Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = δ-coronavirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4168 KiB  
Article
Optimal Control Strategy of a Mathematical Model for the Fifth Wave of COVID-19 Outbreak (Omicron) in Thailand
by Jiraporn Lamwong, Napasool Wongvanich, I-Ming Tang and Puntani Pongsumpun
Mathematics 2024, 12(1), 14; https://doi.org/10.3390/math12010014 - 20 Dec 2023
Cited by 3 | Viewed by 1565
Abstract
The world has been fighting against the COVID-19 Coronavirus which seems to be constantly mutating. The present wave of COVID-19 illness is caused by the Omicron variant of the coronavirus. The vaccines against the five variants (α, β, γ, δ, and ω) have [...] Read more.
The world has been fighting against the COVID-19 Coronavirus which seems to be constantly mutating. The present wave of COVID-19 illness is caused by the Omicron variant of the coronavirus. The vaccines against the five variants (α, β, γ, δ, and ω) have been quickly developed using mRNA technology. The efficacy of the vaccine developed for one of the strains is not the same as the efficacy of the vaccine developed for the other strains. In this study, a mathematical model of the spread of COVID-19 was made by considering asymptomatic population, symptomatic population, two infected populations and quarantined population. An analysis of basic reproduction numbers was made using the next-generation matrix method. Global asymptotic stability analysis was made using the Lyapunov theory to measure stability, showing an equilibrium point’s stability, and examining the model with the fact of COVID-19 spread in Thailand. Moreover, an analysis of the sensitivity values of the basic reproduction numbers was made to verify the parameters affecting the spread. It was found that the most common parameter affecting the spread was the initial number in the population. Optimal control problems and social distancing strategies in conjunction with mask-wearing and vaccination control strategies were determined to find strategies to give better control of the spread of disease. Lagrangian and Hamiltonian functions were employed to determine the objective function. Pontryagin’s maximum principle was employed to verify the existence of the optimal control. According to the study, the use of social distancing in conjunction with mask-wearing and vaccination control strategies was able to achieve optimal control rather than controlling just one or another. Full article
Show Figures

Figure 1

15 pages, 3310 KiB  
Article
Tetherin Restricts SARS-CoV-2 despite the Presence of Multiple Viral Antagonists
by Elena Hagelauer, Rishikesh Lotke, Dorota Kmiec, Dan Hu, Mirjam Hohner, Sophie Stopper, Rayhane Nchioua, Frank Kirchhoff, Daniel Sauter and Michael Schindler
Viruses 2023, 15(12), 2364; https://doi.org/10.3390/v15122364 - 30 Nov 2023
Cited by 8 | Viewed by 2428
Abstract
Coronavirus infection induces interferon-stimulated genes, one of which encodes Tetherin, a transmembrane protein inhibiting the release of various enveloped viruses from infected cells. Previous studies revealed that SARS-CoV encodes two Tetherin antagonists: the Spike protein (S), inducing lysosomal degradation of Tetherin, and ORF7a, [...] Read more.
Coronavirus infection induces interferon-stimulated genes, one of which encodes Tetherin, a transmembrane protein inhibiting the release of various enveloped viruses from infected cells. Previous studies revealed that SARS-CoV encodes two Tetherin antagonists: the Spike protein (S), inducing lysosomal degradation of Tetherin, and ORF7a, altering its glycosylation. Similarly, SARS-CoV-2 has also been shown to use ORF7a and Spike to enhance virion release in the presence of Tetherin. Here, we directly compare the abilities and mechanisms of these two viral proteins to counteract Tetherin. Therefore, cell surface and total Tetherin levels upon ORF7a or S expression were investigated using flow cytometry and Western blot analysis. SARS-CoV and SARS-CoV-2 S only marginally reduced Tetherin cell surface levels in a cell type-dependent manner. In HEK293T cells, under conditions of high exogenous Tetherin expression, SARS-CoV-2 S and ORF7a reduced total cellular Tetherin levels much more efficiently than the respective counterparts derived from SARS-CoV. Nevertheless, ORF7a from both species was able to alter Tetherin glycosylation. The ability to decrease total protein levels of Tetherin was conserved among S proteins from different SARS-CoV-2 variants (α, γ, δ, ο). While SARS-CoV-2 S and ORF7a both colocalized with Tetherin, only ORF7a directly interacted with the restriction factor in a two-hybrid assay. Despite the presence of multiple Tetherin antagonists, SARS-CoV-2 replication in Caco-2 cells was further enhanced upon Tetherin knockout. Altogether, our data show that endogenous Tetherin restricts SARS-CoV-2 replication and that the antiviral activity of Tetherin is only partially counteracted by viral antagonists with differential and complementary modes of action. Full article
(This article belongs to the Special Issue Emerging Concepts in SARS-CoV-2 Biology and Pathology)
Show Figures

