Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (174)

Search Parameters:
Keywords = π-conjugated materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3610 KiB  
Review
Metal–Organic Frameworks as Fillers in Porous Organic Polymer-Based Hybrid Materials: Innovations in Composition, Processing, and Applications
by Victor Durán-Egido, Daniel García-Giménez, Juan Carlos Martínez-López, Laura Pérez-Vidal and Javier Carretero-González
Polymers 2025, 17(14), 1941; https://doi.org/10.3390/polym17141941 - 15 Jul 2025
Viewed by 739
Abstract
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety [...] Read more.
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety of defined crystalline structures and enhanced separation characteristics. The combination (or hybridization) with PIMs gives rise to mixed-matrix membranes (MMMs) with improved permeability, selectivity, and long-term stability. However, interfacial compatibility remains a key limitation, often addressed through polymer functionalization or controlled dispersion of the MOF phase. MOF/COF hybrids are more used as biochemical sensors with elevated sensitivity, catalytic applications, and wastewater remediation. They are also very well known in the gas sorption and separation field, due to their tunable porosity and high electrical conductivity, which also makes them feasible for energy storage applications. Last but not less important, hybrids with other POPs, such as hyper-crosslinked polymers (HCPs), covalent triazine frameworks (CTFs), or conjugated microporous polymers (CMPs), offer enhanced functionality. MOF/HCP hybrids combine ease of synthesis and chemical robustness with tunable porosity. MOF/CTF hybrids provide superior thermal and chemical stability under harsh conditions, while MOF/CMP hybrids introduce π-conjugation for enhanced conductivity and photocatalytic activity. These and other findings confirm the potential of MOF-POP hybrids as next-generation materials for gas separation and carbon capture applications. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials, 4th Edition)
Show Figures

Figure 1

28 pages, 4548 KiB  
Article
New Tools in Heavy Metal Detection: Synthesis, Spectroscopic, and Quantum Chemical Characterization of Selected Water-Soluble Styryl Derivatives of Quinoline and 1,10-Phenanthroline
by Jacek E. Nycz, Jolanta Kolińska, Nataliya Karaush-Karmazin, Tieqiao Chen, Maria Książek and Joachim Kusz
Molecules 2025, 30(12), 2659; https://doi.org/10.3390/molecules30122659 - 19 Jun 2025
Viewed by 675
Abstract
A series of water-soluble molecules based on 8-isopropyl-2-methyl-5-nitroquinoline and 1,10-phenanthroline core were designed by introducing a π-conjugated bridge, vinyl unit –CH=CH–. We present the selective conversion of methyl groups located on the C2 and C9 positions in the constitution of selected quinoline or [...] Read more.
A series of water-soluble molecules based on 8-isopropyl-2-methyl-5-nitroquinoline and 1,10-phenanthroline core were designed by introducing a π-conjugated bridge, vinyl unit –CH=CH–. We present the selective conversion of methyl groups located on the C2 and C9 positions in the constitution of selected quinoline or 1,10-phenanthroline derivatives, respectively, into vinyl (or styryl) products by applying Perkin condensation. The two groups of ligands differ in the presence of one or two arms. The structure of the molecule ((1E,1′E)-(1,10-phenanthroline-2,9-diyl)bis(ethene-2,1-diyl))bis(benzene-4,1,3-triyl) tetraacetate was determined by single-crystal X-ray diffraction measurements. The X-ray, NMR, and DFT computational studies indicate the influence of rotation (rotamers) on the physical properties of studied styryl molecules. The results show that the styryl molecules with the vinyl unit –CH=CH– exhibit significant static and dynamic hyperpolarizabilities. Quantum chemical calculations using density functional theory and B3LYP/6-311++G(d,p) with Grimme’s dispersion correction approach predict the existence and relative stability of different spatial cis(Z)- and trans(E)-conformers of styryl derivatives of quinoline and 1,10-phenanthroline, which exhibit different electronic distribution and conjugation within the molecular skeleton, dipole moments, and steric interactions, leading to variations in their photophysical behavior and various applications. Our studies indicate that the rotation and isomerization of aryl groups can significantly influence the electronic and optical properties of π-conjugated systems, such as vinyl units (–CH=CH–). The rotation of aryl groups around the single bond that connects them to the vinyl unit can lead to changes in the effective π-conjugation between the aryl group and the rest of the π-conjugated system. The rotation and isomerization of aryl groups in π-conjugated systems significantly impact their electronic and optical properties. These changes can modify the efficiency of π-conjugation, affecting charge transfer processes, absorption properties, light emission, and electrical conductivity. In designing optoelectronic materials, such as organic dyes, organic semiconductors, or electrochromic materials, controlling the rotation and isomerization of aryl groups can be crucial for optimizing their functionality. Full article
Show Figures

