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Abstract: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease charac-
terized by the progressive loss of motor neurons, for which current treatment options are limited.
Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an
attractive therapeutic intervention target. This review contains a very comprehensive critical descrip-
tion of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review
covers several key areas related to mitochondria in ALS, including impaired mitochondrial function,
mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism,
mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport,
and apoptosis. This review also highlights preclinical and clinical studies that have investigated
various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mi-
tochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine,
and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting
agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of
effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understand-
ing of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic
interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS
holds promise for the development of novel treatment strategies to combat this devastating disease.

Keywords: amyotrophic lateral sclerosis; mitochondrial dysfunction; neurodegeneration; pathological
mechanisms; motor neuron degeneration; mitochondria-targeted therapies; therapeutic interventions

1. Introduction

Amyotrophic lateral sclerosis (ALS) disease, also known as Lou Gehrig’s disease or
Charcot disease, is a progressive neurodegenerative disorder that often manifests qui-
etly, initially concealing its full spectrum of symptoms. The disease advances swiftly,
not affecting cognition and self-awareness, yielding a definitive diagnosis that compels
patients and their loved ones to confront a daunting reality—a verdict that entails grap-
pling with an immensely debilitating condition, necessitating increasing levels of both
human and mechanical support. Regrettably, ALS lacks a cure and frequently culminates
in rapid fatality.

Although advances in the understanding of ALS have been made, an effective treatment
remains to be discovered. The incidence of ALS ranges from 0.6 to 3.8 per 100,000 person-years,
with a prevalence of 4.1 to 8.4 per 100,000 individuals. This predominantly affects individuals
between the ages of 51 and 66 [1]. The survival period from the onset of symptoms to demise
spans from 24 to 50 months, although a minority—10% of ALS patients—experience a slower
variant with survival exceeding a decade [1]. Roughly 90–95% of patients develop sporadic
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ALS (sALS), characterized by an enigmatic etiology and the absence of familial precedent [2].
The remaining 5–10% manifest familial ALS (fALS) [2], an inherited form, frequently linked
to an earlier age of onset [3,4].

Presently, approximately 50 genes have been identified as having a role in disease
modification [5], albeit only a fraction of these genes demonstrate a significative prevalence
in ALS, particularly within the context of fALS [6]. Among this collection of genes, a subset
has shown involvement in both sALS and fALS. Notably, the genes C9ORF72 (encoding
chromosome 9 open reading frame 72 (C9orf72) protein) [7,8], SOD1 (encoding Cu/Zn
superoxide dismutase 1 [SOD1] protein) [9–12], TARDP (encoding for TAR DNA-binding
protein 43 [TDP-43]) [13], and FUS (encoding fused in sarcoma/translocated in sarcoma
[FUS/TLS] protein) have been implicated [14,15]. Moreover, it has been proposed that ALS
pathogenesis arises from the collaboration of multiple genes, each acting independently,
thereby underscoring a specific genetic susceptibility among ALS patients [5]. External
factors also seem to play a pertinent role in triggering neurodegenerative processes linked
to ALS, particularly in individuals with a susceptible genetic predisposition [16–18]. Indeed,
various risk factors have been identified as potential catalysts for ALS onset, encompassing
age, smoking, body mass index (BMI), physical fitness level, and exposure to environmental
hazards like chemicals, pesticides, metals, and electromagnetic fields, among others [19].
Nevertheless, uncertainties persist regarding the precise contribution of these factors, as
the root cause of the disease has not been identified.

To date, a cure for ALS remains elusive and existing therapies primarily address symp-
tom management, yielding minimal impact on survival time. Currently, seven drugs are
approved by the US Food and Drugs Administration (FDA): Qalsody (tofersen, # N215887)),
RELYVRIO (AMX0035, #N216660), Radicava™ (edaravone; #N209176), Rilutek (riluzole,
now generic; #N020599), Tiglutik™ (thickened riluzole; #N209080), Exservan (riluzole oral
film; #N212640), and Nuedexta® (#N021879). The recent approval of tofersen, AMX0035,
and edaravone have benefited from the application of the American “Accelerating Access
to Critical Therapies for ALS Act” (Public Law 117–79). In Europe, to date, only rilu-
zole has been approved by the European Medicines Agency (EMA) (under the reference
EMEA/H/C/000109).

