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Abstract: A highly chemoselective conversion of α,β-disubstituted nitroalkenes to ketones is devel-
oped. An acid-compatible iridium catalyst serves as the key to the conversion. At a 2500 S/C ratio,
nitroalkenes were readily converted to ketones in up to 72% isolated yields. A new mechanistic mode
involving the reduction of nitroalkene to nitrosoalkene and N-alkenyl hydroxylamine is proposed.
This conversion is ready to amplify to a gram-scale synthesis. The pH value plays an indispensable
role in controlling the chemoselectivity.
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1. Introduction

Conjugated nitroalkenes are important synthetic precursors that can be converted to
a variety of useful compounds, such as nitroalkanes, oximes, ketones, hydroxylamines,
amines, and others [1–6]. Compared with ketone formation from nitroalkanes [7], the direct
transformation of nitroalkenes to ketones is a step-economic and important synthetic tool,
which has served as an essential step in the manufacture of amphetamine and methylam-
phetamine [8,9]. Previous methods used to realize this transformation mainly relied on the
use of excessive metals or metal salts as reducing reagents (Scheme 1A, i) [10–19]. This tradi-
tional strategy mainly suffers from the generation of large amounts of hazardous metal salt
waste (30 equivalents at most) and low chemoselectivity in some cases. Metal hydrides, such
as lithium selectride and tributyltin hydride, are also applicable (stoichiometric amount),
but anhydrous conditions are required for the reduction step (Scheme 1A, ii) [20,21]. Other
methods also include electrochemical reduction with lead electrodes (Scheme 1A, iii) [22]
and biocatalytic reduction with enzymes (very low yield) [23,24]. In the transition metal
catalyzed hydrogenation of nitroalkenes to nitroalkanes, ketones were serendipitously
observed as byproducts [25,26]. From the perspective of green chemistry, it is necessary
to develop a simple, mild, and efficient method to reducibly transform nitroalkenes to
ketones, although such a transformation is very challenging empirically due to the higher
reactivity of the C=C bond than the nitro group.

In the above reports, ketones were smoothly formed under acidic reducing conditions.
Under basic or neutral conditions, low yields of ketones and large amounts of by-products
were generated. Thus, we believe that a catalysis strategy under acidic conditions will
provide a good solution to the challenge. In the core of this strategy lies the catalyst,
which must be acid compatible. The acidic conditions should not prevent, or ideally
promote, the catalyst evolution in the catalytic cycle. Since 2017, we have designed and
synthesized a series of iridium complexes with 2-(4,5-dihydroimidazol-2-yl)pyridines
as ligands, and developed their applications in the functional group transformations in
a green catalysis manner under acidic conditions [27–38], including the pH-dependent
reduction of nitroalkenes to nitroalkanes (Scheme 1B) [33]. These catalysts have shown
their strong capability in a series of green syntheses with formic acid as the reducing

Molecules 2022, 27, 7822. https://doi.org/10.3390/molecules27227822 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27227822
https://doi.org/10.3390/molecules27227822
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-9039-4933
https://orcid.org/0000-0001-7050-8780
https://doi.org/10.3390/molecules27227822
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27227822?type=check_update&version=2


Molecules 2022, 27, 7822 2 of 13

reagent. Iridium hydrides were identified as the key reductive species to transfer the
hydrides to electrophilic species. The relative stability of iridium hydrides under acidic
conditions holds the response for the occurrence of these reductions. The added acid
promotes the catalytic cycle by activating the starting materials [28–35] and directs the
reaction intermediates to different evolutions.
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Based on the understanding of the mechanism of our acid-tolerable iridium catalysis,
we decided to tackle the nitroalkene-to-ketone challenge by using our iridium catalysis
strategy. To our delight, a very low catalyst loading in combination with formic acid
as the reducing regent and mineral acid as the acidic promoter readily converted α,β-
disubstituted nitroalkenes to ketones in water with a good chemoselectivity and reasonable
yields (Scheme 1C). The present reduction is chemoselectively orthogonal to our previ-
ous reduction under neutral conditions that converted the same type of nitroalkenes to
nitroalkanes (Scheme 1B) [33]. Under acidic conditions (pH = 1.6), the nitro group is pre-
dominantly reduced (Scheme 1C), while under neutral conditions (pH = 7.1), the C=C bond
is exclusively reduced [33]. Our iridium catalysis strategy enables a green nitroalkene-to-
ketone transformation, without the employment of harsh conditions or the generation of
stoichiometric transition-metal waste, and mechanistically provides a new reduction mode
for ketone synthesis from nitroalkenes. Compared with previous work (Scheme 1A), our
strategically novel method is advantageous as it has mild conditions, simple experimental
operations, is user friendly, and does not generate stoichiometric transition-metal waste.

