Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = 1,2,5-thiadiazole 1,1-dioxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 1964 KB  
Short Note
2-Benzoyl-4-phenyl-1,2,5-thiadiazol-3(2H)-one 1,1-Dioxide
by Emmanouil Broumidis, Samuel B. H. Patterson, Georgina M. Rosair, Panayiotis A. Koutentis and Andreas S. Kalogirou
Molbank 2024, 2024(1), M1774; https://doi.org/10.3390/M1774 - 12 Feb 2024
Cited by 1 | Viewed by 2166
Abstract
3,5-Diphenyl-4H-1,2,6-thiadiazin-4-one treated with meta-chloroperoxybenzoic acid undergoes an oxidative ring contraction to give 2-benzoyl-4-phenyl-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide in a 29% yield, the structure of which is supported by single-crystal X-ray diffraction analysis and the available spectroscopic data. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

24 pages, 3618 KB  
Article
Donor-Acceptor Copolymers with 9-(2-Ethylhexyl)carbazole or Dibenzothiophene-5,5-dioxide Donor Units and 5,6-Difluorobenzo[c][1,2,5]thiadiazole Acceptor Units for Photonics
by Věra Cimrová, Petra Babičová, Mariem Guesmi and Drahomír Výprachtický
Nanomaterials 2023, 13(22), 2939; https://doi.org/10.3390/nano13222939 - 13 Nov 2023
Cited by 3 | Viewed by 2407
Abstract
Semiconducting polymers, particularly of the third generation, including donor-acceptor (D-A) copolymers, are extensively studied due to their huge potential for photonic and electronic applications. Here, we report on two new D-A copolymers, CP1 and CP2, composed of different electron-donor (D) units: 9-(2-ethylhexyl)carbazole or [...] Read more.
Semiconducting polymers, particularly of the third generation, including donor-acceptor (D-A) copolymers, are extensively studied due to their huge potential for photonic and electronic applications. Here, we report on two new D-A copolymers, CP1 and CP2, composed of different electron-donor (D) units: 9-(2-ethylhexyl)carbazole or dibenzothiophene-5,5-dioxide, respectively, and of 4,7-bis(4′-(2-octyldodecyl)thiophen-2′-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole building block with central 5,6-difluorobenzo[c][1,2,5]thiadiazole electron-acceptor (A) units, which were synthesized by Suzuki coupling in the high-boiling solvent xylene and characterized. The copolymers exhibited very good thermal and oxidation stability. A copolymer CP1 with different molecular weights was prepared in order to facilitate a comparison of CP1 with CP2 of comparable molecular weight and to reveal the relationship between molecular weight and properties. The photophysical, electrochemical, and electroluminescence properties were examined. Intense red photoluminescence (PL) with higher PL efficiencies for CP1 than for CP2 was observed in both solutions and films. Red shifts in the PL thin film spectra compared with the PL solution spectra indicated aggregate formation in the solid state. X-ray diffraction measurements revealed differences in the arrangement of molecules in thin films depending on the molecular weight of the copolymers. Light-emitting devices with efficient red emission and low onset voltages were prepared and characterized. Full article
Show Figures

Figure 1

20 pages, 29047 KB  
Review
1,2,5-Thiadiazole 1,1-dioxides and Their Radical Anions: Structure, Properties, Reactivity, and Potential Use in the Construction of Functional Molecular Materials
by Paweł Pakulski and Dawid Pinkowicz
Molecules 2021, 26(16), 4873; https://doi.org/10.3390/molecules26164873 - 11 Aug 2021
Cited by 6 | Viewed by 5180
Abstract
This work provides a summary of the preparation, structure, reactivity, physicochemical properties, and main uses of 1,2,5-thiadiazole 1,1-dioxides in chemistry and material sciences. An overview of all currently known structures containing the 1,2,5-thiadiazole 1,1-dioxide motif (including the anions radical species) is provided according [...] Read more.
This work provides a summary of the preparation, structure, reactivity, physicochemical properties, and main uses of 1,2,5-thiadiazole 1,1-dioxides in chemistry and material sciences. An overview of all currently known structures containing the 1,2,5-thiadiazole 1,1-dioxide motif (including the anions radical species) is provided according to the Cambridge Structural Database search. The analysis of the bond lengths typical for neutral and anion radical species is performed, providing a useful tool for unambiguous assessment of the valence state of the dioxothiadiazole-based compounds based solely on the structural data. Theoretical methodologies used in the literature to describe the dioxothiadiazoles are also shortly discussed, together with the typical ‘fingerprint’ of the dioxothiadiazole ring reported by means of various spectroscopic techniques (NMR, IR, UV-Vis). The second part describes the synthetic strategies leading to 1,2,5-thiadiazole 1,1-dioxides followed by the discussion of their electrochemistry and reactivity including mainly the chemical methods for the successful reduction of dioxothiadiazoles to their anion radical forms and the ability to form coordination compounds. Finally, the magnetic properties of dioxothiadiazole radical anions and the metal complexes involving dioxothiadiazoles as ligands are discussed, including simple alkali metal salts and d-block coordination compounds. The last section is a prospect of other uses of dioxothiadiazole-containing molecules reported in the literature followed by the perspectives and possible future research directions involving these compounds. Full article
(This article belongs to the Special Issue Functional Magnetic Molecular Materials)
Show Figures

Graphical abstract

10 pages, 2486 KB  
Communication
On the Development of Selective Chelators for Cadmium: Synthesis, Structure and Chelating Properties of 3-((5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl)amino)benzo[d]isothiazole 1,1-dioxide, a Novel Thiadiazolyl Saccharinate
by Joana F. Leal, Bruno Guerreiro, Patrícia S. M. Amado, André L. Fernandes, Luísa Barreira, José A. Paixão and Maria L. S. Cristiano
Molecules 2021, 26(6), 1501; https://doi.org/10.3390/molecules26061501 - 10 Mar 2021
Cited by 5 | Viewed by 3153
Abstract
Aquatic contamination by heavy metals is a major concern for the serious negative consequences it has for plants, animals, and humans. Among the most toxic metals, Cd(II) stands out since selective and truly efficient methodologies for its removal are not known. We report [...] Read more.
Aquatic contamination by heavy metals is a major concern for the serious negative consequences it has for plants, animals, and humans. Among the most toxic metals, Cd(II) stands out since selective and truly efficient methodologies for its removal are not known. We report a novel multidentate chelating agent comprising the heterocycles thiadiazole and benzisothiazole. 3-((5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl)amino)benzo[d]isothiazole 1,1-dioxide (AL14) was synthesized from cheap saccharin and characterized by different techniques, including single crystal X-ray crystallography. Our studies revealed the efficiency and selectivity of AL14 for the chelation of dissolved Cd(II) (as compared to Cu(II) and Fe(II)). Different spectral changes were observed upon the addition of Cd(II) and Cu(II) during UV-Vis titrations, suggesting different complexation interactions with both metals. Full article
Show Figures

Figure 1

18 pages, 3126 KB  
Article
Bis(triphenylphosphine)iminium Salts of Dioxothiadiazole Radical Anions: Preparation, Crystal Structures, and Magnetic Properties
by Paweł Pakulski, Mirosław Arczyński and Dawid Pinkowicz
Crystals 2019, 9(1), 30; https://doi.org/10.3390/cryst9010030 - 7 Jan 2019
Cited by 6 | Viewed by 6207
Abstract
Phenanthroline dioxothiadiazoles are redox active molecules that form stable radical anions suitable for the construction of supramolecular magnetic materials. Herein, the preparation, structures and magnetic properties of bis(triphenylphosphine)iminium (PPN) salts of [1,2,5]thiadiazole[3,4-f][1,10]phenanthroline 1,1-dioxide (L), [1,2,5]thiadiazole[3,4-f][4,7]phenanthroline 1,1-dioxide (4,7-L), 5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide [...] Read more.
Phenanthroline dioxothiadiazoles are redox active molecules that form stable radical anions suitable for the construction of supramolecular magnetic materials. Herein, the preparation, structures and magnetic properties of bis(triphenylphosphine)iminium (PPN) salts of [1,2,5]thiadiazole[3,4-f][1,10]phenanthroline 1,1-dioxide (L), [1,2,5]thiadiazole[3,4-f][4,7]phenanthroline 1,1-dioxide (4,7-L), 5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (BrL), and 5,10-dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (diBrL) are reported. The preparation of new bromo derivatives of the L: 5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (BrL) and 5,10-dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (diBrL)—suitable starting materials for further derivatization—are described starting from a commercially available and cheap 1,10-phenanthroline. All PPN salts show antiferromagnetic interactions between the pairs of radical anions, which in the case of PPN(diBrL) are very strong (−116 cm−1; using Ĥ = −2JSS type of exchange coupling Hamiltonian) due to a different crystal packing of the anion radicals as compared to PPN(L), PPN(4,7-L), and PPN(BrL). Full article
(This article belongs to the Special Issue Molecular Magnets)
Show Figures

