Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = β zeolite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2360 KiB  
Article
Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle
by Matiara S. C. Amaral, Marcella A. da Silva, Giovanna da S. Cidade, Diêgo N. Faria, Daniel F. Cipriano, Jair C. C. Freitas, Fabiana Soares dos Santos, Mendelssolm K. Pietre and André M. dos Santos
Processes 2025, 13(8), 2426; https://doi.org/10.3390/pr13082426 - 31 Jul 2025
Viewed by 397
Abstract
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial [...] Read more.
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial zeolite due to higher Al content and larger specific surface area, promoting better accessibility to active adsorption sites of the adsorbents. Synthetic FAU-type and BEA-type zeolites achieved a maximum adsorption capacity of 28.87 and 12.62 mg·g−1, respectively, outperforming commercial BEA-type zeolite (6.50 mg·g−1). Adsorption assays, associated with kinetic studies and adsorption isotherms, were better fitted using the pseudo-second order model and the Langmuir model, respectively, suggesting that chemisorption, involving ion exchange, and monolayer formation at the zeolite surface, was the main mechanism involved in the NH4+ adsorption process. After ammonium adsorption, the NH4+-loaded zeolite samples were used to stimulate the growth of tomato seedlings; the results revealed a change in the biomass production for seedlings grown in vitro, especially when the BEA_C_NH4 sample was employed, leading to a 15% increase in the fresh mass in comparison with the control sample. In contrast, the excess of ammonium adsorbed over the BEA_S_NH4 and FAU_NH4 samples probably caused a toxic effect on seedling growth. The elemental analysis results supported the hypothesis that the presence of NH4+-loaded zeolite into the culture medium was important for the release of nitrogen. The obtained results show then that the investigated zeolites are promising both as efficient adsorbents to mitigate the environmental impact of ammonium-contaminated water bodies and as nitrogen-rich fertilizers. Full article
(This article belongs to the Special Issue Novel Applications of Zeolites in Adsorption Processes)
Show Figures

Figure 1

15 pages, 3934 KiB  
Article
Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism
by Jingxuan Han, Shaoning Li, Huihui Li, Yu Li, Jiaqiao Qin, Fuxiang Wang and Qinhe Pan
Molecules 2025, 30(13), 2872; https://doi.org/10.3390/molecules30132872 - 6 Jul 2025
Viewed by 358
Abstract
In this work, methyl viologen (MV) was adsorbed into the nanopores of Si/Al H-β-zeolite via cation exchange. The resulting MV@β-zeolite possessed absorption/fluorescence dual-mode and photo/chemical synergistic stimuli-responsive chromism. Owing to the acidic surrounding provided by β-zeolite, the chromism of MV required the synergistic [...] Read more.
In this work, methyl viologen (MV) was adsorbed into the nanopores of Si/Al H-β-zeolite via cation exchange. The resulting MV@β-zeolite possessed absorption/fluorescence dual-mode and photo/chemical synergistic stimuli-responsive chromism. Owing to the acidic surrounding provided by β-zeolite, the chromism of MV required the synergistic stimuli of UV irradiation and a chemical reductant (such as Na2SO3). UV irradiation induced single electron transfer from the chemical reductant to MV@β-zeolite, leading to enhanced absorption at 610 nm together with a daylight color change from pale yellow to blue. Meanwhile, the nanopores of β-zeolite inhibited aggregation-caused quenching of MV, enabling MV to emit cyan fluorescence at 500 nm. After the single electron transfer of the chemical reductant under UV irradiation, the cyan fluorescence of MV@β-zeolite was quenched. Additionally, MV@β-zeolite exhibited a short stimulus response time (250 s) and good color change reversibility. These findings in this work provide valuable insights into the design of multi-mode and synergistic stimuli-responsive viologen-based chromic materials, particularly for applications in secure high-throughput information storage, high-level anti-counterfeiting and multi-target multi-mode sensing. Full article
(This article belongs to the Special Issue Novel Organic-Inorganic Hybrid Porous Photochromic Materials)
Show Figures