Figure 1

8 pages, 1116 KiB  
Communication
Dynamic Evolution of SARS-CoV-2 in a Patient on Chemotherapy
by Weihua Huang, Changhong Yin, Kimberly P. Briley, William A. B. Dalzell and John T. Fallon
Viruses 2023, 15(8), 1759; https://doi.org/10.3390/v15081759 - 18 Aug 2023
Cited by 1 | Viewed by 2167
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved significantly during the pandemic and resulted in daunting numbers of genomic sequences. Tracking SARS-CoV-2 evolution during persistent cases could provide insight into the origins and dynamics of new variants. We report here a case [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved significantly during the pandemic and resulted in daunting numbers of genomic sequences. Tracking SARS-CoV-2 evolution during persistent cases could provide insight into the origins and dynamics of new variants. We report here a case of B-cell acute lymphocytic leukemia on chemotherapy with infection of SARS-CoV-2 for more than two months. Genomic surveillance of his serial SARS-CoV-2-positive specimens revealed two unprecedented large deletions, Δ15–26 and Δ138–145, in the viral spike protein N-terminal domain (NTD) and demonstrated their dynamic shifts in generating these new variants. Located at antigenic supersites, these large deletions are anticipated to dramatically change the spike protein NTD in three-dimensional protein structure prediction, which may lead to immune escape but reduce their viral transmissibility. In summary, we present here a new viral evolutionary trajectory in a patient on chemotherapy. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

18 pages, 3547 KiB  
Article
Virus-like Particles of Nodavirus Displaying the Receptor Binding Domain of SARS-CoV-2 Spike Protein: A Potential VLP-Based COVID-19 Vaccine
by Kiven Kumar, Wen Siang Tan, Siti Suri Arshad and Kok Lian Ho
Int. J. Mol. Sci. 2023, 24(5), 4398; https://doi.org/10.3390/ijms24054398 - 23 Feb 2023
Cited by 4 | Viewed by 3544
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), various vaccines have been developed for emergency use. The efficacy of the initial vaccines based on the ancestral strain of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become a point of contention [...] Read more.
Since the outbreak of the coronavirus disease 2019 (COVID-19), various vaccines have been developed for emergency use. The efficacy of the initial vaccines based on the ancestral strain of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become a point of contention due to the emergence of new variants of concern (VOCs). Therefore, continuous innovation of new vaccines is required to target upcoming VOCs. The receptor binding domain (RBD) of the virus spike (S) glycoprotein has been extensively used in vaccine development due to its role in host cell attachment and penetration. In this study, the RBDs of the Beta (β) and Delta (δ) variants were fused to the truncated Macrobrachium rosenbergii nodavirus capsid protein without the protruding domain (CΔ116-MrNV-CP). Immunization of BALB/c mice with the virus-like particles (VLPs) self-assembled from the recombinant CP showed that, with AddaVax as an adjuvant, a significantly high level of humoral response was elicited. Specifically, mice injected with equimolar of adjuvanted CΔ116-MrNV-CP fused with the RBD of the β- and δ-variants increased T helper (Th) cell production with a CD8+/CD4+ ratio of 0.42. This formulation also induced proliferation of macrophages and lymphocytes. Overall, this study demonstrated that the nodavirus truncated CP fused with the SARS-CoV-2 RBD has potential to be developed as a VLP-based COVID-19 vaccine. Full article
(This article belongs to the Special Issue Protein Structure and Function in Microorganisms)
Show Figures