2. Results and Discussion

Our previous work on the reduction of nitroalkenes to nitroalkanes demonstrated that
a C3 catalyst with a 4-methoxy on the pyridinyl ring showed the highest activity, and it was
also able to catalyze the generation of oxime and methyl ketone from 1-phenyl-2-nitroprop-
1-enes [33]. Thus, this catalyst was selected in the reaction condition optimization (Table 1)
to probe other reaction parameters. 1-Phenyl-2-nitroprop-1-ene (1a) was used as the model
substrate. Upon workup, the crude reaction mixtures were directly submitted to 1H NMR
analysis, and the distributions of the starting material and all products were easily obtained
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(for the calculation method, see the Supplementary Materials). Under acidic conditions,
three products were obtained, that is, nitroalkane (2a), oxime (3a), and the desired methyl
ketone (4a). The oximes can be regarded as masked ketones. It is well documented that
oximes are able to completely hydrolyze to ketones upon treatment with hydrochloric
acid [11]. Thus, the most important goal of the optimization is to prevent the generation
of nitroalkane 2a to the largest extent. At first, we optimized the amount of formic acid
(entries 1–3) at 5000 S/C (substrate/catalyst molar ratio). With 4, 8, or 16 equivalents of
formic acid, nitroalkene 1a was almost completely consumed (< 1% residual), and the yield
of nitroalkane 2a remained at the same levels (12–14%). However, the larger the amount
of formic acid used, the larger the amount of ketone 4a observed. This phenomenon was
ascribed to the more efficient hydrolysis of oxime 3a to 4a under more acidic conditions,
as proved by the decreasing yield of oxime 3a against ketone 4a (entries 1–3). To further
decrease the ratio of nitroalkane 2a and to facilitate the hydrolysis of oxime 3a to ketone 4a,
we subsequently tried adding sulfuric acid to the reaction mixture (entries 4–9). The sulfate
anion (SO4

2−) is noncoordinating, and its presence did not affect the catalyst activity.
Contrastingly, the addition of a high volume of coordinating chloride anion would poison
the catalyst. That is why we did not add hydrochloric acid. Satisfyingly, the addition of 25
or 50 µL of concentrated sulfuric acid completely inhibited the formation of nitroalkane 2a
and oxime 3a. However, ketone 4a was only generated in 10–33% yields, depending on the
amount of added sulfuric acid (pH values). The larger the amount of sulfuric acid added,
the lower the yield of ketone 4a and the lower the conversion of nitroalkene 1a. It should
be clarified that the inhibition of the reduction was not caused by the sulfate anion (SO4

2−),
but by the high concentration by proton (H+), which greatly hindered the dissociation of
formic acid and subsequent iridium hydride formation (vide post and see the mechanistic
discussion section). The addition of ethanol partially alleviated the inhibition effect (entry 6),
so ethanol was added throughout the next optimization. Increasing the amount of catalyst
allowed the complete conversion of the starting material, and the yield of nitroalkane was
suppressed to < 7% level (entries 7–9). When using dilute sulfuric acid (3.68 mol/L) instead
of concentrated acid, the yield of 4a increased to 72% (entry 10) while the yields of oxime
and nitroalkane were 25% and 3%, respectively. One of the principles that chemists adhere
to in the catalysis field is to use as little catalyst as possible to achieve results that are as good
as possible. Thus, we turned back to the original catalyst loading (S/C = 5000). To obtain as
high of a yield of ketone as possible, we decided to treat the reaction mixture after reduction.
To our delight, reduction at a 5000 or 2500 S/C ratio followed by stirring with HCl for 15,
30, or 60 min delivered ketone 4a in a 91%, 94% or 96% yield, respectively (entries 11–13).
Other catalysts (C1–C2 and C4–C9) (Table 1, entries 14–21), which were prepared in our
previous publications [27–33], were further screened. No oxime was produced under these
conditions. The catalysts bearing 4-dimethylamino- and 4-diethylamino- at each pyridine
ring showed excellent efficiency, delivering 4a in 89% and 87% yields, respectively, with
the full conversion of 1a (entries 14 and 15). In contrast, the remaining catalysts resulted in
lower yields (3–55%) of 4a, and the starting material 1a remained incompletely consumed
(entries 16–21). Generally, the catalysts bearing electron-donating groups were superior
to those bearing electron-withdrawing groups. This substituent effect was also observed
in our previous studies [28]. According to the above results, it is obvious that C3 was the
most robust catalyst, and we therefore obtained the optimal conditions (entries 13).
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Table 1. Optimization of reaction conditions a.
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a All reactions were performed on a 0.25 mmol scale in deionized water. b Substrate/catalyst molar ratio.
c Calculated concentration in the reaction mixture. d Determined by 1H NMR spectra of crude reaction mixtures.
e t1 = 4 h. f Upon completion of the reduction, 1 mL of concentrated HCl was added and the mixture was treated
for 15 min (entry 11), 30 min (entry 12), or 60 min (entries 13–21). g t1 = 3 h.

The substrate scope was further explored (Table 2). The reductions of not only (2-
nitroprop-1-en-1-yl)benzene (1a), but of its 4-methoxy (1b), 4-methylthio (1c), 4-methyl (1d),
4-fluoro (1e), 4-chloro (1f), and 4-bromo (1g) relatives all gave desired products in reason-
able to good (34–72%) yields (Table 2, entries 1–7). Other viable substrates included those
bearing electron-withdrawing groups on the aromatic ring. For example, 4-trifluoromethyl
(1h), 4-cyano (1i), and 4-nitro- (1j) and 4-methanesulfonly-substituted (1k) nitroalkenes
were converted to the corresponding ketones in 32–65% yields (Table 2, entries 8-11). The
nitro groups residing on aryl and alkenyl showed different reactivity (Table 2, entry 10).
The former was quite resistant to the reducing conditions. Although nitrile functional-
ity was prone to hydrolysis under acidic conditions, it survived well during the reduc-
tion of 1i (Table 2, entry 9). The subjection of 1-phenyl-2-nitrobut-1-ene (1l), a substrate
bearing a longer substituent (ethyl) in place of methyl, to the standard conditions gave
1-phenylbutan-2-one (4l) in a 34% yield (Table 2, entry 12). To our surprise, the reduction of
indol-3-yl nitroalkene 1m failed, with the starting material completely recovered (Table 2,
entry 13). Nitroalkenes of other substitution patterns, for example, 1n, 1o, and 1p, were
reduced to the corresponding nitroalkenes in excellent yields (Table 2, entry 14), as reported
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in our previous work [33]. These examples demonstrated the necessary role of an alkyl
substituent on the nitro-adjacent alkenyl carbons.

Table 2. Conversion of different nitroalkenes a,b.
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a 2 mL water of used in all cases. b Isolated yield after column chromatography. c 3 mL of EtOH used. 
d 4 mL of EtOH used. e S/C = 100. 

In previous reductions of nitroalkenes to ketones [10,11,23,24], nitroalkanes were 
demonstrated or proposed as the first-order reduction products, which were further re-
duced to nitrosoalkanes (Scheme 2a). The fast tautomerization of nitrosoalkanes produced 
oximes, which collapsed to ketones (vide post). In our reductions, nitroalkanes were also 
observed as minor products in most cases. Therefore, we wondered whether our reduc-
tion would follow the same mechanism as that depicted in Scheme 2a. We first submitted 
nitroalkane 2a to our optimal conditions (Scheme 2b, i). To our surprise, neither oxime 3a 
nor ketone 4a was observed at all. Instead, nitroalkane 2a was recovered quantitatively, 
demonstrating its invulnerability to the iridium-catalyzed reduction. We also demon-
strated that nitroalkane 2a was quite stable under the acidic reaction and workup condi-
tions in the absence of a catalyst (Scheme 2b, ii), as no Nef reactions occurred [7]. These 
observations clearly confirmed that nitroalkanes were not precursors to ketones in our 
reductions, and a different mechanism is around the corner. 
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Scheme 2. Previous reduction process and our mechanistic studies. 