Graphical abstract

16 pages, 4820 KiB  
Article
Triple-Band Warm White-Light Emission from Type II Band-Aligned Aggregation-Induced Enhanced Emission Organic Cation-Incorporated Two-Dimensional Lead Iodide Perovskite
by Almaz R. Beisenbayev, Igor Ivanov-Prianichnikov, Anatoly Peshkov, Tangsulu Adil, Davit Hayrapetyan and Chang-Keun Lim
Int. J. Mol. Sci. 2025, 26(11), 5054; https://doi.org/10.3390/ijms26115054 - 24 May 2025
Viewed by 420
Abstract
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics [...] Read more.
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics poorly, restricting their efficiency as white-light emitters. This study presents a 2D lead iodide perovskite that incorporates a fluorinated π-conjugated aggregation-induced enhanced emission luminophore, FPCSA, as a bulky organic cation to create a quasi-2D perovskite. The FPCSA cation establishes a Type II energy level alignment with the lead iodide layer in the 2D perovskite, and a significant energy offset effectively suppresses charge transfer, enabling independent emission from both the organic and inorganic layers while facilitating self-trapped exciton formation. Under 315 nm UV excitation, this material demonstrates warm white-light emission with RGB triple-band photoluminescence stemming from the electronically decoupled FPCSA and perovskite layers. These findings provide a promising new method for designing efficient single-phase white-light-emitting materials for optoelectronic applications. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

18 pages, 3406 KiB  
Article
Silicon-Containing π-Conjugated Schiff Base Oligomers with Naphthalene or Binaphthalene Moieties in the Backbone: Synthesis and Study of Properties
by Enzo González, Alexis F. González, Andrea P. Mariman, Camilo I. Jara, Joel D. Velázquez, César Saldías, Eduardo Schott, Ximena Zarate, Alain Tundidor-Camba, Patricio A. Sobarzo and Claudio A. Terraza
Polymers 2025, 17(10), 1316; https://doi.org/10.3390/polym17101316 - 12 May 2025
Viewed by 576
Abstract
Four silane-containing Schiff base oligomers (o-SBNs and o-SBBs) were synthesized by high-temperature polycondensation reactions using silicon-based dialdehydes with naphthalene and 1,1’-binaphthalene diamine derivates. The samples showed a moderate solubility in common organic solvents, where the incorporation of TPS cores into o-SBN2 allows the [...] Read more.
Four silane-containing Schiff base oligomers (o-SBNs and o-SBBs) were synthesized by high-temperature polycondensation reactions using silicon-based dialdehydes with naphthalene and 1,1’-binaphthalene diamine derivates. The samples showed a moderate solubility in common organic solvents, where the incorporation of TPS cores into o-SBN2 allows the formation of highly soluble material in non-polar solvents with higher molecular weights (11.58 kDa) and polydispersity. All oligo-SBs displayed high thermal resistance (above 450 °C), showing enhanced thermal stability for TPS-containing oligomers, with the degradation temperature exceeding 530 °C (o-SBB2) and high Tg values due to the higher aromatic content granted by TPS and 1,1’-binaphthalene moieties. Optical results of the oligo-SBs showed broad absorption and emission behavior in the visible spectrum, ranging from deep blue (o-SBN1 and o-SBB1) to blue (o-SBN2 and o-SBB2). The structure promotes a clear bathochromic shift for TPS-based oligomers, attributed to an extended π-conjugation across the backbone. In addition, the π-π overlap effect highlights larger Stokes shifts for the DMS core oligomers o-SN2 (133 nm) and o-SBB1 (195 nm). The oligo-SBs were found to be wide-bandgap materials, with Egopt values in the range of 2.60 eV to 3.67 eV. The higher molecular weight of o-SBN2, which provided an extended π-conjugation, allows the lowest value of Egopt (2.60 eV) to be achieved. In addition, DFT, TDDFT and EDDM calculations were performed on trimeric oligo-SBs, revealing that HOMOs are localized in the amine-terminal fraction, while LUMOs are localized over the terminal aldehyde groups. These findings highlight the used DMS and TPS cores in Schiff base materials, providing valuable insights into fine-tuning physicochemical properties through the use of suitable building blocks and their potential as optoelectronic materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

