Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = α-alkenylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7352 KiB  
Article
Development and Performance Study of Composite Protein Foaming Agent Based on Human Hair Residue
by Xuebo Zhang, Shuaiqi Du, Linxiu Han, Xiaojun Feng and Ming Yang
Sustainability 2024, 16(15), 6608; https://doi.org/10.3390/su16156608 - 2 Aug 2024
Cited by 1 | Viewed by 1840
Abstract
The instability and collapse of boreholes during coal seam gas extraction significantly affect the effectiveness of gas extraction. In response, this study selected human hair residue as the base material for composite protein foaming agents, leveraging the high protein content of animal hoof [...] Read more.
The instability and collapse of boreholes during coal seam gas extraction significantly affect the effectiveness of gas extraction. In response, this study selected human hair residue as the base material for composite protein foaming agents, leveraging the high protein content of animal hoof and hair materials to develop a high-strength, high-permeability, and environmentally friendly new type of foam concrete. This research found that the optimal ratio of foaming agent base solution to water is 1:4 when sodium hydroxide is used for protein hydrolysis. Comparing the foaming effects of sodium dodecyl sulfate (K12), α-sodium alpha-alkenyl sulfonate (AOS), sodium lauryl polyoxyethylene ether sulfate (SLS), and sodium dodecyl benzene sulfonate (LAS), sodium lauryl polyoxyethylene ether sulfate (SLS) exhibited the best foaming performance, while α-sodium alpha-alkenyl sulfonate (AOS) had the best foam stability. The optimal foam performance was achieved by mixing 2.0 g per liter of sodium lauryl polyoxyethylene ether sulfate and 0.3% calcium stearate. The experimental results showed that this foam concrete, with 25 mL of foaming agent, has a high strength exceeding 11 MPa and a high permeability with an average of 2.13 MD. This paper utilizes environmentally friendly materials and preparation processes. By using renewable resources such as human hair residue as raw materials, it helps reduce the dependence on natural resources and promotes sustainable development. This research demonstrates significant sustainability and provides the mining industry with an eco-friendly and efficient solution, with the potential to achieve positive economic and environmental benefits in practical applications. Full article
Show Figures

Figure 1

16 pages, 2185 KiB  
Article
Undescribed Cyclohexene and Benzofuran Alkenyl Derivatives from Choerospondias axillaris, a Potential Hypoglycemic Fruit
by Ermias Tamiru Weldetsadik, Na Li, Jingjuan Li, Jiahuan Shang, Hongtao Zhu and Yingjun Zhang
Foods 2024, 13(10), 1495; https://doi.org/10.3390/foods13101495 - 11 May 2024
Cited by 2 | Viewed by 1620
Abstract
The fruit of Choerospondias axillaris (Anacardiaceae), known as south wild jujube in China, has been consumed widely in several regions of the world to produce fruit pastille and leathers, juice, jam, and candy. A comprehensive chemical study on the fresh fruits led to [...] Read more.
The fruit of Choerospondias axillaris (Anacardiaceae), known as south wild jujube in China, has been consumed widely in several regions of the world to produce fruit pastille and leathers, juice, jam, and candy. A comprehensive chemical study on the fresh fruits led to the isolation and identification of 18 compounds, including 7 new (17) and 11 known (818) comprised of 5 alkenyl (cyclohexenols and cyclohexenones) derivatives (15), 3 benzofuran derivatives (68), 6 flavonoids (914) and 4 lignans (1518). Their structures were elucidated by extensive spectroscopic analysis. The known lignans 1518 were isolated from the genus Choerospondias for the first time. Most of the isolates exhibited significant inhibitory activity on α-glucosidase with IC50 values from 2.26 ± 0.06 to 43.9 ± 0.96 μM. Molecular docking experiments strongly supported the potent α-glucosidase inhibitory activity. The results indicated that C. axillaris fruits could be an excellent source of functional foods that acquire potential hypoglycemic bioactive components. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