Figure 1

15 pages, 5342 KiB  
Article
Synthesis of Dimethyl Terephthalate from Terephthalic Acid Esterification over the Zeolite Catalysts
by Ningyu Jia, Haoyu Han, Tao Yang, Meng Zhang and Zhongyi Liu
Inorganics 2025, 13(6), 184; https://doi.org/10.3390/inorganics13060184 - 5 Jun 2025
Viewed by 584
Abstract
The esterification of terephthalic acid (PTA) with methanol to dimethyl terephthalate (DMT) was investigated using commercially available zeolite catalysts as the eco-friendly solid acids. Six typical zeolites (ZSM-5-25, ZSM-5-50, ZSM-5-100, ZSM-35, MOR, and β) were systematically evaluated. Among them, β zeolite showed excellent [...] Read more.
The esterification of terephthalic acid (PTA) with methanol to dimethyl terephthalate (DMT) was investigated using commercially available zeolite catalysts as the eco-friendly solid acids. Six typical zeolites (ZSM-5-25, ZSM-5-50, ZSM-5-100, ZSM-35, MOR, and β) were systematically evaluated. Among them, β zeolite showed excellent catalytic performance, achieving nearly 100% PTA conversion and 76.1% DMT selectivity under the conditions of 200 °C, of 0.5 MPa N2 pressure, m(PTA):V(methanol) of 1:40 (g/mL), m(PTA):m(catalyst) of 10:1 over 4 h. The characterization results show that the catalytic efficiency was correlated with acid site strength, specific surface area, and mesoporous structure of the zeolite. After optimization, β zeolite achieved 100% PTA conversion and 94.1% DMT selectivity under the conditions of 200 °C, of 1 MPa N2 pressure, m(PTA)/V(methanol) of 1:30 (g/mL), m(PTA)/m(catalyst) of 8:1 over 8 h. Moreover, β zeolite exhibited superior stability, maintaining over 92% of its initial activity after five cycles, highlighting its potential for sustainable DMT production. Full article
(This article belongs to the Special Issue Inorganics Emerging Investigators Themed Collection 2024/2025)
Show Figures

Graphical abstract

15 pages, 2470 KiB  
Article
Geometric Matching Effect Induced High Dispersion of Na2WO4 Nanocluster on Cristobalite Support for Efficient Methyl Chloride-to-Vinyl Chloride Conversion
by Nan Lu, Yifeng Shi, Yutao Ren, Yue Wang, Xinyi Sun, Zejing Wei, Xutao Chen and Jie Fan
Catalysts 2025, 15(4), 382; https://doi.org/10.3390/catal15040382 - 16 Apr 2025
Viewed by 482
Abstract
The oxidative coupling of methyl chloride (CH3Cl) to vinyl chloride (C2H3Cl) (MCTV) represents a promising yet challenging direct conversion route for C2H3Cl production. In this study, a novel catalyst, cristobalite silica, supported Na [...] Read more.
The oxidative coupling of methyl chloride (CH3Cl) to vinyl chloride (C2H3Cl) (MCTV) represents a promising yet challenging direct conversion route for C2H3Cl production. In this study, a novel catalyst, cristobalite silica, supported Na2WO4 nanoclusters, was fabricated by calcining an intermediate composite composed by β-zeolite and sodium tungstate (Na2WO4). The pore structure of this β-zeolite possesses a regular shape and suitable size distribution, providing an accurate geometric matching effect for Na2WO4 to homogeneously distribute in the entire β-zeolite matrix with high loading. Accordingly, the excellent dispersity of Na2WO4 nanocluster active sites is well maintained even after calcining at 750 °C, and the microporous β-zeolite matrix is completely converted to dense cristobalite phase silica after the calcination. The high-loading and well-dispersed Na2WO4 nanocluster leads to a superior performance in MCTV with a CH3Cl conversion of 81.5%, a C2H3Cl selectivity of 42.4%, and a C2H3Cl yield of 34.6%. Notably, the catalyst exhibits remarkable stability during the catalytic process. Full article
(This article belongs to the Collection Highly Dispersed Nanocatalysts)
Show Figures