ALS is marked by the progressive degeneration of both upper motor neurons (UMN)
in the cerebral cortex and lower motor neurons (LMN) in the brain stem and spinal cord.
This degeneration precipitates muscle weakness, which gradually evolves into muscle atro-
phy and paralysis, ultimately culminating in respiratory failure and death [4,20]. Increasing
evidence suggests that fALS and sALS may share common pathological mechanisms due
to their analogous clinical presentations [2,21]. A multitude of molecular pathways poten-
tially underlie disease development, encompassing disrupted RNA metabolism, glutamate
excitotoxicity, protein misfolding and aggregation, endoplasmic reticulum stress, impaired
protein trafficking, compromised axonal transport, oxidative stress, inflammation, and
mitochondrial dysfunction [2,3,22,23]. Much like numerous other neurodegenerative dis-
eases, as mentioned earlier, mitochondrial dysfunctions assume a significant role in ALS
progression. Indeed, various mitochondrial abnormalities have been described not only
within the central nervous system (CNS) of ALS patients but also in peripheral tissues,
such as skeletal muscle [24,25], liver [26], and lymphocytes [23]. These perturbations
encompass mitochondrial bioenergetics dysfunction, inefficient calcium buffering, initia-
tion of mitochondrial-related apoptosis, and aberrations in mitochondrial transport and
morphology, among other aspects [27,28]. However, despite the compelling evidence
of multifaceted mitochondrial dysfunction in ALS, the precise extent of its involvement,
and whether it acts as a triggering factor or is a consequence of other intracellular toxic
mechanisms, remains enigmatic.

This review seeks to synthesize recent insights into the role of mitochondria and
mitochondria-mediated mechanisms in driving cellular damage. Additionally, it aims to
offer a deeper understanding of the interplay between different cell types implicated in
ALS. Ultimately, only through a more thorough comprehension of these intricate processes
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can effective mitochondria-targeted therapies be identified for potential pharmacological
interventions in ALS treatment.

2. Mitochondrial Dysfunctions in ALS

Mitochondria are highly dynamic organelles, vital for normal metabolism and cel-
lular survival, that participate in a diverse array of cellular functions, including energy
metabolism, calcium homeostasis, redox regulation, and cell-death mechanisms [2]. Much
like in other neurodegenerative diseases, disruptions to mitochondrial structure, dynamics,
bioenergetics, and calcium buffering have been extensively documented in ALS patients,
as well as in in vitro and in vivo models of ALS [2,29]. Varied morphological changes have
been observed in the early stages of ALS disease within motor neurons (MNs) from trans-
genic mouse models with SOD1 [30–32], FUS [33], and TDP-43 [34,35] mutations; cortical
neurons from the C9orf72 mouse model [36]; and muscle samples from ALS patients [24].
These findings underscore the involvement of mitochondria right from the onset of ALS,
manifesting not only in the CNS but also in muscle tissue. The indispensable role of mito-
chondria in driving ALS progression is further underscored by the identification of specific
mitochondrial components interacting with ALS-associated proteins. Notable examples
include B-cell lymphoma 2 (Bcl-2) [37], voltage-dependent anion channel 1 (VDAC1) [38],
and the mitochondrial form of lysyl-tRNA synthetase [38,39], which interact with mutant
SOD1; mRNAs encoding mitochondrial respiratory chain components, which interact with
TDP-43 [40] and FUS [41] proteins; and VDAC3, a translocase of the inner mitochondrial
membrane 50 (TIMM50) [42] and mitochondrial ribosomal proteins [43], which interact
with C9orf72. However, the precise extent of the mitochondrial role in driving disease
progression remains an enigma.

2.1. Alterations in Mitochondrial Respiration and ATP Production

The most well-known function of mitochondria is their generation of approximately
90% of cellular energy in the form of adenosine triphosphate (ATP), an essential currency
for virtually every facet of cellular activity. This energy synthesis stems from the intricate
process of oxidative phosphorylation (OXPHOS) taking place in the electron transport
chain (ETC), situated within the inner mitochondrial membrane (IMM) [44] (Figure 1).