20 pages, 3311 KiB  
Article
Microwave-Assisted Atom Transfer Radical Cyclization in the Synthesis of 3,3-Dichloro-γ- and δ-Lactams from N-Alkenyl-Tethered Trichloroacetamides Catalyzed by RuCl2(PPh3)3 and Their Cytotoxic Evaluation
by Faïza Diaba, Alexandra G. Sandor and María del Carmen Morán
Molecules 2024, 29(9), 2035; https://doi.org/10.3390/molecules29092035 - 28 Apr 2024
Cited by 1 | Viewed by 1484
Abstract
An expeditious synthesis of γ- and δ-lactams from tethered alkenyl trichloroacetamides in the presence of 5% of RuCl2(PPh3)3 is reported. In this investigation we have demonstrated that microwave activation significantly enhances reaction rates, leading to the formation of [...] Read more.
An expeditious synthesis of γ- and δ-lactams from tethered alkenyl trichloroacetamides in the presence of 5% of RuCl2(PPh3)3 is reported. In this investigation we have demonstrated that microwave activation significantly enhances reaction rates, leading to the formation of the corresponding lactams in yields ranging from good to excellent. Thus, we have been able to prepare a wide range of lactams, including indole and morphan bicyclic scaffolds, where the corresponding reactions were completely diastereoselective. This process was successfully extended to α,α-dichloroamides without affecting either their yield or their diastereoselectivity. Some of the lactams prepared in this work were evaluated for their hemolytic and cytotoxic responses. All compounds were found to be non-hemolytic at the tested concentration, indicating their safety profile in terms of blood cell integrity. Meanwhile, they exhibited interesting cytotoxicity responses that depend on both their lactam structure and cell line. Among the molecules tested, γ-lactam 2a exhibited the lowest IC50 values (100–250 µg/mL) as a function of its cell line, with promising selectivity against squamous carcinoma cells (A431) in comparison with fibroblasts (3T3 cell line). Full article
(This article belongs to the Special Issue Recent Advances in Organic Synthesis Related to Natural Compounds)
Show Figures

Figure 1

13 pages, 6084 KiB  
Article
Iridium-Catalyzed and pH-Dependent Reductions of Nitroalkenes to Ketones
by Tingting Wang, Changmeng Liu, Dong Xu, Jiaxi Xu and Zhanhui Yang
Molecules 2022, 27(22), 7822; https://doi.org/10.3390/molecules27227822 - 13 Nov 2022
Cited by 5 | Viewed by 2810
Abstract
A highly chemoselective conversion of α,β-disubstituted nitroalkenes to ketones is developed. An acid-compatible iridium catalyst serves as the key to the conversion. At a 2500 S/C ratio, nitroalkenes were readily converted to ketones in up to 72% isolated yields. A new mechanistic [...] Read more.
A highly chemoselective conversion of α,β-disubstituted nitroalkenes to ketones is developed. An acid-compatible iridium catalyst serves as the key to the conversion. At a 2500 S/C ratio, nitroalkenes were readily converted to ketones in up to 72% isolated yields. A new mechanistic mode involving the reduction of nitroalkene to nitrosoalkene and N-alkenyl hydroxylamine is proposed. This conversion is ready to amplify to a gram-scale synthesis. The pH value plays an indispensable role in controlling the chemoselectivity. Full article
(This article belongs to the Special Issue Catalytic Green Reductions and Oxidations)
Show Figures

Scheme 1

17 pages, 2570 KiB  
Article
Novel Orthogonally Hydrocarbon-Modified Cell-Penetrating Peptide Nanoparticles Mediate Efficient Delivery of Splice-Switching Antisense Oligonucleotides In Vitro and In Vivo
by Safa Bazaz, Tõnis Lehto, Rahel Tops, Olof Gissberg, Dhanu Gupta, Burcu Bestas, Jeremy Bost, Oscar P. B. Wiklander, Helena Sork, Eman M. Zaghloul, Doste R. Mamand, Mattias Hällbrink, Rannar Sillard, Osama Saher, Kariem Ezzat, C. I. Edvard Smith, Samir EL Andaloussi and Taavi Lehto
Biomedicines 2021, 9(8), 1046; https://doi.org/10.3390/biomedicines9081046 - 19 Aug 2021
Cited by 8 | Viewed by 4020
Abstract
Splice-switching therapy with splice-switching oligonucleotides (SSOs) has recently proven to be a clinically applicable strategy for the treatment of several mis-splice disorders. Despite this, wider application of SSOs is severely limited by the inherently poor bioavailability of SSO-based therapeutic compounds. Cell-penetrating peptides (CPPs) [...] Read more.
Splice-switching therapy with splice-switching oligonucleotides (SSOs) has recently proven to be a clinically applicable strategy for the treatment of several mis-splice disorders. Despite this, wider application of SSOs is severely limited by the inherently poor bioavailability of SSO-based therapeutic compounds. Cell-penetrating peptides (CPPs) are a class of drug delivery systems (DDSs) that have recently gained considerable attention for improving the uptake of various oligonucleotide (ON)-based compounds, including SSOs. One strategy that has been successfully applied to develop effective CPP vectors is the introduction of various lipid modifications into the peptide. Here, we repurpose hydrocarbon-modified amino acids used in peptide stapling for the orthogonal introduction of hydrophobic modifications into the CPP structure during peptide synthesis. Our data show that α,α-disubstituted alkenyl-alanines can be successfully utilized to introduce hydrophobic modifications into CPPs to improve their ability to formulate SSOs into nanoparticles (NPs), and to mediate high delivery efficacy and tolerability both in vitro and in vivo. Conclusively, our results offer a new flexible approach for the sequence-specific introduction of hydrophobicity into the structure of CPPs and for improving their delivery properties. Full article
(This article belongs to the Special Issue Oligonucleotides-Based Therapeutics)
Show Figures