Graphical abstract

17 pages, 2215 KiB  
Article
Hydrocracking of Polyethylene to Gasoline-Range Hydrocarbons over a Ruthenium-Zeolite Bifunctional Catalyst System with Optimal Synergy of Metal and Acid Sites
by Qing Du, Xin Shang, Yangyang Yuan, Xiong Su and Yanqiang Huang
Catalysts 2025, 15(4), 335; https://doi.org/10.3390/catal15040335 - 31 Mar 2025
Viewed by 987
Abstract
Chemical recycling of plastic waste, especially polyolefins, into valuable liquid fuels is of considerable significance to address the serious issues raised by their threat on environmental and human health. Nevertheless, the construction of efficient and economically viable catalytic systems remains a significant hurdle. [...] Read more.
Chemical recycling of plastic waste, especially polyolefins, into valuable liquid fuels is of considerable significance to address the serious issues raised by their threat on environmental and human health. Nevertheless, the construction of efficient and economically viable catalytic systems remains a significant hurdle. Herein, we developed an efficient bifunctional catalyst system comprising γ-Al2O3-supported ruthenium nanoparticles (Ru/γ-Al2O3) and β-zeolite for the conversion of polyolefins into gasoline-range hydrocarbons. A yield of C5–12 paraffins up to 73.4% can be obtained with polyethene as the reactant at 250 °C in hydrogen. The Ru sites primarily activate the initial cleavage of C–H bonds of polymer towards the formation of olefin intermediates, which subsequently go through further cracking and isomerization over the acid sites in β-zeolite. Employing in situ infrared spectroscopy and probe–molecule model reactions, our investigation reveals that the optimized proportion and spatial distribution of the dual catalytic sites are pivotal in the tandem conversion process. This optimization synergistically regulates the cracking kinetics and accelerates intermediate transfer, thereby minimizing the production of side C1–4 hydrocarbons resulting from over-cracking at the Ru sites and enhancing the yield of liquid fuels. This research contributes novel insights into catalyst design for the chemical upgrading of polyolefins into valuable chemicals, advancing the field of plastic waste recycling and sustainable chemical production. Full article
Show Figures

Graphical abstract

29 pages, 6776 KiB  
Article
Targeting Ferroptosis/Nrf2 Pathway Ameliorates AlCl3-Induced Alzheimer’s Disease in Rats: Neuroprotective Effect of Morin Hydrate, Zeolite Clinoptilolite, and Physical Plus Mental Activities
by Karema Abu-Elfotuh, Yasmin Mahran, Walaa Bayoumie El Gazzar, Heba S. Youssef, Ahmed M. E. Hamdan, Tariq Mohammed Albalawi, Maha Alsunbul, Reem ALQahtani and Asmaa A. Mohammed
Int. J. Mol. Sci. 2025, 26(3), 1260; https://doi.org/10.3390/ijms26031260 - 31 Jan 2025
Viewed by 1546
Abstract
Alzheimer’s disease (AD) is a significant health challenge in the 21st century. In spite of the approval of many new disease-modifying therapies for AD, the clinical advantages of these new treatments are less certain. Aim: This investigation was intended to determine the potential [...] Read more.
Alzheimer’s disease (AD) is a significant health challenge in the 21st century. In spite of the approval of many new disease-modifying therapies for AD, the clinical advantages of these new treatments are less certain. Aim: This investigation was intended to determine the potential neuroprotective impact of morin hydrate (MH), zeolite clinoptilolite (ZC), and/or physical and mental activities (PhM) on an aluminum chloride (AlCl3)-induced AD rat model. Methods: Male Sprague Dawley rats were randomly allocated into seven groups. Group I was the control group. Groups II–VII were treated with AlCl3 for 5 weeks. Groups III–VII were tested for the effects of MH, ZC, and/or PhM. Biochemical, brain histopathological, and behavioral studies were performed. Results: PhM, MH, and ZC combined therapy exhibited a significant neuroprotective effect demonstrated by corrected catecholamines and tau and β-amyloid levels, as well as the antioxidant and anti-ferroptotic effects probably through Nrf2/HO-1/GPX4 and ACSL4 signaling pathways. In addition, combined therapy counteracted the inflammatory responses through modulating the TLR4/NF-κβ/NLRP3 inflammasome expression. Moreover, combined therapy groups showed the maximum improvement of both APOE4/LRP1 and Wnt3/β-catenin/GSK-3β signaling expressions. Conclusion: This research highlights the neuroprotective impact of MH and ZC plus PhM against AlCl3-induced AD via modulation of Nrf2/HO-1/GPX4, TLR4/NF-κβ/NLRP3, APOE4/LRP1, and Wnt3/β-catenin/GSK-3β signaling pathways. It is the first to point out the inclusion of ferroptosis-Nrf2/inflammasomes cross-talk in the neuroprotection mechanism of MH/ZC against the AlCl3-mediated AD model. Full article
(This article belongs to the Special Issue Role of NRF2 Pathway in Chronic Diseases)
Show Figures