29 pages, 16013 KiB  
Review
Supramolecular Perylene Diimides for Photocatalytic Hydrogen Production
by Long Tian, Qing Meng, Wenjie Zhou, Bang Hu, Zichun Jiang, Yulong Cai, Xiaoguang Liu and Yingzhi Chen
Catalysts 2025, 15(5), 463; https://doi.org/10.3390/catal15050463 - 8 May 2025
Viewed by 759
Abstract
Energy depletion and environmental pollution have emerged as pressing global concerns, demanding the urgent promotion of green and clean energy sources. As such, the efficient utilization of solar energy for hydrogen production has gained significant research attention, with semiconductor photocatalysis emerging as an [...] Read more.
Energy depletion and environmental pollution have emerged as pressing global concerns, demanding the urgent promotion of green and clean energy sources. As such, the efficient utilization of solar energy for hydrogen production has gained significant research attention, with semiconductor photocatalysis emerging as an effective strategy. However, harnessing the full potential of semiconductor photocatalysis still poses great challenges. Notably, the limited utilization of visible light and the substantial recombination of photogenerated electron–hole pairs adversely affect photocatalytic performance, ultimately impeding the further development and practical application of semiconductor photocatalysis. Perylene diimide (PDI), an n-type semiconductor distinguished by its conjugated π-π bonds, exhibits remarkable photoelectric properties. Its energy band gap falls within the absorption range of visible light, ensuring remarkable light absorption efficiency. Furthermore, the photogenerated charge can be efficiently conducted along the π-π stacking in its structural unit, significantly reducing electron–hole recombination. Consequently, PDI holds immense potential for achieving visible-light-driven photocatalytic hydrogen production. Yet, despite these attributes, the photocatalytic efficiency of pure PDI is still far from practical use, necessitating innovative modifications to elevate its catalytic performance. In this review, we begin with an in-depth exploration of the principles underlying photocatalytic hydrogen production and discuss various strategies aimed at enhancing photocatalytic performance. We also engage in a comprehensive discussion and summation of the challenges encountered and the future prospects of PDI-based materials. Our endeavor is to pave the way for groundbreaking advancements in the field of photocatalysis, ultimately contributing to a cleaner and more sustainable future. Full article
Show Figures

Graphical abstract

11 pages, 21344 KiB  
Article
Fully Conjugated Heteroatomic Non- and Quasi-Alternant Polyradicals
by Sergi Betkhoshvili, Jordi Poater, Ibério de P. R. Moreira and Josep Maria Bofill
Chemistry 2025, 7(2), 45; https://doi.org/10.3390/chemistry7020045 - 18 Mar 2025
Viewed by 660
Abstract
In this work, we present fully π-conjugated diradical(oid)s and tetraradical(oid)s with five-membered non-alternant cyclopentadienyl and quasi-alternant thiophene rings, the latter of which is used as a source of aromatic stabilization. By controlling the topology of the π-systems, we can restrict the [...] Read more.
In this work, we present fully π-conjugated diradical(oid)s and tetraradical(oid)s with five-membered non-alternant cyclopentadienyl and quasi-alternant thiophene rings, the latter of which is used as a source of aromatic stabilization. By controlling the topology of the π-systems, we can restrict the lower-bound number of unpaired electrons. Aromaticity and/or antiaromaticity in the different configurations of the compounds can be used to design conjugated compounds with high open-shell characters. We also designed the diradical(oid) based only on the five-membered rings, without any terminal radical groups. This work exemplifies the application of our theory of rational design of polyradicals to heteroatomic and non/quasi-alternant organic systems. The ability to create polyradicals with different classes of organic compounds establishes the possibility of creating multifunctional organic materials with tunable magnetic properties. Full article
Show Figures