Figure 1

13 pages, 2301 KiB  
Article
COVID-19 Detection Model with Acoustic Features from Cough Sound and Its Application
by Sera Kim, Ji-Young Baek and Seok-Pil Lee
Appl. Sci. 2023, 13(4), 2378; https://doi.org/10.3390/app13042378 - 13 Feb 2023
Cited by 8 | Viewed by 3404
Abstract
Contrary to expectations that the coronavirus pandemic would terminate quickly, the number of people infected with the virus did not decrease worldwide and coronavirus-related deaths continue to occur every day. The standard COVID-19 diagnostic test technique used today, PCR testing, requires professional staff [...] Read more.
Contrary to expectations that the coronavirus pandemic would terminate quickly, the number of people infected with the virus did not decrease worldwide and coronavirus-related deaths continue to occur every day. The standard COVID-19 diagnostic test technique used today, PCR testing, requires professional staff and equipment, which is expensive and takes a long time to produce test results. In this paper, we propose a feature set consisting of four features: MFCC, Δ2-MFCC, Δ-MFCC, and spectral contrast as a feature set optimized for the diagnosis of COVID-19, and apply it to a model that combines ResNet-50 and DNN. Crowdsourcing datasets from Cambridge, Coswara, and COUGHVID are used as the cough sound data for our study. Through direct listening and inspection of the dataset, audio recordings that contained only cough sounds were collected and used for training. The model was trained and tested using cough sound features extracted from crowdsourced cough data and had a sensitivity and specificity of 0.95 and 0.96, respectively. Full article
(This article belongs to the Special Issue New Advances in Audio Signal Processing)
Show Figures

Figure 1

15 pages, 1780 KiB  
Article
The Social Distance Impacts from COVID-19 Pandemic on the Development of Two Orders of a Concurrent Training Programme for Morbidly Obese Patients
by Pedro Delgado-Floody, Luis Chirosa-Ríos, Iris Paola Guzmán-Guzmán, Claudia Andrea Vargas, Karina Sandoval-Aguilera, Felipe Caamaño-Navarrete, Francisco Guede-Rojas and Cristian Alvarez
Int. J. Environ. Res. Public Health 2022, 19(20), 13408; https://doi.org/10.3390/ijerph192013408 - 17 Oct 2022
Viewed by 2564
Abstract
Background: Although there is relevant information regarding the consequences of the coronavirus SARS-CoV-2 (COVID-19), little is known about the impact of the imposed social confinement (at home) on the development of exercise training programmes in populations with morbid obesity. Aim: To describe the [...] Read more.
Background: Although there is relevant information regarding the consequences of the coronavirus SARS-CoV-2 (COVID-19), little is known about the impact of the imposed social confinement (at home) on the development of exercise training programmes in populations with morbid obesity. Aim: To describe the effects of the imposed COVID-19 confinement on the cardiometabolic health benefits acquired through a concurrent training programme that started before the pandemic in populations with morbid obesity. Methods: This was an experimental randomized clinical study, in which sedentary morbidly obese women were assigned 1:1 to a high-intensity interval training (HIIT) plus resistance training (RT) group (HIIT + RT; n = 11; BMI 42.1 ± 6.6) or to the same exercise dose, but in different order group of RT plus HIIT group (RT + HIIT; n = 7; BMI 47.5 ± 8.4). Both groups undertook two sessions/week. When COVID-19 confinement at home started, a post-test was applied in January 2020 (Post1) and after 20 months (Post2). The main outcomes were waist circumference (WC), systolic (SBP) and diastolic blood pressure (DBP), high-density lipids (HDL-c), triglycerides (Tg), and fasting plasma glucose (FPG). Results: In the HIIT + RT group, the WC showed significant increases from Post1 to Post2 (Δ + 3.1 cm, p = 0.035); in the RT + HIIT group, it decreased from Post1 to Post2 (Δ − 4.8 cm, p = 0.028). In the HIIT + RT group, SBP showed significant increases from Post1 to Post2 (Δ + 6.2 mmHg, p = 0.041); the RT + HIIT group decreased SBP from Pre0 to Post1 (Δ − 7.2 mmHg, p = 0.026) and increased DBP from Pre0 to Post1 (Δ + 8.1 mmHg, p = 0.015). Tg in the HIIT + RT group decreased from Pre0 to Post1 (Δ − 40.1 mg/dL, p = 0.023) but increased from Post1 to Post2 (Δ + 86.3 mg/dL, p < 0.0001). Conclusions: The COVID-19 social confinement worsened metabolic syndrome (MetS) outcomes that had improved from 20 weeks’ RT + HIIT during the training period, such as WC, SBP, and Tg from HIIT + RT, when, worryingly, SBP increased to another more serious clinical classification in both groups. Full article
Show Figures