Figure 1

21 pages, 3440 KiB  
Article
Application of a New Thermal Model for the Determination of London Dispersive Properties of H-β-Zeolite/Rhodium Catalysts Using New 2D Chromatographic Models
by Tayssir Hamieh
Materials 2025, 18(1), 81; https://doi.org/10.3390/ma18010081 - 28 Dec 2024
Viewed by 801
Abstract
A new methodology based on the Hamieh thermal model was applied for the determination of the surface properties of solid surfaces. The new approach consisted of the accurate quantification of the London dispersive surface energy of materials using the two-dimensional inverse gas chromatography [...] Read more.
A new methodology based on the Hamieh thermal model was applied for the determination of the surface properties of solid surfaces. The new approach consisted of the accurate quantification of the London dispersive surface energy of materials using the two-dimensional inverse gas chromatography technique at infinite dilution. This technique used the notion of the net retention volume of adsorbed molecules on the solid catalysts, allowing the determination of the free energy of adsorption. The Hamieh thermal model proving the temperature effect on the surface area of organic molecules adsorbed on H-β-zeolite/rhodium catalysts at different rhodium percentages was used to determine the accurate values of the London dispersive surface energy of solid surfaces at different temperatures. This new method also allowed a precise evaluation of the dispersive adhesion work, dispersive surface enthalpy, and entropy of adsorption of n-alkanes adsorbed on the catalysts. In this paper, the London dispersive surface energy and adhesion work of H-β-zeolite-supported rhodium catalysts were determined using the free energy of adsorbed molecules obtained from the two-dimensional inverse gas chromatography technique at infinite dilution. It was proved that the London dispersive surface energy strongly depended on the temperature and the rhodium percentage, while the dispersive adhesion work of n-alkanes adsorbed on H-β-zeolite/rhodium catalysts was proved to be a function of the temperature, rhodium percentage, and the carbon atom number of the n-alkanes. Full article
Show Figures

Graphical abstract

12 pages, 3574 KiB  
Article
Catalytic Performance of Sn-β Zeolites with Different Si/Al Ratios in the Conversion of Glucose to Lactic Acid
by Xiaowei Zhuang, Yongshun Feng, Hui Qiao, Weiming Yang and Xin Pan
Molecules 2024, 29(23), 5707; https://doi.org/10.3390/molecules29235707 - 3 Dec 2024
Viewed by 1149
Abstract
Lactic acid is an important platform feedstock for synthesizing various chemicals. Lactic acid is normally converted from any sugar such as glucose, and Sn-β zeolite is an effective catalyst. In this study, β zeolite with different Si/Al ratios was prepared and characterized. Sn [...] Read more.
Lactic acid is an important platform feedstock for synthesizing various chemicals. Lactic acid is normally converted from any sugar such as glucose, and Sn-β zeolite is an effective catalyst. In this study, β zeolite with different Si/Al ratios was prepared and characterized. Sn precursor is reacted with β zeolite by high-energy mixing and introduced into the framework of β zeolite to obtain Sn-β zeolite with different Si/Al ratios. The physicochemical properties of Sn-β zeolite were characterized by XRD, FTIR, N2 physical adsorption, UV Vis diffuse reflectance spectroscopy, and pyridine adsorption FTIR. The results showed that when the Si/Al molar ratio of β zeolite was less than 45, the skeleton load of Sn in β zeolite increased effectively with the decrease in aluminum content, and the Lewis acid and Brønsted acid site numbers could be improved. As the Si/Al ratio exceeded 45, the increase in Sn load in β zeolite slowed down, and the Lewis acid and Brønsted acid site numbers were decreased. The results from the catalytic conversion of glucose to lactic acid confirmed that the too high Si/Al ratio caused a decrease conversion rate. The highest performance of the prepared Sn-β zeolites with the highest catalytic efficiency had a glucose conversion rate of 96.69% and lactic acid yield of 39.42% within 7 h at 190 °C in a pressure reactor. Full article
Show Figures