Graphical abstract

16 pages, 2858 KiB  
Article
Triple Design Strategy for Quinoxaline-Based Hole Transport Materials in Flexible Perovskite Solar Cells
by Yuanqiong Lin, Zeyuan Gao, Xiaoshang Zhong, Yinghua Lu, Song Tu and Xin Li
Molecules 2025, 30(5), 1129; https://doi.org/10.3390/molecules30051129 - 28 Feb 2025
Viewed by 850
Abstract
Molecular design strategies such as noncovalent conformational locks, self-assembly, and D-A molecular skeletons have been extensively used to devise efficient and stable hole transport materials. Nevertheless, most of the existing excellent examples involve only single or dual strategies, and triple strategies remain scarcely [...] Read more.
Molecular design strategies such as noncovalent conformational locks, self-assembly, and D-A molecular skeletons have been extensively used to devise efficient and stable hole transport materials. Nevertheless, most of the existing excellent examples involve only single or dual strategies, and triple strategies remain scarcely reported. Herein, we attempt to develop two quinoxaline-based hole transport materials (DQC-T and DQ-T-QD) through a triple strategy encompassing an S···N noncovalent conformational lock, D-A molecular skeletons, and self-assembly or conjugate engineering. The S···N noncovalent conformational lock formed by thiophene sulfur atoms and quinoxaline nitrogen atoms improves molecular planarity, further inducing the formation of high-quality perovskite films and enhancing hole transport ability; the asymmetric D-A molecular backbone endows the material with a larger dipole moment (μ = 5.80 D) to promote intramolecular charge transfer; and the carboxyl group, methoxy, and sulfur atom establish strong interactions between the NiOx and perovskite layers, including self-assembly and defect passivation, which mitigates the occurrence of detrimental interfacial charge recombination and reactions. Thus, the 2-thiophenecarboxylic acid derivative DQC-T, featuring an asymmetric D-A molecular backbone, exhibits superiority in terms of good interface contact, hole extraction, and transport compared to DQ-T-QD with a D-A-π-A-D type structure. Naturally, the optimal power conversion efficiency of NiOx/DQC-T-based p-i-n flexible perovskite solar cells is 18.12%, surpassing that of NiOx/DQ-T-QD-based devices (16.67%) and NiOx-based devices with or without DQC (a benzoic acid derivative without a noncovalent conformational lock) as co-HTMs (16.75% or 15.52%). Our results reflect the structure–performance relationship well, and provide a referable triple strategy for the design of new hole transport materials. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

40 pages, 9917 KiB  
Review
Roadmap for Designing Donor-π-Acceptor Fluorophores in UV-Vis and NIR Regions: Synthesis, Optical Properties and Applications
by Guliz Ersoy and Maged Henary
Biomolecules 2025, 15(1), 119; https://doi.org/10.3390/biom15010119 - 14 Jan 2025
Cited by 1 | Viewed by 2185
Abstract
Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates [...] Read more.
Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates for various applications such as bioimaging, photovoltaic devices and nonlinear optical materials. Upon excitation of the D-π-A fluorophore, intramolecular charge transfer (ICT) occurs, and it polarizes the molecule resulting in the ‘push–pull’ system. The emission wavelengths of fluorophores can be altered from UV-vis to NIR region by modifying the donor unit, acceptor moiety and the π linker between them. The NIR emitting fluorophores with restricted molecular rotations are used in aggregation-induced emission (AIE). D-π-A fluorophores with carboxylic acid and cyano groups are preferred in photovoltaic applications, and fluorophores with large surface area are used for two photon absorbing applications. Herein, we report the synthesis, optical properties, and applications of various D-π-A fluorophores in UV-vis and NIR region. Full article
(This article belongs to the Special Issue Novel Materials for Biomedical Applications: 2nd Edition)
Show Figures