Discrepant findings have emerged concerning mitochondrial respiration and ATP
production across distinct ALS models. Examination of postmortem spinal cord tissues from
sALS patients unveiled mitochondrial dysfunction characterized by diminished activity
of complexes I, II, III, and IV in tandem with decreased mitochondrial DNA (mtDNA)
content and citrate synthase activity [45]. Conversely, no discernable alteration in ETC
activity surfaced within crude mitochondrial preparations obtained from the motor and
parietal cortices and cerebellum of sALS patients [46]. This dichotomy might signify a
more pronounced ETC functional impairment in the spinal cord compared to brain tissues.
An alternate interpretation of these contradictory outcomes could be rooted in the limited
number of samples analyzed in both studies as well as the inherent heterogeneity found
among sALS patients.

Remarkably, beyond the CNS, altered ETC activities have also been documented in
sALS patients. Instances include decreased activities of complexes I and IV in skeletal
muscle [24,47] and decreased complex I activity coupled with lower ATP levels in lym-
phocytes [48]. Furthermore, when looking to patient fibroblasts, a noteworthy elevation
in mitochondrial membrane potential (∆Ψm) has been observed [49,50]. This potentially
alludes to a compensatory mechanism aimed at ameliorating inefficient ATP synthesis.
However, comprehensive investigations are imperative to validate these alterations.

Disruption in mitochondrial respiration has been extensively documented in mouse
models carrying mutated SOD (mutSOD) [46,51–55] as well as in ALS patients harboring
mutSOD1 [46,56]. SOD1, a Cu-Zn metalloprotein, plays a pivotal role in converting su-
peroxide anion radicals (O2

−) into molecular oxygen and hydrogen peroxide (H2O2); it
is primarily localized within the cytosol, but also found in the nucleus, peroxisomes, and
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mitochondria [11]. Although there is evidence of SOD1 accumulation within mitochon-
dria [51,57–61], the precise function of this enzyme within mitochondria remains unclear.
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Flavin Adenine Dinucleotide; IMM: Inner Mitochondrial Membrane; MCU: Mitochondrial Calcium 
Uniporter; MPC: Mitochondrial Pyruvate Carrier; ΔΨm: Mitochondrial Transmembrane 
Electrochemical Potential; NAD: β-Nicotinamide adenine dinucleotide; NADH: β-Nicotinamide 
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Figure 1. Overview of mitochondrial functions. Mitochondrial bioenergetics is driven by the oxidation
of different substrates and is stimulated by calcium. Flux of electrons through the electron transport
chain creates a transmembrane proton gradient of about 160 mV in the resting state, which fuels
Adenosine Triphosphate (ATP) synthesis in the mitochondrial matrix. Leakage of electrons in some
bioenergetic reactions generates reactive oxygen species (ROS) that are involved in important cellular
signaling processes. Abbreviations: ADP: Adenosine Diphosphate; CI: Complex I; CII: Complex
II; CIII: Complex III; CIV: Complex IV; Cyt c: Cytochrome c; ETF: Electron Transfer Flavoprotein;
FAD: Flavin Adenine Dinucleotide; IMM: Inner Mitochondrial Membrane; MCU: Mitochondrial
Calcium Uniporter; MPC: Mitochondrial Pyruvate Carrier; ∆Ψm: Mitochondrial Transmembrane
Electrochemical Potential; NAD: β-Nicotinamide adenine dinucleotide; NADH: β-Nicotinamide
adenine dinucleotide 2′-phosphate reduced form.

Most studies suggest that both wild-type and mutSOD1 expressed in transgenic mice,
particularly SOD1G93A, predominantly accumulate in the intermembrane space (IMS) of
spinal cord mitochondria [51,57–59,61]. However, some reports have also indicated local-
ization on the outer mitochondrial membrane (OMM) [37,62], association with components
of the IMM [51], or accumulation in the mitochondrial matrix [63]. Yet, the accumulation of
mutSOD1 within the mitochondrial matrix has not been definitively established.