Figure 1

20 pages, 4885 KiB  
Article
Fluorine Atoms on C6H5-Corrole Affect the Interaction with Mpro and PLpro Proteases of SARS-CoV-2: Molecular Docking and 2D-QSAR Approaches
by Otávio Augusto Chaves, Cláudio Eduardo Rodrigues-Santos, Áurea Echevarria, Carolina Q. Sacramento, Natalia Fintelman-Rodrigues, Jairo R. Temerozo, Hugo Caire Castro-Faria-Neto and Thiago Moreno Lopes e Souza
Int. J. Mol. Sci. 2022, 23(18), 10936; https://doi.org/10.3390/ijms231810936 - 19 Sep 2022
Cited by 3 | Viewed by 2381
Abstract
The chymotrypsin-like cysteine protease (3CLpro, also known as main protease—Mpro) and papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been used as the main targets for screening potential synthetic inhibitors for posterior in [...] Read more.
The chymotrypsin-like cysteine protease (3CLpro, also known as main protease—Mpro) and papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been used as the main targets for screening potential synthetic inhibitors for posterior in vitro evaluation of the most promising compounds. In this sense, the present work reports for the first time the evaluation of the interaction between Mpro/PLpro with a series of 17 porphyrin analogues-corrole (C1), meso-aryl-corrole (C2), and 15 fluorinated-meso-aryl-corrole derivatives (C3C17) via molecular docking calculations. The impact of fluorine atoms on meso-aryl-corrole structure was also evaluated in terms of binding affinity and physical-chemical properties by two-dimensional quantitative structure–activity relationship (2D-QSAR). The presence of phenyl moieties increased the binding capacity of corrole for both proteases and depending on the position of fluorine atoms might impact positively or negatively the binding capacity. For Mpro the para-fluorine atoms might decrease drastically the binding capacity, while for PLpro there was a certain increase in the binding affinity of fluorinated-corroles with the increase of fluorine atoms into meso-aryl-corrole structure mainly from tri-fluorinated insertions. The 2D-QSAR models indicated two separated regions of higher and lower affinity for Mpro:C1C17 based on dual electronic parameters (σI and σR), as well as one model was obtained with a correlation between the docking score value of Mpro:C2C17 and the corresponding 13C nuclear magnetic resonance (NMR) chemical shifts of the sp2 carbon atoms (δC-1 and δC-2) of C2C17. Overall, the fluorinated-meso-aryl-corrole derivatives showed favorable in silico parameters as potential synthetic compounds for future in vitro assays on the inhibition of SARS-CoV-2 replication. Full article
(This article belongs to the Special Issue Drug Design and Virtual Screening 2.0)
Show Figures