Figure 1

19 pages, 5556 KiB  
Article
Exploring the Impact of Structural Modifications of Phenothiazine-Based Novel Compounds for Organic Solar Cells: DFT Investigations
by Walid Taouali, Amel Azazi, Rym Hassani, Entesar H. EL-Araby and Kamel Alimi
Polymers 2025, 17(1), 115; https://doi.org/10.3390/polym17010115 - 5 Jan 2025
Cited by 9 | Viewed by 1781
Abstract
This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and [...] Read more.
This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2). With the donor and π-bridge held constant, we have employed density functional theory and time-dependent DFT simulations to explore the photophysical and optoelectronic properties of tailored compounds (M1–M6). We have demonstrated how structural modifications influence the optoelectronic properties of materials for organic solar cells. Moreover, all proposed compounds exhibit a greater Voc exceeding 1.5 V, a suitable HOMO-LUMO energy gap (2.14–2.30 eV), and higher dipole moments (9.23–10.90 D). Various decisive key factors that are crucial for exploring the properties of tailored compounds—frontier molecular orbitals, transition density matrix, electrostatic potential, open-circuit voltage, maximum absorption, reduced density gradient, and charge transfer length (Dindex)—were also explored. Our analysis delivers profound insights into the design principles of optimizing the performance of organic solar cell applications based on halogenated material compounds. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Figure 1

22 pages, 6250 KiB  
Article
Theoretical Studies on the Design of Benzo[1,2-c:4,5-c’]bis[1,2,5]selenadiazole Acceptor-Based Organic Dyes
by Taylor Dorlus, Jing Wang and Jerzy Leszczynski
Crystals 2025, 15(1), 30; https://doi.org/10.3390/cryst15010030 - 29 Dec 2024
Cited by 1 | Viewed by 1048
Abstract
π-conjugated organic material, specifically, the modification of donor acceptor-based dyes, has gained significant attention over the years for its outstanding performance in efficient dye-sensitized solar cells (DSSCs) as well as contributing to overall economically sustainable solar cell technology. In the present study, density [...] Read more.
π-conjugated organic material, specifically, the modification of donor acceptor-based dyes, has gained significant attention over the years for its outstanding performance in efficient dye-sensitized solar cells (DSSCs) as well as contributing to overall economically sustainable solar cell technology. In the present study, density functional theory (DFT) and time-dependent DFT (TD-DFT) approaches were executed to investigate the impact of benzobisselenadiazole (BBSD) based organic dyes with interchangeable donor and acceptor units on their optical properties. Two spacers were selected from 27 π-linker models due to their better performance on the absorption spectra. A total of 200 BSSD dyes were designed based upon the above two selected spacers linking with various donors and acceptors. The corresponding structures and properties were theoretically analyzed by DFT/TDDFT methods. D10A8-16 and D10A6-17 show the best performance and may become the best candidates to be developed as efficient dye sensitizers for DSSCs. Our results showed that structural changes can effectively improve the optoelectronic properties of the designed BSSD dyes. This provides us with an economic and fast screening way for artificial design of new dyes. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