Regarding the impact of mutSOD1 on mitochondrial respiration, studies have revealed
the decreased activities of complexes I+III, II+III, and IV in the spinal cord and its ventral
horn at the onset of the disease in SOD1G93A mice [51]. Furthermore, a decrease in the
activities of complexes I, II, and IV in the spinal cord preceding disease onset was found
in the same mouse model [52]. Consistently, decreased mitochondrial respiration rates
have been observed in the spinal cord and brain at the pre-symptomatic stage, persisting
throughout the disease in SOD1G93A mice. Notably, a decline in complex IV activity in the
brain of these mice was associated with cytochrome c-IMM dissociation [53], suggesting
an increase in reactive oxygen species (ROS) production leading to enhanced cardiolipin
oxidation and subsequent cytochrome c dissociation from the IMM. Decreased complex
II and IV activities were also documented in SOD1G93A or SOD1G37R in NSC-34 motor-
neuron-like cell lines [54], and significant impairment of the complex I-linked OXPHOS,
with a lower ∆Ψm, was also identified in SOD1G93A NSC-34 cells [55].
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Contrasting findings were reported in patients carrying mutSOD1A4V, who exhibited
increased complex I activity in the frontal cortex [56] and in the motor and parietal cor-
tices [46]. Moreover, elevated activities of complexes II–III were noted in the motor cortex
and cerebellum of patients with mutSOD1A4V as well as in the motor and parietal cortices
and cerebellum of a single patient with mutSOD1Ill3T, with similar findings in the motor
cortex and cerebellum of ALS patients without identified SOD1 mutations to date [46]. In
this specific context, the heightened activities of the ETC could signify a compensatory
response to oxidative damage to the IMM, possibly resulting from OXPHOS uncoupling. In
the forebrain of SOD1G93A mice, an elevation in complex I activity was observed during the
pre-symptomatic stage when compared to levels in transgenic wild-type counterparts [46].
Discrepancies in these findings may arise from several factors, including differences in
experimental conditions, variations among distinct SOD1 mutations, diverse SOD1G93A

mouse strains, discrepancies between animal and human physiology, and the disease stage
itself. These disparities highlight the intricate nature of alterations in ETC dynamics, which
can emerge as either a causal factor or a consequence of oxidative stress mechanisms. In
some instances, these alterations may be counterbalanced by the activation of compensatory
mechanisms. It is crucial to consider that the SOD1 transgenic animal model features a
high copy number of human mutSOD1, rendering it a non-physiological model that may
lack many of the phenotypic alterations observed in ALS patients [64,65]. The prevalence
of studies documenting alterations in mitochondrial respiration in SOD1 transgenic animal
models in contrast to the absence of impairment in mitochondrial respiration observed in
studies involving SOD1A4V or SOD1G93A human MNs [66] suggests that mitochondrial
dysfunction observed in the SOD1 transgenic animal model may be overestimated and
should be carefully interpreted.

Another gene mutation associated with ALS is TDP-43, which has demonstrated
various cellular respiratory system alterations in both patients and cellular models [67,68].
TDP-43, a DNA- and RNA-binding protein, plays a critical role in RNA processing [69].
Studies have shown that TDP-43 can lead to decreased activity of complex I and to a reduc-
tion in ∆Ψm. This was associated with increased expression of mitochondrial uncoupling
protein 2 (UCP2) in NSC-34 cell lines transfected with TDP-43 [67]. In neurons from ALS
patients, mutant TDP-43 was found to accumulate within mitochondria [40] and to prefer-
entially bind to mitochondrial mRNAs encoding the ND3 and ND6 subunits of complex
I. This binding resulted in the disassembly of complex I and decreased ∆Ψm in HEK293
cells overexpressing mutant TDP-43 variants (G298S, A315T, or A382T) or in fibroblasts
from ALS patients carrying G298S or A382T mutations [40]. These findings suggest that
TDP-43 toxicity directly impacts mitochondrial bioenergetics. However, fibroblasts from
ALS/FTD patients carrying TDP-43A382T did not present alterations in mitochondrial res-
piration when compared to controls, although a decrease in ∆Ψm was observed in these
cell lines [70]. FUS, another multifunctional DNA/RNA-binding protein associated with
ALS [71], has also been associated with alterations in mitochondrial respiration [41]. Similar
to TDP-43, both wild-type FUS and ALS mutant derivatives were found to bind to mRNAs
encoding subunits of mitochondrial respiratory chain complexes (RCC) [41]. This binding
disrupted mitochondrial networks and led to impaired mitochondrial respiration, both in
HEK293T cells overexpressing wild-type FUS and in those expressing mutant FUSR521C.
Similar effects were observed in fibroblasts derived from ALS patients [41].