Figure 1

16 pages, 3307 KiB  
Article
Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation
by László Kollár, Ádám Erdélyi, Haroon Rasheed and Attila Takács
Molecules 2021, 26(6), 1813; https://doi.org/10.3390/molecules26061813 - 23 Mar 2021
Cited by 8 | Viewed by 3354
Abstract
The aminocarbonylation of various alkenyl and (hetero)aryl iodides was carried out using tropane-based amines of biological importance, such as 8-azabicyclo[3.2.1]octan-3-one (nortropinone) and 3α-hydroxy-8-azabicyclo[3.2.1]octane (nortropine) as N-nucleophile. Using iodoalkenes, the two nucleophiles were selectively converted to the corresponding amide in the presence of [...] Read more.
The aminocarbonylation of various alkenyl and (hetero)aryl iodides was carried out using tropane-based amines of biological importance, such as 8-azabicyclo[3.2.1]octan-3-one (nortropinone) and 3α-hydroxy-8-azabicyclo[3.2.1]octane (nortropine) as N-nucleophile. Using iodoalkenes, the two nucleophiles were selectively converted to the corresponding amide in the presence of Pd(OAc)2/2 PPh3 catalysts. In the presence of several iodo(hetero)arenes, the application of the bidentate Xantphos was necessary to produce the target compounds selectively. The new carboxamides of varied structure, formed in palladium-catalyzed aminocarbonylation reactions, were isolated and fully characterized. In this way, a novel synthetic method has been developed for the producing of N-acylnortropane derivatives of biological importance. Full article
(This article belongs to the Special Issue Preparation of Heterocycles by Metal-Promoted Reactions)
Show Figures

Graphical abstract

14 pages, 1777 KiB  
Article
A Simple Iron-Catalyst for Alkenylation of Ketones Using Primary Alcohols
by Motahar Sk, Ashish Kumar, Jagadish Das and Debasis Banerjee
Molecules 2020, 25(7), 1590; https://doi.org/10.3390/molecules25071590 - 30 Mar 2020
Cited by 15 | Viewed by 5886
Abstract
Herein, we developed a simple iron-catalyzed system for the α-alkenylation of ketones using primary alcohols. Such acceptor-less dehydrogenative coupling (ADC) of alcohols resulted in the synthesis of a series of important α,β-unsaturated functionalized ketones, having aryl, heteroaryl, alkyl, nitro, nitrile and trifluoro-methyl, as [...] Read more.
Herein, we developed a simple iron-catalyzed system for the α-alkenylation of ketones using primary alcohols. Such acceptor-less dehydrogenative coupling (ADC) of alcohols resulted in the synthesis of a series of important α,β-unsaturated functionalized ketones, having aryl, heteroaryl, alkyl, nitro, nitrile and trifluoro-methyl, as well as halogen moieties, with excellent yields and selectivity. Initial mechanistic studies, including deuterium labeling experiments, determination of rate and order of the reaction, and quantitative determination of H2 gas, were performed. The overall transformations produce water and dihydrogen as byproducts. Full article
(This article belongs to the Special Issue Recent Advances in Iron Catalysis)
Show Figures

Graphical abstract

14 pages, 1228 KiB  
Article
Stepwise Introduction of Different Substituents to α-Chloro-ω-hydrooligosilanes: Convenient Synthesis of Unsymmetrically Substituted Oligosilanes
by Ken-ichiro Kanno, Yumi Aikawa, Yuka Niwayama, Misaki Ino, Kento Kawamura and Soichiro Kyushin
Inorganics 2018, 6(3), 99; https://doi.org/10.3390/inorganics6030099 - 18 Sep 2018
Cited by 9 | Viewed by 3959
Abstract
A series of unsymmetrically substituted oligosilanes were synthesized via stepwise introduction of different substituents to α-chloro-ω-hydrooligosilanes. The reactions of α-chloro-ω-hydrooligosilanes with organolithium or Grignard reagents gave hydrooligosilanes having various alkyl, alkenyl, alkynyl and aryl groups. Thus-obtained hydrooligosilanes were converted into alkoxyoligosilanes by ruthenium-catalyzed [...] Read more.
A series of unsymmetrically substituted oligosilanes were synthesized via stepwise introduction of different substituents to α-chloro-ω-hydrooligosilanes. The reactions of α-chloro-ω-hydrooligosilanes with organolithium or Grignard reagents gave hydrooligosilanes having various alkyl, alkenyl, alkynyl and aryl groups. Thus-obtained hydrooligosilanes were converted into alkoxyoligosilanes by ruthenium-catalyzed dehydrogenative alkoxylation with alcohols. Full article
(This article belongs to the Special Issue Coordination Chemistry of Silicon)
Show Figures