Graphical abstract

13 pages, 3470 KiB  
Article
Hydrophobicity and Pore Structure: Unraveling the Critical Factors of Alcohol and Acid Adsorption in Zeolites
by Yangyang Xie, Honglei Fan, Mingyang Che, Ya Liu, Chunjing Liu, Xin Hu and Botao Teng
Molecules 2024, 29(22), 5251; https://doi.org/10.3390/molecules29225251 - 6 Nov 2024
Cited by 1 | Viewed by 1061
Abstract
Adsorbing and recycling alcohols and acids from industrial wastewater is of great significance in wastewater treatment; establishing the possible quantitative relationship of alcohol–acid adsorption capacity with the struct0ures of adsorbents and exploring the key factors determining their adsorption performance is very important and [...] Read more.
Adsorbing and recycling alcohols and acids from industrial wastewater is of great significance in wastewater treatment; establishing the possible quantitative relationship of alcohol–acid adsorption capacity with the struct0ures of adsorbents and exploring the key factors determining their adsorption performance is very important and challenging in environment science. To solve this difficult problem, the adsorption of C1-5 alcohols, C2-4 acids, and Fischer–Tropsch synthesis (FTS) wastewater on zeolites with similar hydrophobicity and pore structures (β and MFI), similar hydrophilicity but different pore structures (Y and MOR), and similar pore structures but significant differences in hydrophobicity (MOR vs. β and MFI) was systematically investigated. It was found that: (1) For materials with similar pore structures, increased hydrophobicity correlates with enhanced adsorption capacities for alcohols and acids. (2) For materials with similar hydrophobicity, a higher content of ultramicropores leads to increased adsorption of alcohols and acids. (3) Between pore structure and hydrophobicity, it is hydrophobicity that ultimately plays a decisive role in adsorption capacities. The adsorption behavior of zeolites in FTS wastewater exhibits a consistent trend, with β-zeolite demonstrating the highest hydrophobicity (contact angle of 105°) and the greatest adsorption capacity in FTS wastewater, achieving 103 mg/g. Following five adsorption–desorption cycles, the zeolites retained their adsorption capacity without significant degradation, indicating their excellent stability and reusability. The findings identify the critical factors determining adsorption performance and provide a solid foundation for the design and development of high-performance adsorbents for alcohol–acid adsorption. Full article
(This article belongs to the Collection Porous Materials)
Show Figures

Figure 1

24 pages, 13119 KiB  
Article
Evaluation of the Effectiveness of Innovative Sorbents in Restoring Enzymatic Activity of Soil Contaminated with Bisphenol A (BPA)
by Magdalena Zaborowska, Jadwiga Wyszkowska, Agata Borowik and Jan Kucharski
Molecules 2024, 29(13), 3113; https://doi.org/10.3390/molecules29133113 - 29 Jun 2024
Cited by 4 | Viewed by 1557
Abstract
As part of the multifaceted strategies developed to shape the common environmental policy, considerable attention is now being paid to assessing the degree of environmental degradation in soil under xenobiotic pressure. Bisphenol A (BPA) has only been marginally investigated in this ecosystem context. [...] Read more.
As part of the multifaceted strategies developed to shape the common environmental policy, considerable attention is now being paid to assessing the degree of environmental degradation in soil under xenobiotic pressure. Bisphenol A (BPA) has only been marginally investigated in this ecosystem context. Therefore, research was carried out to determine the biochemical properties of soils contaminated with BPA at two levels of contamination: 500 mg and 1000 mg BPA kg−1 d.m. of soil. Reliable biochemical indicators of soil changes, whose activity was determined in the pot experiment conducted, were used: dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase. Using the definition of soil health as the ability to promote plant growth, the influence of BPA on the growth and development of Zea mays, a plant used for energy production, was also tested. As well as the biomass of aerial parts and roots, the leaf greenness index (SPAD) of Zea mays was also assessed. A key aspect of the research was to identify those of the six remediating substances—molecular sieve, zeolite, sepiolite, starch, grass compost, and fermented bark—whose use could become common practice in both environmental protection and agriculture. Exposure to BPA revealed the highest sensitivity of dehydrogenases, urease, and acid phosphatase and the lowest sensitivity of alkaline phosphatase and catalase to this phenolic compound. The enzyme response generated a reduction in the biochemical fertility index (BA21) of 64% (500 mg BPA) and 70% (1000 mg BPA kg−1 d.m. of soil). The toxicity of BPA led to a drastic reduction in root biomass and consequently in the aerial parts of Zea mays. Compost and molecular sieve proved to be the most effective in mitigating the negative effect of the xenobiotic on the parameters discussed. The results obtained are the first research step in the search for further substances with bioremediation potential against both soil and plants under BPA pressure. Full article
Show Figures