As for C9orf72, the most prevalent mutation in ALS, characterized by the expansion
of the GGGGCC (G4C2) hexanucleotide repeat in the first intron of the C9ORF72 gene [72],
observations have pointed to reduced activities of mitochondrial complexes I and V within
the frontal cortex of 6-month-old C9orf72-ALS/FTD mice [36]. Similarly, a significant
reduction in ∆Ψm has been noted in human induced pluripotent stem cells (iPSC)-derived
MNs reprogrammed from the fibroblasts of C9orf72 patients [73]. Conversely, C9orf72
fibroblasts from ALS/FTD patients exhibited increased ∆Ψm along with elevated oxygen-
consumption rates, heightened ATP levels, greater complex II activity, and enhanced
production of ROS compared to controls [70].
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Collectively, these findings underscore the presence of mitochondrial respiration
impairment in both the CNS and muscles of ALS patients and animal models. Despite
variations in results among different studies, it is apparent that these alterations collectively
represent processes of mitochondrial dysfunction that contribute to the progression of ALS.

2.2. Role of Oxidative Stress Mechanisms

Mitochondria serve both as a source and a target of ROS [74]. Their most studied
function is the production of cellular energy in the form of ATP, a process involving the
controlled transport of electrons from substrates to molecular oxygen. As previously
mentioned, this intricate electron transfer occurs through a series of enzymatic complexes
composing the ETC (Figure 1). When electrons inadvertently leak from mitochondrial ETC
complexes directly to molecular oxygen, they generate O2

− [74], which carries out pivotal
roles in cellular signaling [75].

Under normal physiological conditions, cells meticulously maintain a defined re-
dox balance by counteracting ROS with the assistance of the cellular antioxidant defense
system [76]. Oxidative stress occurs when this balance is disrupted, either due to exces-
sive ROS production, a compromise in antioxidant defenses, or both [77,78]. In times
of cellular stress, elevated ROS levels perturb the redox homeostasis, causing damage
to essential biomolecules including proteins, DNA, and lipids. This disruption severely
impairs organelle function and eventually leads to cell death [79].

A wealth of evidence indicates that both heightened ROS levels and inadequate antiox-
idant defenses play substantial roles in ALS [41]. Indeed, post-mortem brain tissue [80–82],
cerebrospinal fluid (CSF) [83–86], plasma [87], and urine [88] from ALS patients exhibited
increased oxidative damage to proteins, lipids, and DNA. In spinal cord tissues from sALS
patients, oxidative damage manifested as elevated levels of protein carbonyls [56,81,82,89],
8-hydroxy-2′-deoxyguanosine (8-OHdG) [81,90], 4-hydroxynonenal (4-HNE) protein conju-
gates [90,91], nitrotyrosine products [92–94], and malondialdehyde-modified proteins [81].
Furthermore, sALS patients’ erythrocytes revealed increased lipid peroxidation concurrent
with a decrease in glucose-6-phosphate dehydrogenase activity [95] and in antioxidant
defenses, including catalase, glutathione reductase, and glutathione (GSH). These effects
appear to intensify with the progression of the disease [95].

Given that SOD1 is a Cu-Zn metalloprotein responsible for converting O2
.− into

molecular oxygen and H2O2, [11] it is highly plausible that ALS-associated mutations in
SOD1 may disrupt the delicate balance of ROS and lead to oxidative damage [96]. Indeed,
lymphoblasts from ALS patients with or without identified SOD1 mutations and healthy
controls showed distinct redox signatures [97]. Although SOD1 is primarily considered
a cytosolic enzyme, it has also been found within the IMS, where it may play a crucial
role in safeguarding mitochondria against O2

.−, thereby complementing the function of
SOD2, which eliminates O2

.− released into the mitochondrial matrix [9]. However, the
precise mechanism by which SOD1 enters mitochondria has not yet been fully elucidated.
In yeast, only an immature form of SOD1, lacking both Cu and Zn and existing in a reduced
disulfide state, was found to be able to cross the OMM [98]. It is presumed that the SOD1
apoenzyme gains access to the IMS through the TOM complex [99].