Figure 1

20 pages, 6924 KiB  
Article
Anti-Coronavirus Efficiency and Redox-Modulating Capacity of Polyphenol-Rich Extracts from Traditional Bulgarian Medicinal Plants
by Neli Vilhelmova-Ilieva, Zdravka Petrova, Almira Georgieva, Elina Tzvetanova, Madlena Trepechova and Milka Mileva
Life 2022, 12(7), 1088; https://doi.org/10.3390/life12071088 - 20 Jul 2022
Cited by 9 | Viewed by 3169
Abstract
Background: The use of various herbal therapists as part of traditional medicine in different parts of the world, including Bulgaria, is due to the knowledge accumulated over the centuries by people about their valuable biological activities. In this study, we investigate extracts from [...] Read more.
Background: The use of various herbal therapists as part of traditional medicine in different parts of the world, including Bulgaria, is due to the knowledge accumulated over the centuries by people about their valuable biological activities. In this study, we investigate extracts from widely used Bulgarian medicinal plants for their ability to prevent the coronavirus infection of cells by testing different mechanisms of antiviral protection, their polyphenol content, and redox-modulating capacity. Methods: The influence on the stage of viral adsorption, the inhibition of extracellular virions, and the protective effect on uninfected cells of the plant’s extracts were reported by the end-point dilution method, and virus titer (in Δ lgs) was determined as compared to the untreated controls. The total content of polyphenols and flavonoids was also determined. We tested the antioxidant power of the extracts by their ability to inhibit the generation of superoxide anionic radicals and to scavenge DPPH radicals. We determined their iron-reducing, copper-reducing, and metal-chelating antioxidant powers. Results: Most of the extracts tested suppress the extracellular virions of HCov. They also inhibit the stage of viral adsorption to the host cell to varying degrees and have a protective effect on healthy cells before being subjected to viral invasion. The examined extracts contained significant levels of polyphenols and quercetin-like flavonoids and showed remarkable antioxidant, radical, and redox-modulating effects. Conclusions: All of these 13 extracts from Bulgarian medicinal plants tested can act as antioxidants and antiviral and symptomatic drugs for the management of coronavirus infection. Full article
(This article belongs to the Special Issue The Role of Renewable Resources for Ecology and Human Health)
22 pages, 10175 KiB  
Article
In Silico Studies on Zinc Oxide Based Nanostructured Oil Carriers with Seed Extracts of Nigella sativa and Pimpinella anisum as Potential Inhibitors of 3CL Protease of SARS-CoV-2
by Awatif A. Hendi, Promy Virk, Manal A. Awad, Mai Elobeid, Khalid M. O. Ortashi, Meznah M. Alanazi, Fatemah H. Alkallas, Maha Mohammad Almoneef and Mohammed Aly Abdou
Molecules 2022, 27(13), 4301; https://doi.org/10.3390/molecules27134301 - 4 Jul 2022
Cited by 11 | Viewed by 3159
Abstract
Coming into the second year of the pandemic, the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants continue to be a serious health hazard globally. A surge in the omicron wave, despite the discovery of the vaccines, has shifted the attention of [...] Read more.
Coming into the second year of the pandemic, the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants continue to be a serious health hazard globally. A surge in the omicron wave, despite the discovery of the vaccines, has shifted the attention of research towards the discovery and use of bioactive compounds, being potential inhibitors of the viral structural proteins. The present study aimed at the green synthesis of zinc oxide (ZnO) nanoparticles with seed extracts of Nigella sativa and Pimpinella anisum—loaded nanostructured oil carriers (NLC)—using a mixture of olive and black seed essential oils. The synthesized ZnO NLC were extensively characterized. In addition, the constituent compounds in ZnO NLC were investigated as a potential inhibitor for the SARS-CoV-2 main protease (3CLpro or Mpro) where 27 bioactive constituents, along with ZnO in the nanostructure, were subjected to molecular docking studies. The resultant high-score compounds were further validated by molecular dynamics simulation. The study optimized the compounds dithymoquinone, δ-hederin, oleuropein, and zinc oxide with high docking energy scores (ranging from −7.9 to −9.9 kcal/mol). The RMSD and RMSF data that ensued also mirrored these results for the stability of proteins and ligands. RMSD and RMSF data showed no conformational change in the protein during the MD simulation. Histograms of every simulation trajectory explained the ligand properties and ligand–protein contacts. Nevertheless, further experimental investigations and validation of the selected candidates are imperative to take forward the applicability of the nanostructure as a potent inhibitor of COVID-19 (Coronavirus Disease 2019) for clinical trials. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Extracts)
Show Figures

Figure 1

28 pages, 7037 KiB  
Article
Human Superantibodies to 3CLpro Inhibit Replication of SARS-CoV-2 across Variants
by Kittirat Glab-ampai, Kanasap Kaewchim, Thanatsaran Saenlom, Watayagorn Thepsawat, Kodchakorn Mahasongkram, Nitat Sookrung, Wanpen Chaicumpa and Monrat Chulanetra
Int. J. Mol. Sci. 2022, 23(12), 6587; https://doi.org/10.3390/ijms23126587 - 13 Jun 2022
Cited by 6 | Viewed by 2786
Abstract
Broadly effective and safe anti-coronavirus agent is existentially needed. Major protease (3CLpro) is a highly conserved enzyme of betacoronaviruses. The enzyme plays pivotal role in the virus replication cycle. Thus, it is a good target of a broadly effective anti-Betacoronavirus [...] Read more.
Broadly effective and safe anti-coronavirus agent is existentially needed. Major protease (3CLpro) is a highly conserved enzyme of betacoronaviruses. The enzyme plays pivotal role in the virus replication cycle. Thus, it is a good target of a broadly effective anti-Betacoronavirus agent. In this study, human single-chain antibodies (HuscFvs) of the SARS-CoV-2 3CLpro were generated using phage display technology. The 3CLpro-bound phages were used to infect Escherichia coli host for the production the 3CLpro-bound HuscFvs. Computerized simulation was used to guide the selection of the phage infected-E. coli clones that produced HuscFvs with the 3CLpro inhibitory potential. HuscFvs of three phage infected-E. coli clones were predicted to form contact interface with residues for 3CLpro catalytic activity, substrate binding, and homodimerization. These HuscFvs were linked to a cell-penetrating peptide to make them cell-penetrable, i.e., became superantibodies. The superantibodies blocked the 3CLpro activity in vitro, were not toxic to human cells, traversed across membrane of 3CLpro-expressing cells to co-localize with the intracellular 3CLpro and most of all, they inhibited replication of authentic SARS-CoV-2 Wuhan wild type and α, β, δ, and Omicron variants that were tested. The superantibodies should be investigated further towards clinical application as a safe and broadly effective anti-Betacoronavirus agent. Full article
(This article belongs to the Special Issue Therapeutic Antibody Development: What Are We Learning along the Way?)
Show Figures

Graphical abstract

20 pages, 2737 KiB  
Article
Cannabinoids Alleviate the LPS-Induced Cytokine Storm via Attenuating NLRP3 Inflammasome Signaling and TYK2-Mediated STAT3 Signaling Pathways In Vitro
by Santosh V. Suryavanshi, Mariia Zaiachuk, Nazar Pryimak, Igor Kovalchuk and Olga Kovalchuk
Cells 2022, 11(9), 1391; https://doi.org/10.3390/cells11091391 - 20 Apr 2022
Cited by 50 | Viewed by 6695
Abstract
Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic [...] Read more.
Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signaling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1β (IL-1β) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1β in THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB), and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signaling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo. Full article
Show Figures

Figure 1

12 pages, 15931 KiB  
Review
How Do Point Mutations Enhancing the Basic Character of the RBDs of SARS-CoV-2 Variants Affect Their Transmissibility and Infectivity Capacities?
by Annick Barre, Bernard Klonjkowski, Hervé Benoist and Pierre Rougé
Viruses 2022, 14(4), 783; https://doi.org/10.3390/v14040783 - 10 Apr 2022
Cited by 12 | Viewed by 2839
Abstract
The spread of SARS-CoV-2 variants in the population depends on their ability to anchor the ACE2 receptor in the host cells. Differences in the electrostatic potentials of the spike protein RBD (electropositive/basic) and ACE2 receptor (electronegative/acidic) play a key role in both the [...] Read more.
The spread of SARS-CoV-2 variants in the population depends on their ability to anchor the ACE2 receptor in the host cells. Differences in the electrostatic potentials of the spike protein RBD (electropositive/basic) and ACE2 receptor (electronegative/acidic) play a key role in both the rapprochement and the recognition of the coronavirus by the cell receptors. Accordingly, point mutations that result in an increase in electropositively charged residues, e.g., arginine and lysine, especially in the RBD of spike proteins in the SARS-CoV-2 variants, could contribute to their spreading capacity by favoring their recognition by the electronegatively charged ACE2 receptors. All SARS-CoV-2 variants that have been recognized as being highly transmissible, such as the kappa (κ), delta (δ) and omicron (o) variants, which display an enhanced electropositive character in their RBDs associated with a higher number of lysine- or arginine-generating point mutations. Lysine and arginine residues also participate in the enhanced RBD–ACE2 binding affinity of the omicron variant, by creating additional salt bridges with aspartic and glutamic acid residues from ACE2. However, the effects of lysine- and arginine-generating point mutations on infectivity is more contrasted, since the overall binding affinity of omicron RBD for ACE2 apparently results from some epistasis among the whole set of point mutations. Full article
(This article belongs to the Topic Acute Respiratory Viruses Molecular Epidemiology)
Show Figures

Figure 1

15 pages, 22560 KiB  
Article
Full Genome of batCoV/MinFul/2018/SriLanka, a Novel Alpha-Coronavirus Detected in Miniopterus fuliginosus, Sri Lanka
by Therese Muzeniek, Thejanee Perera, Sahan Siriwardana, Dilara Bas, Fatimanur Kaplan, Mizgin Öruc, Beate Becker-Ziaja, Inoka Perera, Jagathpriya Weerasena, Shiroma Handunnetti, Franziska Schwarz, Gayani Premawansa, Sunil Premawansa, Wipula Yapa, Andreas Nitsche and Claudia Kohl
Viruses 2022, 14(2), 337; https://doi.org/10.3390/v14020337 - 7 Feb 2022
Cited by 7 | Viewed by 3294
Abstract
Coronaviruses (CoV) are divided into the genera α-CoVs, β-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and β-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging [...] Read more.
Coronaviruses (CoV) are divided into the genera α-CoVs, β-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and β-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the β-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and β-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and β-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus. Full article
(This article belongs to the Special Issue Virome and Viral Diseases)
Show Figures

Figure 1

19 pages, 16005 KiB  
Article
Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations
by Haruna Luz Barazorda-Ccahuana, Miroslava Nedyalkova, Francesc Mas and Sergio Madurga
Polymers 2021, 13(21), 3823; https://doi.org/10.3390/polym13213823 - 5 Nov 2021
Cited by 11 | Viewed by 3124
Abstract
(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect [...] Read more.
(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computational techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demonstrate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition. Full article
(This article belongs to the Collection Polymeric Materials for COVID-19 Prevention and Treatment)
Show Figures

Graphical abstract

8 pages, 2032 KiB  
Article
Updated and Validated Pan-Coronavirus PCR Assay to Detect All Coronavirus Genera
by Myndi G. Holbrook, Simon J. Anthony, Isamara Navarrete-Macias, Theo Bestebroer, Vincent J. Munster and Neeltje van Doremalen
Viruses 2021, 13(4), 599; https://doi.org/10.3390/v13040599 - 1 Apr 2021
Cited by 21 | Viewed by 6173
Abstract
Coronavirus (CoV) spillover events from wildlife reservoirs can result in mild to severe human respiratory illness. These spillover events underlie the importance of detecting known and novel CoVs circulating in reservoir host species and determining CoV prevalence and distribution, allowing improved prediction of [...] Read more.
Coronavirus (CoV) spillover events from wildlife reservoirs can result in mild to severe human respiratory illness. These spillover events underlie the importance of detecting known and novel CoVs circulating in reservoir host species and determining CoV prevalence and distribution, allowing improved prediction of spillover events or where a human–reservoir interface should be closely monitored. To increase the likelihood of detecting all circulating genera and strains, we have modified primers published by Watanabe et al. in 2010 to generate a semi-nested pan-CoV PCR assay. Representatives from the four coronavirus genera (α-CoVs, β-CoVs, γ-CoVs and δ-CoVs) were tested and all of the in-house CoVs were detected using this assay. After comparing both assays, we found that the updated assay reliably detected viruses in all genera of CoVs with high sensitivity, whereas the sensitivity of the original assay was lower. Our updated PCR assay is an important tool to detect, monitor and track CoVs to enhance viral surveillance in reservoir hosts. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

Back to TopTop