31 pages, 8102 KiB  
Review
Porphyrin-Based Supramolecular Self-Assemblies: Construction, Charge Separation and Transfer, Stability, and Application in Photocatalysis
by Yingxu Hu, Jingfeng Peng, Rui Liu, Jing Gao, Guancheng Hua, Xiangjiang Fan and Shengjie Wang
Molecules 2024, 29(24), 6063; https://doi.org/10.3390/molecules29246063 - 23 Dec 2024
Viewed by 2243
Abstract
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential [...] Read more.
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility. Compared to unassembled porphyrin molecules, supramolecular porphyrin assemblies facilitate the solar light absorption and improve the charge transfer and thus exhibit enhanced photocatalytic performance. Herein, the research progress of porphyrin-based supramolecular assemblies, including the construction, the regulation of charge separation and transfer, stability, and application in photocatalysis, was systematically reviewed. The construction strategy of porphyrin supramolecules, the mechanism of charge separation, and the intrinsic relationship of assembling structure-charge transfer-photocatalytic performance received special attention. Surfactants, peptide molecules, polymers, and metal ions were introduced to improve the stability of the porphyrin assemblies. Donor-acceptor structure and co-catalysts were incorporated to inhibit the recombination of the photoinduced charges. These increase the understanding of the porphyrin supramolecules and provide ideas for the design of high-performance porphyrin-based photocatalysts. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Figure 1

21 pages, 12533 KiB  
Review
Recent Advances in Porphyrin-Based Covalent Organic Frameworks for Synergistic Photodynamic and Photothermal Therapy
by Cheng Qi, Jiayi Chen, Yijie Qu, Xuanxuan Luo, Weiqi Wang and Xiaohua Zheng
Pharmaceutics 2024, 16(12), 1625; https://doi.org/10.3390/pharmaceutics16121625 - 22 Dec 2024
Cited by 3 | Viewed by 1909
Abstract
Porphyrin’s excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin [...] Read more.
Porphyrin’s excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials. Porphyrin-based COF materials can exert combined photodynamic and photothermal effects, circumventing the limitations of photodynamic therapy (PDT) due to hypoxia and issues in photothermal therapy (PTT) from heat shock proteins or the adverse impact of excessive heat on the protein activity of normal tissue. Furthermore, the porous structure of porphyrin COFs facilitates the circulation of oxygen molecules and reactive oxygen species and promotes sufficient contact with the lesion site for therapeutic functions. This review covers recent progress regarding porphyrin-based COFs in treating malignant tumors and venous thrombosis and for antibacterial and anti-inflammatory uses via combined PDT and PTT. By summarizing relevant design strategies, ranging from molecular design to functional application, this review provides a reference basis for the enhanced phototherapy application of porphyrin-based COFs as photoactive materials. This review aims to offer valuable insights for more effective biomedical applications of porphyrin-based COFs through the synthesis of existing experimental data, thereby paving the way for their future preclinical utilization. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Figure 1

27 pages, 5067 KiB  
Review
Materials Nanoarchitectonics for Advanced Devices
by Katsuhiko Ariga
Materials 2024, 17(23), 5918; https://doi.org/10.3390/ma17235918 - 3 Dec 2024
Cited by 2 | Viewed by 1500
Abstract
Advances in nanotechnology have made it possible to observe and evaluate structures down to the atomic and molecular level. The next step in the development of functional materials is to apply the knowledge of nanotechnology to materials sciences. This is the role of [...] Read more.
Advances in nanotechnology have made it possible to observe and evaluate structures down to the atomic and molecular level. The next step in the development of functional materials is to apply the knowledge of nanotechnology to materials sciences. This is the role of nanoarchitectonics, which is a concept of post-nanotechnology. Nanoarchitectonics is defined as a methodology to create functional materials using nanounits such as atoms, molecules, and nanomaterials as building blocks. Nanoarchitectonics is very general and is not limited to materials or applications, and thus nanoarchitecture is applied in many fields. In particular, in the evolution from nanotechnology to nanoarchitecture, it is useful to consider the contribution of nanoarchitecture in device applications. There may be a solution to the widely recognized problem of integrating top-down and bottom-up approaches in the design of functional systems. With this in mind, this review discusses examples of nanoarchitectonics in developments of advanced devices. Some recent examples are introduced through broadly dividing them into organic molecular nanoarchitectonics and inorganic materials nanoarchitectonics. Examples of organic molecular nanoarchitecture include a variety of control structural elements, such as π-conjugated structures, chemical structures of complex ligands, steric hindrance effects, molecular stacking, isomerization and color changes due to external stimuli, selective control of redox reactions, and doping control of organic semiconductors by electron transfer reactions. Supramolecular chemical processes such as association and intercalation of organic molecules are also important in controlling device properties. The nanoarchitectonics of inorganic materials often allows for control of size, dimension, and shape, and their associated physical properties can also be controlled. In addition, there are specific groups of materials that are suitable for practical use, such as nanoparticles and graphene. Therefore, nanoarchitecture of inorganic materials also has a more practical aspect. Based on these aspects, this review finally considers the future of materials nanoarchitectonics for further advanced devices. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