Figure 1

28 pages, 10057 KiB  
Article
Composite Photocatalysts with Fe, Co, and Ni Oxides on Supports with Tetracoordinated Ti Embedded into Aluminosilicate Gel during Zeolite Y Synthesis
by Gabriela Petcu, Elena Maria Anghel, Irina Atkinson, Daniela C. Culita, Nicoleta G. Apostol, Andrei Kuncser, Florica Papa, Adriana Baran, Jean-Luc Blin and Viorica Parvulescu
Gels 2024, 10(2), 129; https://doi.org/10.3390/gels10020129 - 5 Feb 2024
Cited by 4 | Viewed by 2243
Abstract
Ti-aluminosilicate gels were used as supports for the immobilization of Fe, Co, and Ni oxides (5%) by impregnation and synthesis of efficient photocatalysts for the degradation of β-lactam antibiotics from water. Titanium oxide (1 and 2%) was incorporated into the zeolite network by [...] Read more.
Ti-aluminosilicate gels were used as supports for the immobilization of Fe, Co, and Ni oxides (5%) by impregnation and synthesis of efficient photocatalysts for the degradation of β-lactam antibiotics from water. Titanium oxide (1 and 2%) was incorporated into the zeolite network by modifying the gel during the zeolitization process. The formation of the zeolite Y structure and its microporous structure were evidenced by X-ray diffraction and N2 physisorption. The structure, composition, reduction, and optical properties were studied by X-ray diffraction, H2-TPR, XPS, Raman, photoluminescence, and UV–Vis spectroscopy. The obtained results indicated a zeolite Y structure for all photocatalysts with tetracoordinated Ti4+ sites. The second transitional metals supported by the post-synthesis method were obtained in various forms, such as oxides and/or in the metallic state. A red shift of the absorption edge was observed in the UV–Vis spectra of photocatalysts upon the addition of Fe, Co, or Ni species. The photocatalytic performances were evaluated for the degradation of cefuroxime in water under visible light irradiation. The best results were obtained for iron-immobilized photocatalysts. Scavenger experiments explained the photocatalytic results and their mechanisms. A different contribution of the active species to the photocatalytic reactions was evidenced. Full article
(This article belongs to the Special Issue Designing Gels for Catalysts)
Show Figures

Figure 1

14 pages, 2539 KiB  
Article
Catalytic Cracking of Fischer-Tropsch Wax on Different Zeolite Catalysts
by Chao Yang, Lingtao Liu, Genquan Zhu, Chaogang Xie, Xiance Zhang and Xiaoqiao Zhang
Catalysts 2023, 13(8), 1223; https://doi.org/10.3390/catal13081223 - 18 Aug 2023
Cited by 3 | Viewed by 3087
Abstract
Fisher-Tropsch synthesis (FTS) is a promising method to make alternative hydrocarbons from biomass or other resources. Upgrading the primary FTS products is of considerable interest. Cracking FT wax is economically attractive to produce light olefins. Herein, the effects of the zeolite type, Si/Al [...] Read more.
Fisher-Tropsch synthesis (FTS) is a promising method to make alternative hydrocarbons from biomass or other resources. Upgrading the primary FTS products is of considerable interest. Cracking FT wax is economically attractive to produce light olefins. Herein, the effects of the zeolite type, Si/Al ratio of ZSM-5, and reaction condition on the catalytic cracking of FT wax were investigated. It was found that the pore structure and acid properties of zeolites had a significant impact on the product selectivity. USY was beneficial for the production of gasoline and diesel, while β was suitable for the production of propylene and butenes, and ZSM-5 was conductive to producing ethylene and propylene. Increasing the Si/Al ratio of ZSM-5 can suppress the hydrogen transfer reaction and increase the selectivity of light olefins. When the Si/Al ratio of ZSM-5 was 140, the mass yields of ethylene, propylene, and butenes were 6.40%, 26.83%, and 20.10%, respectively. Full article
(This article belongs to the Special Issue Zeolites and Zeolite-Based Catalysts in Industrial Catalysis)
Show Figures

