, C4”), 147.4 (CH, C6”), 152.9 (C, C4), 158.8 (C, C2”), 166.9 (C, CO). HRMS-ESI + m/z
[M + H]+ calcd. for [C28H29N5O+H]+: 452.2445, found: 452.2444.

3.2. 11β-HSD1 Enzyme Inhibition Assay

11β-HSD1 activity was determined in mixed sex, human liver microsomes (HLM, Celsis In-vitro
Technologies) by measuring the conversion of 3H-cortisone to 3H-cortisol. Percentage inhibition was
determined relative to a no inhibitor control. An amount of 5 µg of HLM were pre-incubated at 37 ◦C
for 15 min with inhibitor and 1 mM NADPH in a final volume of 90 µL Krebs buffer. 10 µL of 200 nM
3H-cortisone was then added followed by incubation at 37 ◦C for a further 30 min. The assay was
terminated by rapid freezing on dry ice and 3H-cortisone to 3H-cortisol conversion determined in
50 µL of the defrosted reaction by capturing liberated 3H-cortisol on anti-cortisol (HyTest Ltd)-coated
scintillation proximity assay beads (protein A-coated YSi, GE Healthcare). Reported values are the
average of 1–3 measurements. A nanomolar 11β-HSD1 inhibitor, UE2316, was added as a positive
control within in each set of assays. IC50 values for UE2316 were within the normal range across each
test occasion [20].

3.3. Cellular 11β-HSD1 Enzyme Inhibition Assay

The cellular 11β-HSD1 enzyme inhibition assay was performed using HEK293 cells stably
transfected with the human 11β-HSD1 gene. Cells were incubated with substrate (cortisone)
and product (cortisol) was determined by LC/MS. Cells were plated at 2 × 104 cells/well in
a 96-well poly-D-lysine coated tissue culture microplate (Greiner Bio-one, Monroe, NC, USA) and
incubated overnight at 37 ◦C in 5% CO2 95% O2. Compounds to be tested were solubilized in
100% dimethylsulfoxide (DMSO) at 10 mM and serially diluted in water and 10% DMSO to final
concentration of 10 µM in 10% DMSO. Then 10 µL of each test dilution and 10 µL of 10% DMSO
(for low and high control) were dispensed into the well of a new 96-well microplate (Greiner Bio-one).
Medium was removed from the cell assay plate and 100 µL of Dulbecco’s Modified Eagle’s Medium
DMEM solution (containing 1% penicillin, 1% streptomycin and 300 nM cortisone) added to each well.
Cells were incubated for 2 h at 37 ◦C in 5% CO2 95% O2. Following incubation, medium was removed
from each well into an Eppendorf containing 500 µL of ethyl acetate, mixed by vortex and incubated
at r.t. for 5 min. A calibration curve of known concentrations of cortisol in assay medium was also
set up and added to 500 µL of ethyl acetate, vortexed and incubated as above. The supernatant of
each Eppendorf was removed to a 96-deep-well plate and dried down under liquid nitrogen at 65 ◦C.
Each well was solubilized in 100 µL 70:30 H2O:acetonitrile (ACN) and removed to a 96-well V-bottomed
plate for LC/MS analysis. Separation was carried out on a Sunfire 150 × 2.1 mm, 3.5 µM column
using a H2O:ACN gradient profile. Typical retention times were 2.71 min for cortisol and 2.80 min for
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cortisone. The peak area was calculated and the concentration of each compound determined from the
calibration curve. Reported values are the average of 1–3 measurements.

3.4. Cellular 11β-HSD2 Enzyme Inhibition Assay

For measurement of inhibition of 11β-HSD2, HEK293 cells stably transfected with the full-length
gene coding for human 11β-HSD2 were used. The protocol was the same as for the cellular 11β-HSD1
enzyme inhibition assay, only changing the substrate, this time cortisol, and the concentrations of the
tested compounds, 10, 1, and 0.1 µM. Reported values are the average of 1–3 measurements.

3.5. Microsomal Stability Assay

The microsomal stability of each compound was determined using human liver microsomes
(HLM, Celsis In-vitro Technologies, Baltimore, MD, USA). Microsomes were thawed and diluted to
a concentration of 2 mg/mL in 50 mM sodium phosphate buffer pH 7.4. Each compound was diluted
in 4 mM NADPH (made in the phosphate buffer above) to a concentration of 10 µM. Two identical
incubation plates were prepared to act as a 0 min and a 30 min time point assay. 30 µL of each
compound dilution was added in duplicate to the wells of a U-bottom 96-well plate and warmed
at 37 ◦C for approximately 5 min. Verapamil, lidocaine, and propranolol at 10 µM concentration
were utilized as reference compounds in this experiment. Microsomes were also pre-warmed at
37 ◦C before the addition of 30 µL to each well of the plate resulting in a final concentration of
1 mg/mL. The reaction was terminated at the appropriate time point (0 or 30 min) by addition of
60 µL of ice-cold 0.3 M trichloroacetic acid (TCA) per well. The plates were centrifuged for 10 min
at 112× g and the supernatant fraction transferred to a fresh U-bottom 96-well plate. Plates were
sealed and frozen at −20 ◦C prior to MS analysis. LC-MS/MS was used to quantify the peak area
response of each compound before and after incubation with HLM using MS tune settings established
and validated for each compound. These peak intensity measurements were used to calculate the
percentage remaining after incubation with HLM for each hit compound. Reported values are the
average of 1–3 measurements.

4. Conclusions

In summary, we designed, synthesized and described SAR for a novel series of 11β-HSD1
inhibitors featuring the optimized polycyclic substituent 4-azapentacyclo[5.3.2.02,6.08,10]dodec-11-ene.
Nanomolar potencies were achieved for compounds 8 and 9, although selectivities and metabolic
stabilities were suboptimal. The discovery of inhibitors with desirable selectivity and DMPK properties
is a key step for the development of successful 11β-HSD1 inhibitors for the treatment of GC-related
disorders such as diabetes and AD. Clear SAR in this new family of 11β-HSD1 inhibitors was
found; a double bond was tolerated in the initial cyclohexyl unit (9, IC50 = 0.056 µM), but the
inclusion of heterocycloalkyl and heteroaromatic groups reduced considerably or were detrimental
for the inhibitory activity (5, IC50 = 4.265 µM, and 7, 10, 11, 12 and 13, <50% inhibition at 10 µM).
The introduction of a phenyl group as RHS of the molecule was also detrimental for the potency
(4, IC50 = 0.546 µM); however, the introduction of a previously reported substitution pattern on the
aryl unit delivered again a low nanomolar inhibitor (8, IC50 = 0.045 µM). Future efforts will be focused
on rational design of the substitution pattern of this aryl group to identify optimized compounds
addressing the weaknesses of those described in this work.

5. Patents

A PCT patent application has been filed. See PCT WO2017/182464A1 (priority data 19 April 2016).

Supplementary Materials: The following are available online: copies of the 1H- and 13C-NMR spectra of the
new compounds.
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