Like other IMS proteins, the import and retention of SOD1 within the IMS are tightly
linked to its folding and maturation processes, which include the formation of disul-
fide bonds. The cysteine residues within SOD1 play a pivotal role in localizing it to the
IMS [98,99]. Moreover, it has been proposed that the IMS import of SOD1 involves a
copper chaperone (CCS), while its mitochondrial distribution might be regulated by the
Mia40/Erv1 disulfide relay system [99,100]. Despite evidence of SOD1 accumulation in
mitochondria, the exact mechanisms through which mutSOD1 induces oxidative stress
and mitochondrial damage remain to be fully understood, and it is not clear whether these
effects are a cause or a consequence of the disease. Considering that only an immature
form of SOD1 can traverse the OMM [98], it is possible that mutSOD1 increases the fraction
of intramitochondrial SOD1 due to inefficient cytosolic maturation, potentially explaining
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the heightened mutSOD1 accumulation under pathological conditions. Additionally, the
increased mitochondrial accumulation of both wild-type and mutSOD1 in vitro following
experimental copper depletion suggests that heightened mitochondrial mutSOD1 accu-
mulation might also be involved in certain pathological mechanisms associated with this
mutation [101]. Despite the uncertainties surrounding the deleterious effects of this mu-
tation, it has been proposed that mutSOD1 exerts its pathological impact through a toxic
gain of function mechanism rather than by altering SOD1′s enzymatic activity [102].

Various hypotheses have been put forth to elucidate the toxic effects of mutSOD1. One
such hypothesis suggests that mutSOD1 induces oxidative damage through an abnormal as-
sociation with zinc [103] or through exposure to toxic copper at the active site, leading to an
elevation in O2

.− levels [104]. Additionally, it has been proposed that mutSOD1 can exert its
toxicity through the following mechanisms: (1) peroxidase activity–mutSOD1 may function
as a peroxidase, demonstrating reverse activity, by utilizing H2O2 as a substrate [58,105];
(2) reactivity with peroxynitrite–mutSOD1 might react with peroxynitrite, resulting in tyro-
sine nitration [77,106,107]; and (3) formation of soluble aggregates–misfolded SOD1 can
form soluble aggregates, leading to decreased stability of SOD1 monomer/dimers [108]. Re-
sults observed in MNs derived from iPSCs showed that SOD1 aggregates are progressively
and stably formed and transported to neighboring cells [109]. Indeed, there is evidence
of increased susceptibility to oxidative stress and mitochondrial damage attributed to
misfolded SOD1. This has been observed in mitochondria isolated from the spinal cords of
SOD1G93A rats and SOD1G37R mice [110]. Furthermore, in the NSC-34 mouse motoneuronal
cell line, mutSOD1 was found to accumulate in an oxidized and aggregated state. This ac-
cumulation appears to be associated with mutSOD1 interaction with mitochondria and the
oxidation of cysteine residues. Thus, mutSOD1 may consequently contribute to respiratory
chain impairment and an imbalance in the ratio of reduced glutathione (GSH) to oxidized
glutathione (GSSG), shifting towards a more oxidizing environment [111]. Supporting this,
decreased GSH levels and elevated GSSG levels were observed in the lumbar tissues of
the spinal cords of mutant SODG93A mice. Additionally, genetic induction of diminished
antioxidant defenses led to notable MN degeneration in hSOD1WT mice, a hemizygous
mice model with moderate over-expression of wild-type hSOD1 that does not typically
exhibit paralysis or a shortened lifespan [112]. A similar approach was applied to investi-
gate the effects of decreased antioxidant defenses in SOD1G93A mice, which overexpress
ALS-linked mutSOD1 [113]. In this case, a 70% decrease in GSH levels further exacerbated
the detrimental impact of mutSOD1 on life span. This was associated with increased
oxidative stress, aggravated mitochondrial dysfunction, and an elevated association of
mutSOD1 with mitochondria [113]. Further evidence of mutSOD1′s negative effects on
redox balance has been observed in SH-SY5Y human neuroblastoma cells overexpressing
mutSOD1 [114]. Here, it was noted that mutSOD1 induced the activation of Src homology 2
domain containing (Shc) transforming protein 1 (p66Shc). p66Shc is an alternatively-spliced
isoform of a growth factor adapter that is phosphorylated upon oxidative stress, resulting
in its translocation to mitochondria, where it binds to cytochrome c and, thereby, functions
as an oxidoreductase and amplifies ROS production [114].