Figure 1

13 pages, 4294 KiB  
Article
Mechanistic Insight into the Propane Oxidation Dehydrogenation by N2O over Cu-BEA Zeolite with Diverse Active Site Structures
by Ruiqi Wu, Ning Liu, Chengna Dai, Ruinian Xu, Gangqiang Yu, Ning Wang and Biaohua Chen
Catalysts 2023, 13(8), 1212; https://doi.org/10.3390/catal13081212 - 15 Aug 2023
Cited by 4 | Viewed by 1834
Abstract
The present work theoretically investigated propane oxidation dehydrogenation by utilizing N2O as an oxidant (N2O-ODHP) over Cu-BEA with three different types of active site, including monomeric Cu ([Cu]+), dimeric Cu ([Cu−Cu]2+), and distant monomeric Cu [...] Read more.
The present work theoretically investigated propane oxidation dehydrogenation by utilizing N2O as an oxidant (N2O-ODHP) over Cu-BEA with three different types of active site, including monomeric Cu ([Cu]+), dimeric Cu ([Cu−Cu]2+), and distant monomeric Cu sites ([Cu]+—[Cu]+). Energetically, we calculated that the monomeric [Cu]+ is favorable for the αH dehydrogenation step (∆E = 0.05 eV), which, however, suffers from high barriers of N2O dissociation and βH dehydrogenation steps of 1.40 and 1.94 eV, respectively. Although the dimeric [Cu−Cu]2+ site with a Cu—Cu distance of 4.91 Å is much more favorable for N2O dissociation (0.95 eV), it still needs to overcome an extremely high barrier (∆E = 2.15 eV) for βH dehydrogenation. Interestingly, the distant [Cu]+—[Cu]+ site with the Cu—Cu distance of 5.82 Å exhibits low energy barriers for N2O dissociation (0.89 eV) and ODHP steps (0.01 and 0.33 eV) due to the synergistic effect of distant [Cu]+. The microkinetic analyses quantitatively verified the superior activity of the distant [Cu]+—[Cu]+ site with a reaction rate being eight to nine orders of magnitude higher than those of the monomeric and the dimeric Cu sites, and this is related to its ready charge-transfer ability, as shown by the partial Density of State (PDOS) analysis and the static charge differential density analysis in this study. Generally, the present work proposes that the distance between the [Cu]+ sites plays a significant and important role in N2O-ODHP over the Cu-based zeolite catalyst and modulates Cu—Cu distance, and this constitutes a promising strategy for highly-efficient Cu-zeolite catalyst design for N2O-ODHP. Full article
Show Figures