Graphical abstract

11 pages, 2067 KiB  
Article
Practical Pd(TFA)2-Catalyzed Aerobic [4+1] Annulation for the Synthesis of Pyrroles via “One-Pot” Cascade Reactions
by Yang Yu, Zhiguo Mang, Wei Yang, Hao Li and Wei Wang
Catalysts 2016, 6(11), 169; https://doi.org/10.3390/catal6110169 - 31 Oct 2016
Cited by 6 | Viewed by 7689
Abstract
The Pd(TFA)2-catalyzed [4+1] annulation of chained or cyclic α-alkenyl-dicarbonyl compounds and unprotected primary amines for “one-pot” synthesis of pyrroles is reported here. Enamination and amino-alkene were involved in this practical and efficient tandem reaction. The annulation products were isolated in moderate [...] Read more.
The Pd(TFA)2-catalyzed [4+1] annulation of chained or cyclic α-alkenyl-dicarbonyl compounds and unprotected primary amines for “one-pot” synthesis of pyrroles is reported here. Enamination and amino-alkene were involved in this practical and efficient tandem reaction. The annulation products were isolated in moderate to excellent yields with O2 as the terminal oxidant under mild conditions. In addition, this method was applied to synthesize highly regioselective aminomethylated and di(1H-pyrrol-3-yl)methane products. Full article
(This article belongs to the Special Issue Organometallic Catalysis for Organic Synthesis)
Show Figures

Graphical abstract

11 pages, 3645 KiB  
Article
Synthesis of 2-Alkenyl-2H-indazoles from 2-(2-Carbonylmethyl)-2H-indazoles
by Mei-Huey Lin, Kung-Yu Liang, Chang-Hsien Tsai, Yu-Chun Chen, Hung-Chang Hsiao, Yi-Syuan Li, Chung-Hao Chen and Hau-Chun Wu
Molecules 2016, 21(2), 238; https://doi.org/10.3390/molecules21020238 - 19 Feb 2016
Cited by 2 | Viewed by 6237
Abstract
A procedure has been developed for synthesis of 2-alkenyl-2H-indazoles starting from 2-(2-carbonylmethyl)-2H-indazoles, which are prepared by gallium/aluminium- and aluminium-mediated, direct, regioselective alkylation of indazoles with α-bromocarbonyl compounds. The structure of 3-(2H-indazol-2-yl)-2H-chromen-2-one was proven by X-ray [...] Read more.
A procedure has been developed for synthesis of 2-alkenyl-2H-indazoles starting from 2-(2-carbonylmethyl)-2H-indazoles, which are prepared by gallium/aluminium- and aluminium-mediated, direct, regioselective alkylation of indazoles with α-bromocarbonyl compounds. The structure of 3-(2H-indazol-2-yl)-2H-chromen-2-one was proven by X-ray crystallography. The styrene- and coumarin-2H-indazoles produced by using the new method were found to have interesting fluorescence properties. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

16 pages, 807 KiB  
Article
Chelation-Assisted Substrate-Controlled Asymmetric Lithiation-Allylboration of Chiral Carbamate 1,2,4-Butanetriol Acetonide
by Adeem Mahmood, Hamad Z. Alkhathlan, Saima Parvez, Merajuddin Khan and Sohail A. Shahzad
Molecules 2015, 20(6), 9890-9905; https://doi.org/10.3390/molecules20069890 - 28 May 2015
Viewed by 5644
Abstract
The lithiation of 2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl diisopropylcarbamate (1) is achieved freely by sec-butyllithium in diethylether with high lk-diastereoselectivity: the bicyclic chelate complexes 3a and 3b are reacted with electrophiles to form optically active precursors 4a and 4b with >95% diastereoselectivity. In [...] Read more.
The lithiation of 2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl diisopropylcarbamate (1) is achieved freely by sec-butyllithium in diethylether with high lk-diastereoselectivity: the bicyclic chelate complexes 3a and 3b are reacted with electrophiles to form optically active precursors 4a and 4b with >95% diastereoselectivity. In addition, tertiary diamines can undergo an external complexation in contest with the internal oxygen ligand, leading to improved stereoselectivities. The further reactions of lithiated carbamates with trans alkenyl-9-BBN derivatives after 1,2 metallate rearrangements, gave the key intermediate α-substituted allylic boranes 7. Subsequent allylboration of aldehydes gave (Z)-anti-homoallylic alcohols 8 in good yield and excellent d.r. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop