Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Journal = Cells
Section = Mitochondria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3021 KiB  
Article
Pseudohypoxia-Stabilized HIF2α Transcriptionally Inhibits MNRR1, a Druggable Target in MELAS
by Neeraja Purandare, Vignesh Pasupathi, Yue Xi, Vikram Rajan, Caleb Vegh, Steven Firestine, Tamas Kozicz, Andrew M. Fribley, Lawrence I. Grossman and Siddhesh Aras
Cells 2025, 14(14), 1078; https://doi.org/10.3390/cells14141078 - 15 Jul 2025
Viewed by 588
Abstract
The mitochondrial regulator MNRR1 is reduced in several pathologies, including the mitochondrial heteroplasmic disease MELAS, and genetic restoration of its level normalizes the pathological phenotype. Here, we investigate the upstream mechanism that reduces MNRR1 levels. We have identified the hypoxic regulator HIF2α to [...] Read more.
The mitochondrial regulator MNRR1 is reduced in several pathologies, including the mitochondrial heteroplasmic disease MELAS, and genetic restoration of its level normalizes the pathological phenotype. Here, we investigate the upstream mechanism that reduces MNRR1 levels. We have identified the hypoxic regulator HIF2α to bind the MNRR1 promoter and inhibit transcription by competing with RBPJκ. In MELAS cells, there is a pseudohypoxic state that transcriptionally induces HIF2α and stabilizes HIF2α protein. MELAS cybrids harboring the m.3243A > G mutation display reduced levels of prolyl hydroxylase 3 (PHD3), which contributes to the HIF2α stabilization. These results prompted a search for compounds that could increase MNRR1 levels pharmacologically. The screening of a 2400-compound library uncovered the antifungal drug nitazoxanide and its metabolite tizoxanide as enhancers of MNRR1 transcription. We show that treating MELAS cybrids with tizoxanide restores cellular respiration, enhances mitophagy, and, importantly, shifts heteroplasmy toward wild-type mtDNA. Furthermore, in fibroblasts from MELAS patients, the compound improves mitochondrial biogenesis, enhances autophagy, and protects from LPS-induced inflammation. Mechanistically, nitazoxanide reduces HIF2α levels by increasing PHD3. Chemical activation of MNRR1 is thus a potential strategy to improve mitochondrial deficits seen in MELAS. Finally, our data suggests a broader physiological pathway wherein two proteins, induced under severe (1% O2; HIF2α) and moderate (4% O2; MNRR1) hypoxic conditions, regulate each other inversely. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Figure 1

23 pages, 9131 KiB  
Article
Mathematical Modeling Unveils a New Role for Transient Mitochondrial Permeability Transition in ROS Damage Prevention
by Olga A. Zagubnaya, Vitaly A. Selivanov, Mark Pekker, Carel J. H. Jonkhout, Yaroslav R. Nartsissov and Marta Cascante
Cells 2025, 14(13), 1006; https://doi.org/10.3390/cells14131006 - 1 Jul 2025
Viewed by 412
Abstract
We have previously shown that the mitochondrial respiratory chain (RC) can switch between the following two states: (i) an “ATP-producing” state characterized by the low production of reactive oxygen species (ROS), the vigorous translocation of hydrogen ions (H+), and the storage [...] Read more.
We have previously shown that the mitochondrial respiratory chain (RC) can switch between the following two states: (i) an “ATP-producing” state characterized by the low production of reactive oxygen species (ROS), the vigorous translocation of hydrogen ions (H+), and the storage of energy from the H+ gradient in the form of ATP, and (ii) an “ROS-producing” state, where the translocation of H+ is slow but the production of ROS is high. Here, we suggest that the RC transition from an ATP-producing to an ROS-producing state initiates a mitochondrial permeability transition (MPT) by generating a burst of ROS. Numerous MPT activators induce the transition of the RC to an ROS-producing state, and the ROS generated in this state activate the MPT. The MPT, in turn, induces changes in conditions that are necessary for the RC to return to an ATP-producing state, decreasing the ROS production rate and restoring the normal permeability of the inner membrane. In this way, the transient MPT prevents cell damage from oxidative stress that would occur if the RC remained in an ROS-producing state. It is shown that an overload of glutamate, which enters through excitatory amino acid transporters (EAATs), induces the RC to switch to an ROS-producing state. Subsequent MPT activation causes a transition back to an ATP-producing state. The model was used to predict the spatial–temporal dynamics of glutamate concentrations and H2O2 production rates in a three-dimensional digital phantom of nervous tissue. Full article
(This article belongs to the Special Issue Mitochondria Meets Oxidative Stress)
Show Figures

Graphical abstract

7 pages, 1795 KiB  
Commentary
The Ac/N-Degron Domain of MARCHF6 E3 Ubiquitin Ligase and Its Role in Regulating Ferroptosis
by Hope Omoniyi, Grace Hohman and Mohamed Eldeeb
Cells 2025, 14(13), 954; https://doi.org/10.3390/cells14130954 - 22 Jun 2025
Viewed by 514
Abstract
Ferroptosis is a form of cell death characterized by iron and reactive oxygen species accumulation. Notably, this mode of cell death has been shown to exhibit significant implications for aging-related disorders including tumorigenesis and neurodegeneration. Nonetheless, the intricate underlying molecular mechanisms of ferroptosis [...] Read more.
Ferroptosis is a form of cell death characterized by iron and reactive oxygen species accumulation. Notably, this mode of cell death has been shown to exhibit significant implications for aging-related disorders including tumorigenesis and neurodegeneration. Nonetheless, the intricate underlying molecular mechanisms of ferroptosis and their differential roles in the molecular etiology of these diseases are still elusive. Elucidating the precise molecular mechanisms underlying ferroptosis is, thus, important for understanding the molecular basis of these diseases and unveiling potential therapeutic targets. MARCHF6 is an E3 ub ligase involved in regulating various cellular processes throughout the cell including ferroptosis. Research findings by Yang et al. identified a novel role of MARCHF6 E3 ub ligase in recognizing Ac/N-degron bearing substrates, which includes pro-ferroptotic and anti-ferroptotic proteins, demonstrating a regulatory role for MARCHF6 in fine-tuning ferroptosis. Herein, we highlight these recent findings and discuss the potential role of MARCHF6 in modulating ferroptosis pointing to the emerging role of MARCHF6 as a potential therapeutic target for treating ferroptosis-related diseases. Full article
Show Figures

Figure 1

18 pages, 4966 KiB  
Article
Exploring Metabolic Shifts in Kidney Cancer and Non-Cancer Cells Under Pro- and Anti-Apoptotic Treatments Using NMR Metabolomics
by Lucia Trisolini, Biagia Musio, Beatriz Teixeira, Maria Noemi Sgobba, Anna Lucia Francavilla, Mariateresa Volpicella, Lorenzo Guerra, Anna De Grassi, Vito Gallo, Iola F. Duarte and Ciro Leonardo Pierri
Cells 2025, 14(5), 367; https://doi.org/10.3390/cells14050367 - 2 Mar 2025
Cited by 1 | Viewed by 1171
Abstract
This study investigates the metabolic responses of cancerous (RCC) and non-cancerous (HK2) kidney cells to treatment with Staurosporine (STAU), which has a pro-apoptotic effect, and Bongkrekic acid (BKA), which has an anti-apoptotic effect, individually and in combination, using 1H NMR metabolomics to [...] Read more.
This study investigates the metabolic responses of cancerous (RCC) and non-cancerous (HK2) kidney cells to treatment with Staurosporine (STAU), which has a pro-apoptotic effect, and Bongkrekic acid (BKA), which has an anti-apoptotic effect, individually and in combination, using 1H NMR metabolomics to identify metabolite markers linked to mitochondrial apoptotic pathways. BKA had minimal metabolic effects in RCC cells, suggesting its role in preserving mitochondrial function without significantly altering metabolic pathways. In contrast, STAU induced substantial metabolic reprogramming in RCC cells, disrupting energy production, redox balance, and biosynthesis, thereby triggering apoptotic pathways. The combined treatment of BKA and STAU primarily mirrored the effects of STAU alone, with BKA showing little capacity to counteract the pro-apoptotic effects. In non-cancerous HK2 cells, the metabolic alterations were far less pronounced, highlighting key differences in the metabolic responses of cancerous and non-cancerous cells. RCC cells displayed greater metabolic flexibility, while HK2 cells maintained a more regulated metabolic state. These findings emphasize the potential for targeting cancer-specific metabolic vulnerabilities while sparing non-cancerous cells, underscoring the value of metabolomics in understanding apoptotic and anti-apoptotic mechanisms. Future studies should validate these results in vivo and explore their potential for personalized treatment strategies. Full article
(This article belongs to the Collection Feature Papers in Mitochondria)
Show Figures

Figure 1

23 pages, 5276 KiB  
Article
How the Topology of the Mitochondrial Inner Membrane Modulates ATP Production
by Raquel Adams, Nasrin Afzal, Mohsin Saleet Jafri and Carmen A. Mannella
Cells 2025, 14(4), 257; https://doi.org/10.3390/cells14040257 - 11 Feb 2025
Cited by 1 | Viewed by 1206
Abstract
Cells in heart muscle need to generate ATP at or near peak capacity to meet their energy demands. Over 90% of this ATP comes from mitochondria, strategically located near myofibrils and densely packed with cristae to concentrate ATP generation per unit volume. However, [...] Read more.
Cells in heart muscle need to generate ATP at or near peak capacity to meet their energy demands. Over 90% of this ATP comes from mitochondria, strategically located near myofibrils and densely packed with cristae to concentrate ATP generation per unit volume. However, a consequence of dense inner membrane (IM) packing is that restricted metabolite diffusion inside mitochondria may limit ATP production. Under physiological conditions, the flux of ATP synthase is set by ADP levels in the matrix, which in turn depends on diffusion-dependent concentration of ADP inside cristae. Computer simulations show how ADP diffusion and consequently rates of ATP synthesis are modulated by IM topology, in particular (i) number, size, and positioning of crista junctions that connect cristae to the IM boundary region, and (ii) branching of cristae. Predictions are compared with the actual IM topology of a cardiomyocyte mitochondrion in which cristae vary systematically in length and morphology. The analysis indicates that this IM topology decreases but does not eliminate the “diffusion penalty” on ATP output. It is proposed that IM topology normally attenuates mitochondrial ATP output under conditions of low workload and can be regulated by the cell to better match ATP supply to demand. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Graphical abstract

25 pages, 2513 KiB  
Review
Mitochondrial Dysfunction and Metabolic Disturbances Induced by Viral Infections
by Sandra E. Pérez, Monika Gooz and Eduardo N. Maldonado
Cells 2024, 13(21), 1789; https://doi.org/10.3390/cells13211789 - 29 Oct 2024
Cited by 4 | Viewed by 3036
Abstract
Viruses are intracellular parasites that utilize organelles, signaling pathways, and the bioenergetics machinery of the cell to replicate the genome and synthesize proteins to build up new viral particles. Mitochondria are key to supporting the virus life cycle by sustaining energy production, metabolism, [...] Read more.
Viruses are intracellular parasites that utilize organelles, signaling pathways, and the bioenergetics machinery of the cell to replicate the genome and synthesize proteins to build up new viral particles. Mitochondria are key to supporting the virus life cycle by sustaining energy production, metabolism, and synthesis of macromolecules. Mitochondria also contribute to the antiviral innate immune response. Here, we describe the different mechanisms involved in virus–mitochondria interactions. We analyze the effects of viral infections on the metabolism of glucose in the Warburg phenotype, glutamine, and fatty acids. We also describe how viruses directly regulate mitochondrial function through modulation of the activity of the electron transport chain, the generation of reactive oxygen species, the balance between fission and fusion, and the regulation of voltage-dependent anion channels. In addition, we discuss the evasion strategies used to avoid mitochondrial-associated mechanisms that inhibit viral replication. Overall, this review aims to provide a comprehensive view of how viruses modulate mitochondrial function to maintain their replicative capabilities. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Figure 1

16 pages, 5079 KiB  
Article
Optogenetic Control of the Mitochondrial Protein Import in Mammalian Cells
by Lukas F. J. Althoff, Markus M. Kramer, Benjamin Bührer, Denise Gaspar and Gerald Radziwill
Cells 2024, 13(19), 1671; https://doi.org/10.3390/cells13191671 - 9 Oct 2024
Viewed by 2513
Abstract
Mitochondria provide cells with energy and regulate the cellular metabolism. Almost all mitochondrial proteins are nuclear-encoded, translated on ribosomes in the cytoplasm, and subsequently transferred to the different subcellular compartments of mitochondria. Here, we developed OptoMitoImport, an optogenetic tool to control the import [...] Read more.
Mitochondria provide cells with energy and regulate the cellular metabolism. Almost all mitochondrial proteins are nuclear-encoded, translated on ribosomes in the cytoplasm, and subsequently transferred to the different subcellular compartments of mitochondria. Here, we developed OptoMitoImport, an optogenetic tool to control the import of proteins into the mitochondrial matrix via the presequence pathway on demand. OptoMitoImport is based on a two-step process: first, light-induced cleavage by a TEV protease cuts off a plasma membrane-anchored fusion construct in close proximity to a mitochondrial targeting sequence; second, the mitochondrial targeting sequence preceding the protein of interest recruits to the outer mitochondrial membrane and imports the protein fused to it into mitochondria. Upon reaching the mitochondrial matrix, the matrix processing peptidase cuts off the mitochondrial targeting sequence and releases the protein of interest. OptoMitoImport is available as a two-plasmid system as well as a P2A peptide or IRES sequence-based bicistronic system. Fluorescence studies demonstrate the release of the plasma membrane-anchored protein of interest through light-induced TEV protease cleavage and its localization to mitochondria. Cell fractionation experiments confirm the presence of the peptidase-cleaved protein of interest in the mitochondrial fraction. The processed product is protected from proteinase K treatment. Depletion of the membrane potential across the inner mitochondria membrane prevents the mitochondrial protein import, indicating an import of the protein of interest by the presequence pathway. These data demonstrate the functionality of OptoMitoImport as a generic system with which to control the post-translational mitochondrial import of proteins via the presequence pathway. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Graphical abstract

12 pages, 991 KiB  
Review
Mitochondrial NME6: A Paradigm Change within the NME/NDP Kinase Protein Family?
by Bastien Proust, Maja Herak Bosnar, Helena Ćetković, Malgorzata Tokarska-Schlattner and Uwe Schlattner
Cells 2024, 13(15), 1278; https://doi.org/10.3390/cells13151278 - 30 Jul 2024
Cited by 1 | Viewed by 1633
Abstract
Eukaryotic NMEs/NDP kinases are a family of 10 multifunctional proteins that occur in different cellular compartments and interact with various cellular components (proteins, membranes, and DNA). In contrast to the well-studied Group I NMEs (NME1–4), little is known about the more divergent Group [...] Read more.
Eukaryotic NMEs/NDP kinases are a family of 10 multifunctional proteins that occur in different cellular compartments and interact with various cellular components (proteins, membranes, and DNA). In contrast to the well-studied Group I NMEs (NME1–4), little is known about the more divergent Group II NMEs (NME5–9). Three recent publications now shed new light on NME6. First, NME6 is a third mitochondrial NME, largely localized in the matrix space, associated with the mitochondrial inner membrane. Second, while its monomeric form is inactive, NME6 gains NDP kinase activity through interaction with mitochondrial RCC1L. This challenges the current notion that mammalian NMEs require the formation of hexamers to become active. The formation of complexes between NME6 and RCC1L, likely heterodimers, seemingly obviates the necessity for hexamer formation, stabilizing a NDP kinase-competent conformation. Third, NME6 is involved in mitochondrial gene maintenance and expression by providing (d)NTPs for replication and transcription (in particular the pyrimidine nucleotides) and by a less characterized mechanism that supports mitoribosome function. This review offers an overview of NME evolution and structure and highlights the new insight into NME6. The new findings position NME6 as the most comprehensively studied protein in NME Group II and may even suggest it as a new paradigm for related family members. Full article
(This article belongs to the Collection Feature Papers in Mitochondria)
Show Figures

Figure 1

43 pages, 2060 KiB  
Review
Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response
by Shivam Gandhi, H. Lee Sweeney, Cora C. Hart, Renzhi Han and Christopher G. R. Perry
Cells 2024, 13(14), 1168; https://doi.org/10.3390/cells13141168 - 9 Jul 2024
Cited by 4 | Viewed by 5516
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations [...] Read more.
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy—the leading cause of death—inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder. Full article
(This article belongs to the Collection Feature Papers in Mitochondria)
Show Figures

Graphical abstract

13 pages, 2772 KiB  
Article
Daily Light Onset and Plasma Membrane Tethers Regulate Mitochondria Redistribution within the Retinal Pigment Epithelium
by Matilde V. Neto, Giulia De Rossi, Bruce A. Berkowitz, Miguel C. Seabra, Philip J. Luthert, Clare E. Futter and Thomas Burgoyne
Cells 2024, 13(13), 1100; https://doi.org/10.3390/cells13131100 - 25 Jun 2024
Cited by 4 | Viewed by 1978
Abstract
The retinal pigment epithelium (RPE) is an essential component of the retina that plays multiple roles required to support visual function. These include light onset- and circadian rhythm-dependent tasks, such as daily phagocytosis of photoreceptor outer segments. Mitochondria provide energy to the highly [...] Read more.
The retinal pigment epithelium (RPE) is an essential component of the retina that plays multiple roles required to support visual function. These include light onset- and circadian rhythm-dependent tasks, such as daily phagocytosis of photoreceptor outer segments. Mitochondria provide energy to the highly specialized and energy-dependent RPE. In this study, we examined the positioning of mitochondria and how this is influenced by the onset of light. We identified a population of mitochondria that are tethered to the basal plasma membrane pre- and post-light onset. Following light onset, mitochondria redistributed apically and interacted with melanosomes and phagosomes. In a choroideremia mouse model that has regions of the RPE with disrupted or lost infolding of the plasma membrane, the positionings of only the non-tethered mitochondria were affected. This provides evidence that the tethering of mitochondria to the plasma membrane plays an important role that is maintained under these disease conditions. Our work shows that there are subpopulations of RPE mitochondria based on their positioning after light onset. It is likely they play distinct roles in the RPE that are needed to fulfil the changing cellular demands throughout the day. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Figure 1

2 pages, 421 KiB  
Correction
Correction: Bufalo et al. Human Sensory Neuron-like Cells and Glycated Collagen Matrix as a Model for the Screening of Analgesic Compounds. Cells 2022, 11, 247
by Michelle Cristiane Bufalo, Maíra Estanislau Soares de Almeida, José Ricardo Jensen, Carlos DeOcesano-Pereira, Flavio Lichtenstein, Gisele Picolo, Ana Marisa Chudzinski-Tavassi, Sandra Coccuzzo Sampaio, Yara Cury and Vanessa Olzon Zambelli
Cells 2024, 13(13), 1089; https://doi.org/10.3390/cells13131089 - 24 Jun 2024
Viewed by 746
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction in Degenerative Diseases)
Show Figures

Figure 8

18 pages, 2402 KiB  
Review
Deciphering the Molecular Nexus: An In-Depth Review of Mitochondrial Pathways and Their Role in Cell Death Crosstalk
by Yumeng Li, Madiha Rasheed, Jingkai Liu, Zixuan Chen and Yulin Deng
Cells 2024, 13(10), 863; https://doi.org/10.3390/cells13100863 - 17 May 2024
Cited by 6 | Viewed by 3784
Abstract
Cellular demise is a pivotal event in both developmental processes and disease states, with mitochondrial regulation playing an essential role. Traditionally, cell death was categorized into distinct types, considered to be linear and mutually exclusive pathways. However, the current understanding has evolved to [...] Read more.
Cellular demise is a pivotal event in both developmental processes and disease states, with mitochondrial regulation playing an essential role. Traditionally, cell death was categorized into distinct types, considered to be linear and mutually exclusive pathways. However, the current understanding has evolved to recognize the complex and interconnected mechanisms of cell death, especially within apoptosis, pyroptosis, and necroptosis. Apoptosis, pyroptosis, and necroptosis are governed by intricate molecular pathways, with mitochondria acting as central decision-makers in steering cells towards either apoptosis or pyroptosis through various mediators. The choice between apoptosis and necroptosis is often determined by mitochondrial signaling and is orchestrated by specific proteins. The molecular dialogue and the regulatory influence of mitochondria within these cell death pathways are critical research areas. Comprehending the shared elements and the interplay between these death modalities is crucial for unraveling the complexities of cellular demise. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Graphical abstract

23 pages, 15432 KiB  
Article
Cooperation of Various Cytoskeletal Components Orchestrates Intercellular Spread of Mitochondria between B-Lymphoma Cells through Tunnelling Nanotubes
by Henriett Halász, Viktória Tárnai, János Matkó, Miklós Nyitrai and Edina Szabó-Meleg
Cells 2024, 13(7), 607; https://doi.org/10.3390/cells13070607 - 30 Mar 2024
Cited by 7 | Viewed by 2491
Abstract
Membrane nanotubes (NTs) are dynamic communication channels connecting spatially separated cells even over long distances and promoting the transport of different cellular cargos. NTs are also involved in the intercellular spread of different pathogens and the deterioration of some neurological disorders. Transport processes [...] Read more.
Membrane nanotubes (NTs) are dynamic communication channels connecting spatially separated cells even over long distances and promoting the transport of different cellular cargos. NTs are also involved in the intercellular spread of different pathogens and the deterioration of some neurological disorders. Transport processes via NTs may be controlled by cytoskeletal elements. NTs are frequently observed membrane projections in numerous mammalian cell lines, including various immune cells, but their functional significance in the ‘antibody factory’ B cells is poorly elucidated. Here, we report that as active channels, NTs of B-lymphoma cells can mediate bidirectional mitochondrial transport, promoted by the cooperation of two different cytoskeletal motor proteins, kinesin along microtubules and myosin VI along actin, and bidirectional transport processes are also supported by the heterogeneous arrangement of the main cytoskeletal filament systems of the NTs. We revealed that despite NTs and axons being different cell extensions, the mitochondrial transport they mediate may exhibit significant similarities. Furthermore, we found that microtubules may improve the stability and lifespan of B-lymphoma-cell NTs, while F-actin strengthens NTs by providing a structural framework for them. Our results may contribute to a better understanding of the regulation of the major cells of humoral immune response to infections. Full article
(This article belongs to the Collection Feature Papers in Mitochondria)
Show Figures

Figure 1

46 pages, 6026 KiB  
Review
Mitochondria: A Promising Convergent Target for the Treatment of Amyotrophic Lateral Sclerosis
by Teresa Cunha-Oliveira, Liliana Montezinho, Rui F. Simões, Marcelo Carvalho, Elisabete Ferreiro and Filomena S. G. Silva
Cells 2024, 13(3), 248; https://doi.org/10.3390/cells13030248 - 29 Jan 2024
Cited by 13 | Viewed by 6159
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease. Full article
(This article belongs to the Collection Feature Papers in Mitochondria)
Show Figures

Graphical abstract

21 pages, 2863 KiB  
Article
Chemical and Genetic Modulation of Complex I of the Electron Transport Chain Enhances the Biotherapeutic Protein Production Capacity of CHO Cells
by Corey Kretzmer, Kelsey Reger, Vincent Balassi, Quang Long Pham, Michael Johns, Samuel T. Peters, Amber Petersen, Jana Mahadevan, Jason Gustin, Trissa Borgschulte and David Razafsky
Cells 2023, 12(22), 2661; https://doi.org/10.3390/cells12222661 - 20 Nov 2023
Cited by 2 | Viewed by 2597
Abstract
Chinese hamster ovary (CHO) cells are the cell line of choice for producing recombinant therapeutic proteins. Despite improvements in production processes, reducing manufacturing costs remains a key driver in the search for more productive clones. To identify media additives capable of increasing protein [...] Read more.
Chinese hamster ovary (CHO) cells are the cell line of choice for producing recombinant therapeutic proteins. Despite improvements in production processes, reducing manufacturing costs remains a key driver in the search for more productive clones. To identify media additives capable of increasing protein production, CHOZN® GS−/− cell lines were screened with 1280 small molecules, and two were identified, forskolin and BrdU, which increased productivity by ≥40%. While it is possible to incorporate these small molecules into a commercial-scale process, doing so may not be financially feasible or could raise regulatory concerns related to the purity of the final drug substance. To circumvent these issues, RNA-Seq was performed to identify transcripts which were up- or downregulated upon BrdU treatment. Subsequent Reactome pathway analysis identified the electron transport chain as an affected pathway. CRISPR/Cas9 was utilized to create missense mutations in two independent components of the electron transport chain and the resultant clones partially recapitulated the phenotypes observed upon BrdU treatment, including the productivity of recombinant therapeutic proteins. Together, this work suggests that BrdU can enhance the productivity of CHO cells by modulating cellular energetics and provides a blueprint for translating data from small molecule chemical screens into genetic engineering targets to improve the performance of CHO cells. This could ultimately lead to more productive host cell lines and a more cost-effective method of supplying medication to patients. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Figure 1

Back to TopTop