Graphical abstract

23 pages, 4564 KiB  
Article
Insights into the Effect of Chitosan and β-Cyclodextrin Hybridization of Zeolite-A on Its Physicochemical and Cytotoxic Properties as a Bio-Carrier for 5-Fluorouracil: Equilibrium and Release Kinetics Studies
by Mashael D. Alqahtani, May N. Bin Jumah, Saleha A. AlZahrani, Ahmed A. Allam, Mostafa R. Abukhadra and Stefano Bellucci
Molecules 2023, 28(14), 5427; https://doi.org/10.3390/molecules28145427 - 15 Jul 2023
Cited by 4 | Viewed by 1864
Abstract
Synthetic zeolite-A (ZA) was hybridized with two different biopolymers (chitosan and β-cyclodextrin) producing biocompatible chitosan/zeolite-A (CS/ZA) and β-cyclodextrin/zeolite-A (CD/ZA) biocomposites. The synthetic composites were assessed as bio-carriers of the 5-fluorouracil drug (5-Fu) with enhanced properties, highlighting the impact of the polymer type. The [...] Read more.
Synthetic zeolite-A (ZA) was hybridized with two different biopolymers (chitosan and β-cyclodextrin) producing biocompatible chitosan/zeolite-A (CS/ZA) and β-cyclodextrin/zeolite-A (CD/ZA) biocomposites. The synthetic composites were assessed as bio-carriers of the 5-fluorouracil drug (5-Fu) with enhanced properties, highlighting the impact of the polymer type. The hybridization by the two biopolymers resulted in notable increases in the 5-Fu loading capacities, to 218.2 mg/g (CS/ZA) and 291.3 mg/g (CD/ZA), as compared to ZA (134.2 mg/g). The loading behaviors using ZA as well as CS/ZA and CD/ZA were illustrated based on the classic kinetics properties of pseudo-first-order kinetics (R2 > 0.95) and the traditional Langmuir isotherm (R2 = 0.99). CD/ZA shows a significantly higher active site density (102.7 mg/g) in comparison to CS/ZA (64 mg/g) and ZA (35.8 mg/g). The number of loaded 5-Fu per site of ZA, CS/ZA, and CD/ZA (>1) validates the vertical ordering of the loaded drug ions by multi-molecular processes. These processes are mainly physical mechanisms based on the determined Gaussian energy (<8 kJ/mol) and loading energy (<40 kJ/mol). Both the CS/ZA and CD/ZA 5-Fu release activities display continuous and controlled profiles up to 80 h, with CD/ZA exhibiting much faster release. According to the release kinetics studies, the release processes contain non-Fickian transport release properties, suggesting cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/ZA (11.72% cell viability), 5-Fu/CS/ZA (5.43% cell viability), and 5-Fu/CD/ZA (1.83% cell viability). Full article
Show Figures

Figure 1

15 pages, 2342 KiB  
Article
Atomic Arrangement, Hydrogen Bonding and Structural Complexity of Alunogen, Al2(SO4)3·17H2O, from Kamchatka Geothermal Field, Russia
by Elena S. Zhitova, Rezeda M. Sheveleva, Andrey A. Zolotarev and Anton A. Nuzhdaev
Crystals 2023, 13(6), 963; https://doi.org/10.3390/cryst13060963 - 16 Jun 2023
Cited by 2 | Viewed by 1890
Abstract
Alunogen, Al2(SO4)3·17H2O, occurs as an efflorescent in acid mine drainage, low-temperature fumarolic or pseudofumarolic (such as with coal fires) terrestrial environments. It is considered to be one of the main Al-sulphates of Martian soils, demanding [...] Read more.
Alunogen, Al2(SO4)3·17H2O, occurs as an efflorescent in acid mine drainage, low-temperature fumarolic or pseudofumarolic (such as with coal fires) terrestrial environments. It is considered to be one of the main Al-sulphates of Martian soils, demanding comprehensive crystal-chemical data of natural terrestrial samples. Structural studies of natural alunogen were carried out in the 1970s without localization of H atoms and have not been previously performed for samples from geothermal fields, despite the fact that these environments are considered to be proxies of the Martian conditions. The studied alunogen sample comes from Verkhne–Koshelevsky geothermal field (Koshelev volcano, Kamchatka, Russia). Its chemical formula is somewhat dehydrated, Al2(SO4)3·15.8H2O. The crystal structure was solved and refined to R1 = 0.068 based on 5112 unique observed reflections with I > 2σ(I). Alunogen crystalizes in the P-1 space group, a = 7.4194(3), b = 26.9763(9), c = 6.0549(2) Å, α = 90.043(3), β = 97.703(3), γ = 91.673(3) °, V = 1200.41(7) Å3, Z = 2. The crystal structure consists of isolated SO4 tetrahedra, Al(H2O)6 octahedra and H2O molecules connected by hydrogen bonds. The structure refinement includes Al, S and O positions that are similar to previous structure determinations and thirty-four H positions localized for the natural sample first. The study also shows the absence of isomorphic substitutions in the composition of alunogen despite the iron-enriched environment of mineral crystallization. The variability of the alunogen crystal structure is reflected in the number of the “zeolite” H2O molecules and their splitting. The structural complexity of alunogen and its modifications ranges from 333–346 bits/cell for models with non-localized H atoms to 783–828 bits/cell for models with localized H atoms. The higher values correspond to the higher hydration state of alunogen. Full article
(This article belongs to the Special Issue Mineralogical Crystallography (3rd Edition))
Show Figures

Figure 1

Back to TopTop