Graphical abstract

18 pages, 304 KB  
Article
Design, Synthesis and Bioactivity of Novel Glycosylthiadiazole Derivatives
by Guanghui Zong, Hanqing Zhao, Rui Jiang, Jianjun Zhang, Xiaomei Liang, Baoju Li, Yanxia Shi and Daoquan Wang
Molecules 2014, 19(6), 7832-7849; https://doi.org/10.3390/molecules19067832 - 11 Jun 2014
Cited by 8 | Viewed by 6186
Abstract
A series of novel glycosylthiadiazole derivatives, namely 2-phenylamino-5-glycosyl-1,3,4-thiadiazoles, were designed and synthesized by condensation between sugar aldehydes A/B and substituted thiosemicarbazide C followed by oxidative cyclization by treating with manganese dioxide. The original fungicidal activities results showed that some title compounds [...] Read more.
A series of novel glycosylthiadiazole derivatives, namely 2-phenylamino-5-glycosyl-1,3,4-thiadiazoles, were designed and synthesized by condensation between sugar aldehydes A/B and substituted thiosemicarbazide C followed by oxidative cyclization by treating with manganese dioxide. The original fungicidal activities results showed that some title compounds exhibited excellent fungicidal activities against Sclerotinia sclerotiorum (Lib.) de Bary and Pyricularia oryzae Cav, especially compounds F-5 and G-8 which displayed better fungicidal activities than the commercial fungicide chlorothalonil. At the same time, the preliminary studies based on the Elson-Morgan method indicated that many compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS). The structure-activity relationships (SAR) are discussed in terms of the effects of the substituents on both the benzene and the sugar ring. Full article
Show Figures

Figure 1

32 pages, 1299 KB  
Review
Transition Metal Complexes and Radical Anion Salts of 1,10-Phenanthroline Derivatives Annulated with a 1,2,5-Tiadiazole and 1,2,5-Tiadiazole 1,1-Dioxide Moiety: Multidimensional Crystal Structures and Various Magnetic Properties
by Yoshiaki Shuku and Kunio Awaga
Molecules 2014, 19(1), 609-640; https://doi.org/10.3390/molecules19010609 - 7 Jan 2014
Cited by 7 | Viewed by 9763
Abstract
Advances in the molecular variety and the elucidation of the physical properties of 1,10-phenanthroline annulated with 1,2,5-thiadiazole and 1,2,5-thiadiazole 1,1-dioxide moieties have been achieved, and are described herein. A 1,2,5-thiadiazole compound, [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline (tdap), was used as a ligand to create multidimensional [...] Read more.
Advances in the molecular variety and the elucidation of the physical properties of 1,10-phenanthroline annulated with 1,2,5-thiadiazole and 1,2,5-thiadiazole 1,1-dioxide moieties have been achieved, and are described herein. A 1,2,5-thiadiazole compound, [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline (tdap), was used as a ligand to create multidimensional network structures based on S•••S and S•••N intermolecular interactions. A 1,2,5-thiadiazole 1,1-dioxide compound, [1,2,5] thiadiazolo[3,4-f][1,10]phenanthroline, 1,1-dioxide (tdapO2), was designed to create a stable radical anion, as well as good network structures. Single crystal X-ray structure analyses revealed that transition metal complexes of tdap, and radical anion salts of tdapO2 formed multidimensional network structures, as expected. Two kinds of tdap iron complexes, namely [Fe(tdap)2(NCS)2] and [Fe(tdap)2(NCS)2]•MeCN exhibited spin crossover transitions, and their transition temperatures showed a difference of 150 K, despite their similar molecular structures. Magnetic measurements for the tdapO2 radical anion salts revealed that the magnetic coupling constants between neighboring radical species vary from strongly antiferromagnetic (J = −320 K) to ferromagnetic (J = 24 K), reflecting the differences in their π overlap motifs. Full article
(This article belongs to the Special Issue Chalcogen-Nitrogen Chemistry)
Show Figures

Graphical abstract

2 pages, 15 KB  
Abstract
Addition of Aromatic Nucleophiles to a C=N Double Bond of 1,2,5-Thiadiazole 1,1-Dioxide
by M. F. Rozas, O. E. Piro, E. E. Castellano, M. V. Mirífico and E. J. Vasini
Molecules 2000, 5(3), 503-504; https://doi.org/10.3390/50300503 - 22 Mar 2000
Cited by 7 | Viewed by 7477
Abstract
A new synthesis of 3,4-diphenyl-4-aryl-1,2,5-thiadiazolines 1,1-dioxide through the addition of aromatic derivatives to 1,2,5-thiadiazole 1,1-dioxide is presented. Anhydrous AlCl3 is used as catalyst. Full article
Back to TopTop