A plausible mechanism for the reduction of nitroalkenes to ketones was proposed 
(Scheme 3). The ionization of formic acid (Scheme 3a) and iridium chloride (C3) (Scheme 
3b, step i) delivers the formate anion and iridium cation (A), respectively. They combine 
together to form iridium formate (B) (step ii). Factors such as having too high of a concen-
tration of the proton and chloride anion that affect these two steps also affect the formation 
of iridium formate (B), and finally affect the final catalytic reductions. The β-elimination 
of B gives rise to iridium hydride (C), which serves as the catalyst resting state and tran-
sient reducing reagent (step iii). On the other hand, under acidic conditions, nitroalkenes 
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a 2 mL water of used in all cases. b Isolated yield after column chromatography. c 3 mL of EtOH used. d 4 mL of
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In previous reductions of nitroalkenes to ketones [10,11,23,24], nitroalkanes were
demonstrated or proposed as the first-order reduction products, which were further re-
duced to nitrosoalkanes (Scheme 2a). The fast tautomerization of nitrosoalkanes produced
oximes, which collapsed to ketones (vide post). In our reductions, nitroalkanes were also
observed as minor products in most cases. Therefore, we wondered whether our reduction
would follow the same mechanism as that depicted in Scheme 2a. We first submitted
nitroalkane 2a to our optimal conditions (Scheme 2b, i). To our surprise, neither oxime 3a
nor ketone 4a was observed at all. Instead, nitroalkane 2a was recovered quantitatively,
demonstrating its invulnerability to the iridium-catalyzed reduction. We also demonstrated
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that nitroalkane 2a was quite stable under the acidic reaction and workup conditions in the
absence of a catalyst (Scheme 2b, ii), as no Nef reactions occurred [7]. These observations
clearly confirmed that nitroalkanes were not precursors to ketones in our reductions, and a
different mechanism is around the corner.
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Scheme 2. Previous reduction process and our mechanistic studies.

A plausible mechanism for the reduction of nitroalkenes to ketones was proposed
(Scheme 3). The ionization of formic acid (Scheme 3a) and iridium chloride (C3) (Scheme 3b,
step i) delivers the formate anion and iridium cation (A), respectively. They combine to-
gether to form iridium formate (B) (step ii). Factors such as having too high of a concentra-
tion of the proton and chloride anion that affect these two steps also affect the formation of
iridium formate (B), and finally affect the final catalytic reductions. The β-elimination of B
gives rise to iridium hydride (C), which serves as the catalyst resting state and transient
reducing reagent (step iii). On the other hand, under acidic conditions, nitroalkenes (1)
are activated by the protonation of the nitro group (5). Possibly, it is the protonation that
renders the nitro moiety more reactive than the alkenyl moiety when exposed to iridium
hydride (C). As a consequence, the hydroiridation occurs across the N=O bond at the nitro
moiety to generate intermediates D (step iv). In comparison, in our previous work under
neutral conditions, the hydroiridation between the same iridium hydride and the same
nitroalkenes takes place across the C=C bond to finally give nitroalkane products [33]. In
the presence of formic acid, D evolves to N-alkenyl-N-hydroxyl hydroxylammoniums (6)
(step v), which collapse to protonated nitrosoalkenes (7) via dehydration [39–43], accom-
plished by the restart of the catalytic cycle (the regeneration of A). The protonated ni-
trosoalkenes (7), more reactive than protonated nitroalkenes (1) [39–43], receive the hy-
drides from iridium hydrides C and are further reduced to N-alkenyl hydroxylamines (8)
(Scheme 3c). Since the suggested nitrosoalkenes (7) and N-alkenyl hydroxylamines (8)
are active intermediates for the reduction, they cannot be observed or isolated. The tau-
tomerization of 8 affords oxime 3. There exist two viable routes to ketones 4 from oximes 3.
The direct hydrolysis of 3 under acidic conditions gives 4 [11]. Alternatively, 3 is further
catalytically reduced to imines 10, which is spontaneously hydrolyzed to 4 [23]. Such a
reduction sequence for the generation of ketones from nitroalkenes is quite different from
the previously reported sequence that involves reductions of nitroalkene to nitroalkane
and nitrosoalkane (Scheme 2a). It must be mentioned that the formation of hydrogen was
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observed in all cases, and this can be mechanistically elucidated by the reaction between
protons and iridium hydrides (Scheme 3b).
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Scheme 3. Proposed mechanism for the conversion of nitroalkenes to ketones.

To demonstrate the synthetic applications of our method, we performed a gram-scale
synthesis of 4a (Scheme 4). This ketone was further isolated by column chromatography in
a 70% yield as a yellowish oil. Numerous methods have been developed from this ketone
to synthesize central nervous system stimulants such as (±)-, R-, or S-amphetamine [44–49],
(±)- or S-methylamphetamine [50–52], and (±)-ethylamphetamine [53]. Amphetamine is a
prescribed medication for treating attention-deficit hyperactivity disorder and narcolepsy.
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Ethylamphetamine (trade name Apetinil or Adiparthrol) was used as an anorectic or
appetite suppressant. The syntheses of these bioactive compounds from 4a imply the
importance of our reduction for preparing arylmethyl ketones.
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3. Materials and Methods
3.1. Materials and Instruments

Unless otherwise noted, all reagents and solvents were used directly as commer-
cially received. Column chromatography was performed using silica gel (normal phase,
200−300 mesh) from a Branch of Qingdao Haiyang Chemical, with petroleum ether (PE,
60−90 ◦C fraction) and ethyl acetate (EA) as the eluent. Reactions were monitored by
thin-layer chromatography on GF254 silica gel plates (0.2 mm) from the Institute of Yantai
Chemical Industry. The plates were visualized under UV light. 1H NMR, 13C NMR, and
19F NMR spectra were measured with a Bruker 400 spectrometer in CDCl3 with tetram-
ethylsilane (TMS) as an internal standard.

Nitroalkenes (1a–m) were previously synthesized in our work [33] according to re-
ported procedures [54–57]. The catalysts C1–C9 and their solutions in water were prepared
according to our previous work [33].

3.2. General Procedure for Reduction of Nitroalkenes to Ketones

To a 25 mL round-bottom flask, nitroalkenes 1 (1 mmol), EtOH (3 mL for 1a,b,d,e,h,l;
4 mL for 1c,f,g,i,j,k,m), the solution of catalyst C3 (2 mL, 0.0002 mol/L for S/C = 2500;
0.005 mol/L for S/C = 100 in deionized water), formic acid (320 µL, 8 equiv., 8 mmol), and
sulfuric acid (3.7 mol/L, 100 µL) were sequentially added. The mixture was stirred at 80 ◦C
for 3 h; then, HCl (4 mL) was added and stirring was continued for another 1 h. After
cooling to room temperature, diluting with water (8 mL), and extracting with ethyl acetate
(8 mL× 3), the organic phase was washed with saturated sodium bicarbonate and dried
over anhydrous sodium sulfate. The organic phase was evaporated under reduced pressure
and the crude product was purified by flash column chromatography to give 4a to 4l.

3.2.1. 1-Phenylpropan-2-one (4a)

CAS No. 103-79-7 [58]. Yellow oil, 96 mg, yield 72%, Rf = 0.27 (PE/EA (v/v) = 10:1). 1H
NMR (400 MHz, CDCl3) δ 7.38–7.15 (m, 5H), 3.68 (s, 2H), 2.14 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ 206.4, 134.3, 129.5, 128.8, 127.1, 51.1, 29.3.

3.2.2. 1-(4-Methoxyphenyl)propan-2-one (4b)

CAS No. 122-84-9 [59]. Yellow oil, 72 mg, yield 44%, Rf = 0.15 (PE/EA (v/v) = 10:1).
1H NMR (400 MHz, CDCl3) δ 7.11 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H),
3.62 (s, 2H), 2.13 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 206.9, 158.8, 130.5, 126.4, 114.3, 55.3,
50.2, 29.2.
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3.2.3. 1-(4-(Methylthio)phenyl)propan-2-one (4c)

CAS No. 88356-92-7 [60]. Yellow oil, 61 mg, yield 34%, Rf = 0.24 (PE/EA (v/v) = 10:1).
1H NMR (400 MHz, CDCl3) δ 7.23 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 3.65 (s, 2H),
2.48 (s, 3H), 2.15 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 206.4, 137.4, 131.2, 130.0, 127.2, 50.5,
29.4, 16.1.

3.2.4. 1-(p-Tolyl)propan-2-one (4d)

CAS No. 2096-86-8 [61]. Yellow oil, 83 mg, yield 56%, Rf = 0.34 (PE/EA (v/v) = 10:1).
1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 3.64 (s, 2H),
2.33 (s, 3H), 2.13 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 206.7, 136.8, 131.3, 129.5, 129.3, 50.7,
29.2, 21.2.

3.2.5. 1-(4-Fluorophenyl)propan-2-one (4e)

CAS No. 459-03-0 [62]. Yellow oil, 78 mg, yield 52%, Rf = 0.19 (PE/EA (v/v) = 10:1).
1H NMR (400 MHz, CDCl3) δ 7.12–7.03 (m, 2H), 6.97–6.90 (m, 2H), 3.59 (s, 2H), 2.08 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 206.1, 162.1 (d, JC-F = 246.4 Hz), 131.04 (d, JC-F = 8.1 Hz), 130.0
(d, JC-F = 3.0 Hz), 115.7 (d, JC-F = 21.6 Hz), 50.0, 29.4. 19F NMR (377 MHz, CDCl3) δ -115.8.

3.2.6. 1-(4-Chlorophenyl)propan-2-one (4f)

CAS No. 5586-88-9 [62]. Yellow oil, 91 mg, yield 54%, Rf = 0.19 (PE/EA (v/v) = 10:1).
1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 3.67 (s, 2H),
2.16 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 205.7, 133.1, 132.7, 130.9, 128.9, 50.1, 29.5.

3.2.7. 1-(4-Bromophenyl)propan-2-one (4g)

CAS No. 6186-22-7 [62]. Yellow oil, 87 mg, yield 41%, Rf = 0.14 (PE/EA (v/v) = 10:1).
1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 3.66 (s, 2H),
2.16 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 205.6, 133.2, 131.9, 131.3, 121.3, 50.3, 29.6.

3.2.8. 1-(4-(Trifluoromethyl)phenyl)propan-2-one (4h)

(CAS No. 713-45-1) [62]. White solid, m.p. 30–32 ◦C, 118 mg, yield 58%, Rf = 0.15
(PE/EA (v/v) = 10:1). 1H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0
Hz, 2H), 3.78 (s, 2H), 2.19 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 205.1, 138.3 (q, JC-F = 2.0
Hz), 130.0, 129.4 (q, JC-F = 32.3 Hz), 125.7 (q, JC-F = 4.0 Hz), 124.3 (q, JC-F = 273.0 Hz), 50.4,
29.7. 19F NMR (376 MHz, CDCl3) δ -62.6.

3.2.9. 4-(2-Oxopropyl)benzonitrile (4i)

CAS No. 58949-75-0 [63]. White solid, m.p. 66–68 ◦C, 103 mg, yield 65%, Rf = 0.12
(PE/EA (v/v) = 5:1). 1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.2 Hz,
2H), 3.73 (s, 2H), 2.14 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 204.4, 139.5, 132.4, 130.4, 118.7,
111.0, 50.4, 29.9.

3.2.10. 1-(4-Nitrophenyl)propan-2-one (4J)

CAS No. 5332-96-7 [64]. Yellow oil, 71 mg, yield 40%, Rf = 0.11 (PE/EA (v/v) = 5:1).
1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 3.85 (s, 2H),
2.25 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 204.2, 147.3, 141.6, 130.6, 123.9, 50.2, 30.0.

3.2.11. 1-(4-(Methylsulfonyl)phenyl)propan-2-one (4k)

CAS No. 88356-97-2 [65,66]. White solid, m.p. 78–80 ◦C, 68 mg, yield 32%, Rf = 0.11
(PE/EA (v/v) = 2:1). 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.3 Hz,
2H), 3.84 (s, 2H), 3.06 (s, 3H), 2.24 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 204.5, 140.5, 127.8,
50.3, 44.7, 30.0. HRMS (ESI): m/z calculated for [M+Na]+: 235.0399; found: 235.0396.
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3.2.12. 1-phenylbutan-2-one (4l)

CAS No. 1007-32-5 [67]. Colorless oil, 50 mg, yield 34%, Rf = 0.45 (PE/EA (v/v) = 10:1).
1H NMR (400 MHz, CDCl3) δ 7.37–7.17 (m, 5H), 3.68 (s, 2H), 2.47 (q, J = 7.3 Hz, 2H), 1.02
(t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 209.0, 134.5, 129.4, 128.7, 126.9, 49.8, 35.2, 7.8.

4. Conclusions

In summary, we have realized the highly chemoselective conversion of α,β-disubstituted
nitroalkenes to ketones by means of iridium catalysis in acidic water. At 2500 S/C ratio, a
number of diversely substituted nitroalkenes were readily converted to ketones in 32–72%
yields. The advantages of this method include the employment of midconditions, user-
and environment-friendly operations, and no generation of stoichiometric transition-metal
waste. The application of an acid-compatible iridium catalyst is key to the successful
conversion. The chemoselectivity is governed by the pH value of the reaction media. The
proposed mechanism involves the acid-controlled selective reduction of nitroalkenes to
nitrosoalkenes and N-alkenyl hydroxylamines, providing a new mechanistic mode for
nitroalkene-to-ketone transformations. The synthetic application of this conversion is
demonstrated by a gram-scale synthesis. We hope our study will promote the green and
easy preparation of amphetamine-type medications in medicinal chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27227822/s1, Copies of 1H NMR, 13C NMR, and 19F NMR
(if any) spectra of the products and 1H NMR spectra of representative crude reaction mixtures.
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