Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ∇-type magnetic-pole rotor topology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5146 KiB  
Article
Comparative Study of Dual-Stator Permanent Magnet Machines with Different PM Arrangements and Rotor Topologies for Aviation Electric Propulsion
by Minchen Zhu, Lijian Wu, Dongliang Liu, Yiming Shen, Rongdeng Li and Hui Wen
Machines 2025, 13(4), 273; https://doi.org/10.3390/machines13040273 - 26 Mar 2025
Viewed by 579
Abstract
The dual-stator permanent magnet (DSPM) machine has proved to have high space utilization and a redundant structure, which can be beneficial to improving the fault tolerance and torque density performance. In this paper, three types of DSPM machines are proposed and compared, where [...] Read more.
The dual-stator permanent magnet (DSPM) machine has proved to have high space utilization and a redundant structure, which can be beneficial to improving the fault tolerance and torque density performance. In this paper, three types of DSPM machines are proposed and compared, where two sets of armature windings are wound in both inner/outer stators, producing more than one torque component compared with single-stator PM machines. The machine topology and operating principle of three DSPM machines are analyzed first. Next, feasible stator/rotor-pole number combinations are compared and determined. Furthermore, based on the finite-element (FE) method, both the electromagnetic performances of three DSPM machines under open-circuit and rated-load conditions after optimization are compared, aimed at generating maximum torque at fixed copper loss. The FE analyses indicate that the dual-stator consequent-pole permanent magnet (DSCPPM) machine generates maximum torque per PM volume, together with relatively high efficiency, which makes it a potentially hopeful candidate for low-speed and high-torque applications. In addition, a thermal analysis is carried out to confirm the validity of the design scheme. Finally, in order to verify the FE predictions, a prototype DSCPPM machine is manufactured and experimentally tested. Full article
Show Figures

Figure 1

24 pages, 11219 KiB  
Article
A Study on the Design of a Fault-Tolerant Consequent-Pole Hybrid Excited Machine for Electric Vehicles
by Guangyu Qu, Jinyi Yu, Zhenghan Li and Wei Liu
World Electr. Veh. J. 2025, 16(3), 130; https://doi.org/10.3390/wevj16030130 - 26 Feb 2025
Viewed by 437
Abstract
In this paper, a new fault-tolerant consequent-pole hybrid excited (FTCPHE) machine with toroidal winding (TW) is designed for electric vehicles (EVs). In this proposed machine, U-type permanent magnets (PMs) are adopted in the consequent-pole rotor with the sequence of PM–iron–PM–iron. The stator tooth [...] Read more.
In this paper, a new fault-tolerant consequent-pole hybrid excited (FTCPHE) machine with toroidal winding (TW) is designed for electric vehicles (EVs). In this proposed machine, U-type permanent magnets (PMs) are adopted in the consequent-pole rotor with the sequence of PM–iron–PM–iron. The stator tooth placed in the stator is classified into two groups to achieve hybrid excitation. The TW is positioned on the stator yoke to achieve the simple structure and excellent fault-tolerant ability. First, the topology of this proposed FTCPHE machine with the TW is briefly introduced and compared to that with the traditional combined winding. Second, the operation principle, the magnetic circuit, and the design procedure of the FTCPHE machine are analyzed and illustrated. Third, several key structural parameters of the proposed FTCPHE machine are discussed and designed to improve electromagnetic performances. Next, some electromagnetic properties, including the flux distribution, the no-load back-EMF, the electromagnetic torque, the cogging torque, and the fault-tolerant ability, are discussed in detail. Finally, a prototype of this proposed FTCPHE machine is manufactured to validate the simulated results. Full article
(This article belongs to the Special Issue Electrical Motor Drives for Electric Vehicle)
Show Figures

Figure 1

17 pages, 4328 KiB  
Article
Design and Multi-Objective Optimization for Improving Torque Performance of a Permanent Magnet-Assisted Synchronous Reluctance Motor
by Jiajia Zhang, Feng Xing, Lipeng Kang and Caiyan Qin
Appl. Sci. 2024, 14(12), 5253; https://doi.org/10.3390/app14125253 - 17 Jun 2024
Cited by 3 | Viewed by 1725
Abstract
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various industries as a relatively inexpensive and high-performance energy conversion device. The model proposed in this article relies on a magnetic pole-biased permanent magnet synchronous reluctance motor with a magnetic focusing effect. Two [...] Read more.
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various industries as a relatively inexpensive and high-performance energy conversion device. The model proposed in this article relies on a magnetic pole-biased permanent magnet synchronous reluctance motor with a magnetic focusing effect. Two types of models with Halbach array and magnetic focusing effect have been proposed, which increase excitation and make the internal magnetic circuit of the rotor more saturated, thereby achieving higher electromagnetic torque. Through finite element simulation analysis and verification, the motor characteristics of the basic and proposed permanent magnet-assisted synchronous reluctance motor were calculated, including the air gap flux density and back electromotive force (EMF) in no-load analysis, as well as the average torque, torque ripple, and efficiency in load analysis. In addition, multi-objective optimization was also conducted on the rotor topology structure of proposed model two, using the uniform Latin hypercube sampling method to uniformly sample the data samples and the Pearson correlation coefficients to perform a sensitivity analysis on the data. The pilOPT multi-objective autonomous optimization algorithm was used to perform multi-objective autonomous optimization on parameters with high correlation, and the best-found solution based on the Pareto front was selected. Compared with proposed model two, the average torque of the optimized model increased by 18.14%, the efficiency increased by 1.05% and the torque ripple decreased by 5.22%. Finally, the anti-demagnetization performance of the optimized model’s permanent magnet was analyzed. Full article
Show Figures

Figure 1

22 pages, 12103 KiB  
Article
Design and Optimization of an Interior Permanent-Magnet Synchronous Motor for Aircraft Drive Application
by Fei Xiong, Rui Yan, Yuhang Xie and Kai Yang
Appl. Sci. 2024, 14(1), 309; https://doi.org/10.3390/app14010309 - 29 Dec 2023
Cited by 2 | Viewed by 3405
Abstract
The torque performance of the interior permanent-magnet synchronous motor (IPMSM) must be further improved to satisfy the growing demand of aircraft drive application. To this end, this article focuses on the design optimization of the IPMSM structure in the aircraft drive systems to [...] Read more.
The torque performance of the interior permanent-magnet synchronous motor (IPMSM) must be further improved to satisfy the growing demand of aircraft drive application. To this end, this article focuses on the design optimization of the IPMSM structure in the aircraft drive systems to improve the torque density and reduce the torque ripple. A special fractional-slot winding and ∇-type magnetic-pole rotor topology are proposed as the optimized IPMSM structure compared with the structure of an existing motor. The simulations of the original and optimized structures at different current values reveal the variance of the torque in the average and ripple, mechanical and external characteristics, efficiency and steady-state temperature. The performance of an optimized prototype is analyzed by experimental testing, and the results show that an optimized motor has a higher torque density and lower torque ripple than the original one at the same speed and rated power, but it also has a higher temperature rise. However, the temperature rise value is acceptable in the experimental testing condition, so the validity of the design optimization method for the proposed structure is verified. Full article
Show Figures

Figure 1

17 pages, 4848 KiB  
Article
Alternative Surface-Mounted Permanent Magnet Topology for Reducing Voltage and Torque Harmonics in Shaft Generators
by Rak-Won Son and Ju Lee
Energies 2023, 16(12), 4649; https://doi.org/10.3390/en16124649 - 12 Jun 2023
Cited by 1 | Viewed by 2067
Abstract
Traditional diesel generators on a merchant ship, composed of a wound rotor synchronous generator and a four-stroke diesel engine, supply electrical power for various loads. Recently, shaft generators for merchant ships have been increasingly replacing diesel generators to reduce CO2 emissions through [...] Read more.
Traditional diesel generators on a merchant ship, composed of a wound rotor synchronous generator and a four-stroke diesel engine, supply electrical power for various loads. Recently, shaft generators for merchant ships have been increasingly replacing diesel generators to reduce CO2 emissions through fuel efficiency improvement. In particular, permanent magnet synchronous generators have replaced induction generators due to their high-efficiency characteristics at light loads. The surface-mounted permanent magnet rotor can be a suitable topology owing to the relatively short constant power range. This generator can also operate as a motor according to the propulsion mode, so minimizing the harmonics of the induced voltage with the torque pulsation being essential. This paper proposes an alternative surface permanent magnet topology. Three magnets comprise one pole, with one bread-loaf magnet and two rectangular magnets. It helps to simplify the magnetization and assembly of the rotor because of the flat bottom shape of the magnet. Due to the low remanence of two rectangular magnets at the pole edge, this rotor structure effectively makes the air-gap magnetic flux density sinusoidal with production costs reduced. The step-skew suppresses higher-order harmonics. The total harmonic distortion comparison of the two-dimensional finite element analysis and the no-load test result shows under 6% difference from the interior permanent magnet prototype machine. A comparison of harmonic characteristics with other rotors shows that the proposed modular pole has sufficient competitiveness compared to the tapered bread-loaf type. It can be applied as a substitute for the tapered bread-loaf magnet in direct-drive ship propulsion systems and is expected to shorten the manufacturing process and time. Full article
(This article belongs to the Topic Future Generation Electric Machines and Drives)
Show Figures

Figure 1

27 pages, 8126 KiB  
Review
A Review on Segmented Switched Reluctance Motors
by Zhenyao Xu, Tao Li, Fengge Zhang, Yue Zhang, Dong-Hee Lee and Jin-Woo Ahn
Energies 2022, 15(23), 9212; https://doi.org/10.3390/en15239212 - 5 Dec 2022
Cited by 25 | Viewed by 5465
Abstract
The switched reluctance motor (SRM) benefits from its magnet-free nature, robust construction, low cost, flexible controls, and the ability to operate in harsh environments such as high temperatures and high pressure. It has received increasing attention for all-electric or multi-electric aircraft systems and [...] Read more.
The switched reluctance motor (SRM) benefits from its magnet-free nature, robust construction, low cost, flexible controls, and the ability to operate in harsh environments such as high temperatures and high pressure. It has received increasing attention for all-electric or multi-electric aircraft systems and electric vehicles (EVs) as compared with permanent magnet synchronous motors (PMSM) and other AC motors in some required high reliability and fault tolerance applications. However, the SRM is prone to considerable wind resistance due to the convex pole structure of the rotor during high-speed rotation, high torque ripple, and also vibration noise. Thus, it is currently a trending topic to develop special SRMs, tailored with high reliability and fault tolerance. Recent research demonstrates several promising feasible solutions to reduce torque ripples and enhance torque density and power factors, including changing topology of SRM, using advanced control methods, as well as different winding configurations. Among these options, the segmented switched reluctance motor (SSRM), as a deformation of the conventional topology, is shown to be capable of effectively optimizing the torque performance. Motivated by this advance, this paper aims to present a comprehensive literature review on the SSRM, first illustrating the development of the topology of the SRM, then providing a description as well as a classification according to the topology of the SSRM. In particular, we focus on the evolution of various kinds of segmental topology and improvement measures. Then, we discuss the performance, advantages, and disadvantages of various types of structures in terms of their electromagnetic aspects and their applications. Eventually, several promising future trends and application prospects of the SSRM are prospected, with the aim of shedding light on further research. In sum, the key contribution of this paper is to provide a valuable basis for detailed analyses of the structure and electromagnetic design of the SSRM that are expected to benefit future research. Full article
(This article belongs to the Special Issue Regulations and Advances in High Performance Electric Motor and Drive)
Show Figures

Figure 1

33 pages, 11280 KiB  
Article
Magnetic Field Analysis and Performance Optimization of Dual-Rotor Hybrid Excitation Generator for Automobile
by Shilong Yan, Xueyi Zhang, Jun Zhang, Yufeng Zhang, Mingjun Xu, Ting Gao and Sizhan Hua
Machines 2022, 10(9), 816; https://doi.org/10.3390/machines10090816 - 16 Sep 2022
Cited by 5 | Viewed by 4438
Abstract
Aiming at the current problems of low excitation efficiency and poor reliability of single-rotor hybrid excitation generators, the large axial length of dual-rotor structure, and difficulty in magnetic field analysis, a new type of the dual-rotor hybrid excitation generator topology with high power [...] Read more.
Aiming at the current problems of low excitation efficiency and poor reliability of single-rotor hybrid excitation generators, the large axial length of dual-rotor structure, and difficulty in magnetic field analysis, a new type of the dual-rotor hybrid excitation generator topology with high power density is proposed, with two rotors side-by-side coaxial, sharing a set of armature windings, and the magnetic fields do not interfere with each other, so the magnetic field analysis and optimization of the two rotors can be carried out separately. The magnetic density distribution of the new permanent magnet (PM) claw pole rotor is analyzed by the joint application of the equivalent magnetic circuit method and the equivalent magnetic network method, which ensures the simplicity of calculation and improves the calculation accuracy. The multi-objective optimization of the key structural parameters is carried out based on the Latin hypercube sampling–Pareto frontier solution method. The subdomain method is improved by segmented equivalence, the unique solution of the salient-pole rotor magnetic field is obtained, and the multi-objective optimization of the salient-pole rotor is used by the particle swarm algorithm. The trial prototype was experimental, and the results showed that the output characteristics of the optimized hybrid excitation generator were significantly improved, and the overall performance of the generator was improved. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

20 pages, 5762 KiB  
Article
Swiveling Magnetization for Anisotropic Magnets for Variable Flux Spoke-Type Permanent Magnet Motor Applied to Electric Vehicles
by Yin-Hui Lee and Min-Fu Hsieh
Energies 2022, 15(10), 3825; https://doi.org/10.3390/en15103825 - 23 May 2022
Viewed by 2366
Abstract
This paper investigates the application of anisotropic low-coercive force (LCF) magnets to a novel variable-flux spoke-type permanent magnet synchronous motor (VFS-PMSM) for electrical vehicles with a wide speed range. In the VFS-PMSM, flux is regulated by swiveling the magnetization of the anisotropic LCF [...] Read more.
This paper investigates the application of anisotropic low-coercive force (LCF) magnets to a novel variable-flux spoke-type permanent magnet synchronous motor (VFS-PMSM) for electrical vehicles with a wide speed range. In the VFS-PMSM, flux is regulated by swiveling the magnetization of the anisotropic LCF magnets instead of directly magnetizing or demagnetizing them. The previously proposed VFS-PMSM uses only isotropic LCF magnets for easily swiveling the magnetic pole direction, resulting in lower torque density. The challenge thus lies in the feasibility to swivel the magnetic pole direction of the anisotropic LCF magnet, and the impact of the different magnetization strengths of the anisotropic magnets on the motor performance. This paper first studies the feasibility to swivel the magnetization direction of anisotropic LCF magnets through experiments. It is confirmed that the magnetization direction can be successfully swiveled by 90 degrees with a reduced external magnetizing field. Then, two VFS-PMSM topologies and various rotor configurations are compared in terms of key performance indices to determine critical sizing factors for performance enhancement. Finite element analysis is used for simulations. In comparison with the VFS-PMSM equipped with isotropic LCF magnets, the maximum torque of the proposed topology can be improved for the same flux adjustment ability. Alternatively, the flux adjustment ability can also be enhanced by 37.43% for the same maximum torque. Full article
(This article belongs to the Topic Application of Innovative Power Electronic Technologies)
Show Figures

Figure 1

19 pages, 5634 KiB  
Article
Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with dual-V type Magnets
by Wenjing Hu, Xueyi Zhang, Hongbin Yin, Huihui Geng, Yufeng Zhang and Liwei Shi
Energies 2020, 13(6), 1501; https://doi.org/10.3390/en13061501 - 22 Mar 2020
Cited by 18 | Viewed by 4713
Abstract
Due to the increasing energy crisis and environmental pollution, the development of drive motors for new energy vehicles (NEVs) has become the focus of popular attention. To improve the sine of the air-gap flux density and flux regulation capacity of drive motors, a [...] Read more.
Due to the increasing energy crisis and environmental pollution, the development of drive motors for new energy vehicles (NEVs) has become the focus of popular attention. To improve the sine of the air-gap flux density and flux regulation capacity of drive motors, a new hybrid excitation synchronous motor (HESM) has been proposed. The HESM adopts a salient pole rotor with built-in dual-V permanent magnets (PMs), non-arc pole shoes and excitation windings. The fundamental topology, operating principle and analytical model for a magnetic field are presented. In the analytical model, the rotor magnetomotive force (MMF) is derived based on the minimum reluctance principle, and the permeance function considering a non-uniform air-gap is calculated using the magnetic equivalent circuit (MEC) method. Besides, the electromagnetic performance including the air-gap magnetic field and flux regulation capacity is analyzed by the finite element method (FEM). The simulation results of the air-gap magnetic field are consistent with the analytical results. The experiment and simulation results of the performance show that the flux waveform is sinusoidal-shaped and the air-gap flux can be adjusted effectively by changing the excitation current. This study provides design methods and theoretical analysis references for this type of HESM. Full article
Show Figures

Graphical abstract

19 pages, 1448 KiB  
Article
The Influence of Permanent Magnet Material Properties on Generator Rotor Design
by Petter Eklund and Sandra Eriksson
Energies 2019, 12(7), 1314; https://doi.org/10.3390/en12071314 - 5 Apr 2019
Cited by 23 | Viewed by 5863
Abstract
Due to the price and supply insecurities for rare earth metal-based permanent magnet (PM) materials, a search for new PM materials is ongoing. The properties of a new PM material are not known yet, but a span of likely parameters can be studied. [...] Read more.
Due to the price and supply insecurities for rare earth metal-based permanent magnet (PM) materials, a search for new PM materials is ongoing. The properties of a new PM material are not known yet, but a span of likely parameters can be studied. This paper presents an investigation on how the remanence and recoil permeability of a PM material affect its usefulness in a low speed, multi-pole, and PM synchronous generator. Demagnetisation is also considered. The investigation is carried out by constrained optimisation of three different rotor topologies for maximum torque production for different PM material parameters and a fixed PM maximum energy. The rotor topologies used are surface mounted PM rotor, spoke type PM rotor and an interior PM rotor with radially magnetised PMs. The three different rotor topologies have their best performance for different kinds of materials. The spoke type PM rotor is the best at utilising low remanence materials as long as they are sufficiently resistant to demagnetisation. The surface mounted PM rotor works best with very demagnetisation resistant PM materials with a high remanence, while the radial interior PM rotor is preferable for high remanence materials with low demagnetisation resistance. Full article
(This article belongs to the Special Issue Permanent Magnet Synchronous Machines)
Show Figures

Figure 1

19 pages, 10720 KiB  
Article
Presentation and Performance Evaluation of a Novel Stator-Permanent-Magnet Hybrid Stepping Motor
by Binglin Lu and Yanliang Xu
Energies 2017, 10(5), 693; https://doi.org/10.3390/en10050693 - 15 May 2017
Cited by 2 | Viewed by 6207
Abstract
In this paper, a new type of hybrid stepping motor (HSM) with permanent magnets (PMs) embedded in the stator, namely the stator-permanent-magnet hybrid stepping motor (SHSM), is presented. It has the same operation principles as the traditional HSM, with a 2-D distributed magnetic [...] Read more.
In this paper, a new type of hybrid stepping motor (HSM) with permanent magnets (PMs) embedded in the stator, namely the stator-permanent-magnet hybrid stepping motor (SHSM), is presented. It has the same operation principles as the traditional HSM, with a 2-D distributed magnetic field nature and superiorities such as simpler rotor structure, easier PM cooling, higher torque and power density, and higher power grade. Its structural topology and operation principles are initially presented. Then an investigation on the performance comparison between the HSM and the SHSM, in terms of PM flux density, PM torque, detent torque, positional holding accuracy, stator core saturation issue, PM flux leakage, and PM utilization rate is carried out theoretically to make an assessment of the performance superiorities of the SHSM. A prototype of a 2-phase 8-pole 50-rotor-tooth SHSM is fabricated and experimentally compared with the HSM by using finite element analysis (FEA) to verify the motor’s operational feasibility and the theoretical analysis. The FEA and experimental results show that the proposed SHSM has performance advantages such as higher torque density, higher power grade, and higher pull-out torque, holding torque, and torque-speed property, although it has performance defects such as higher torque ripple and relatively lower positional holding accuracy in the open-loop operation than the conventional HSM. Consequently, this novel SHSM is more suitable for electromechanical energy conversion applications rather than positioning mechanisms, especially taking into account the open-loop control advantage. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

19 pages, 526 KiB  
Article
Performance Analysis and Simulation of a Novel Brushless Double Rotor Machine for Power-Split HEV Applications
by Ping Zheng, Qian Wu, Jing Zhao, Chengde Tong, Jingang Bai and Quanbin Zhao
Energies 2012, 5(1), 119-137; https://doi.org/10.3390/en5010119 - 19 Jan 2012
Cited by 14 | Viewed by 8108
Abstract
A new type of brushless double rotor machine (BDRM) is proposed in this paper. The BDRM is an important component in compound-structure permanent-magnet synchronous machine (CS-PMSM) systems, which are promising for power-split hybrid electric vehicle (HEV) applications. The BDRM can realize the speed [...] Read more.
A new type of brushless double rotor machine (BDRM) is proposed in this paper. The BDRM is an important component in compound-structure permanent-magnet synchronous machine (CS-PMSM) systems, which are promising for power-split hybrid electric vehicle (HEV) applications. The BDRM can realize the speed adjustment between claw-pole rotor and permanent-magnet rotor without brushes and slip rings. The structural characteristics of the BDRM are described and its magnetic circuit model is built. Reactance parameters of the BDRM are deduced by an analytical method. It is found that the size characteristics of the BDRM are different from those of conventional machines. The new sizing and torque equations are analyzed and the theoretical results are used in the optimization process. Studies of the analytical magnetic circuit and finite element method (FEM) model show that the BDRM tends to have high leakage flux and low power factor, and then the method to obtain high power factor is discussed. Furthermore, a practical methodology of the BDRM design is developed, which includes an analytical tool, 2D field calculation and performance evaluation by 3D field calculation. Finally, different topologies of the BDRM are compared and an optimum prototype is designed. Full article
(This article belongs to the Special Issue Electric and Hybrid Vehicles)
Show Figures

Graphical abstract

Back to TopTop