24 pages, 9019 KiB  
Article
The Synthesis, Characterization, and Theoretical Study of Ruthenium (II) Polypyridyl Oligomer Hybrid Structures with Reduced Graphene Oxide for Enhanced Optoelectronic Applications
by Alexander Schultheiss, Jamel White, Khoa Le, Nicole Boone, Ufana Riaz and Darlene K. Taylor
Int. J. Mol. Sci. 2024, 25(23), 12989; https://doi.org/10.3390/ijms252312989 - 3 Dec 2024
Viewed by 742
Abstract
π-conjugated polymers are arguably one of the most exciting classes of materials and have attracted substantial attention due to their unique optical and electronic properties. The introduction of transition metals into conjugated polymers tunes the optoelectronic properties of these metallopolymers, which may improve [...] Read more.
π-conjugated polymers are arguably one of the most exciting classes of materials and have attracted substantial attention due to their unique optical and electronic properties. The introduction of transition metals into conjugated polymers tunes the optoelectronic properties of these metallopolymers, which may improve their performance in device applications. Graphene and reduced graphene oxide (RGO) derivatives are interesting materials with a unique structure and outstanding properties. The present work reports an investigation of three hybrid RGO and π-conjugated oligomers that contain ruthenium polypyridyl chromophores serving as models to provide molecular-level insight for the corresponding transition-metal-containing conjugated polymers. Full article
Show Figures

Graphical abstract

14 pages, 3434 KiB  
Article
Electropolymerization of s-Triazines and Their Charge Storage Performance in Aqueous Acidic Electrolytes
by Shaotong Pei, Bo Lan, Xueting Bai, Yunpeng Liu, Xinyang Li and Chao Wang
Polymers 2024, 16(23), 3266; https://doi.org/10.3390/polym16233266 - 24 Nov 2024
Cited by 1 | Viewed by 1206
Abstract
Designing novel π-conjugated conductive polymers with abundant redox-active groups is a viable route to achieve high charge storage performance for aqueous energy storage devices. Electropolymerization is a powerful tool to construct conductive polymers. Here, s-triazine is, for the first time, electropolymerized in an [...] Read more.
Designing novel π-conjugated conductive polymers with abundant redox-active groups is a viable route to achieve high charge storage performance for aqueous energy storage devices. Electropolymerization is a powerful tool to construct conductive polymers. Here, s-triazine is, for the first time, electropolymerized in an aqueous acidic solution on carbon cloth. The polytriazine-coated carbon cloth electrode (PT/CC) exhibits a granular structure, with abundant pores. The charge storage performance is investigated, and a specific capacity of 101.4 mAh g1 at 1 A g1 in 1 M H2SO4 is achieved. Additionally, in 1 M ZnSO4, a specific capacity of 50.3 mAh g1 at 1 A g1 can be achieved by the PT/CC. The PT/CC behaves as a battery-type charge storage electrode, and the amino/imino and carbonyl/hydroxyl groups contribute to the charge storage, with cation insertion and extraction. A symmetric aqueous charge storage device assembled with two PT/CC electrodes exhibits an energy density of 12.92 Wh kg1 and a power density of 250 W kg1 at 1 A g1. After 2500 cycles at 10 A g1, the device retains a specific capacity of 83.3%. This study indicates that the PT is a potential candidate material for an aqueous energy storage device. Full article
(This article belongs to the Special Issue Advances in Biomimetic Smart Hydrogels)
Show Figures

Figure 1

Back to TopTop