Apart from mitochondria, another significant source of ROS within the cell stems
from the activity of adenine dinucleotide phosphate (NADPH) oxidases (NOX). These
NOX enzymes form a family of enzyme complexes that facilitate the transfer of electrons
from NADPH to molecular oxygen, ultimately generating O2

.− and H2O2 [115]. A piv-
otal feed-forward loop of ROS production has been identified, driven by the crosstalk
between mitochondria and NOX [115]. Essentially, ROS produced by NOX activity can
assail mitochondria, while ROS generated within mitochondria can stimulate NOX activity,
culminating in amplified ROS production. Members of the NOX family have emerged
as potential sources of ROS in ALS. Specifically, the deletion of Nox2 and, to a lesser ex-
tent, Nox1 has been shown to decelerate disease progression and enhance the survival of
SOD1G93A mice, underscoring the role of NOX activity in the oxidative imbalance observed
in ALS [116,117]. This is substantiated by evidence revealing elevated NOX activity, par-
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ticularly NADPH-dependent O2
.− production, in SOD1G93A mice. This increase appears

to result from the physical interaction of mutSOD1 with Rho-like small GTPases, specif-
ically Rac1, which serves as a regulator of NOX activity [118]. Under non-physiological
conditions, such as those encountered in an oxidative environment, the dissociation of
mutSOD1 from Rac-GTP is impeded, causing the enzyme to remain in an active state
and, consequently, intensifying Nox2-derived O2

.− production [118]. NADPH oxidase
inhibition, particularly with apocynin and its derivative diapocynin, was reported to signif-
icantly extend the survival of SOD1G93A ALS mice [118]. However, this was challenged by
a follow-up study conducted at two different institutions [119], which failed to replicate
the remarkable survival extension previously reported [118]. These results cast some doubt
on the role of NADPH oxidase in the SOD1 mouse model of ALS. Moreover, the lack of
consistent and significant protective effects in various trials raises important questions
about the translational potential of NADPH oxidase inhibition as a therapeutic strategy
for ALS.

The significance of disrupted redox homeostasis for ALS was further underscored by
a study involving MNs from both sALS and fALS patients as well as rodent mutSOD1 ALS
models (H46R/G93A rats and G1H/G1L-G93A mice) [120]. As the disease progressed,
and concurrent with the decline in spinal MNs, a diminishing number of neurons was
found to retain peroxiredoxin-II (PrxII) and glutathione peroxidase-l (GPxl), which are
key regulators of the redox system [120]. However, during disease progression, a small
population of MNs was also observed to exhibit overexpression of PrxII/GPxl, indicating
an up-regulation of the redox system in these cells. This suggests that some neurons retain
the ability to respond to redox stress, at least until the advanced stages of the disease [120].

Another vitally important antioxidant pathway that responds to oxidative stress is the
nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. In balanced conditions, Nrf2
is sequestered in the cytosol by Keap1 (Kelch ECH-associating protein 1), a cytoplasmic
regulator that acts as a sensor for ROS. When ROS levels increase, cysteine residues on
Keap1 undergo oxidative modification, releasing Nrf2. This liberated Nrf2 then translocates
to the nucleus, where it upregulates the expression of antioxidant genes. These include
GPX, catalase, and enzymes involved in glutathione metabolism, such as glutathione S-
transferase, glutathione cysteine ligase modifier subunit, and glutathione cysteine ligase
catalytic subunit (GCLC) [121–125]. Notably, SOD1 is also among the genes upregulated
by Nrf2, making this pathway particularly intriguing for ALS research, especially in cases
associated with SOD1 gene mutations.

Despite the precise role of Nrf2 in ALS pathogenesis remaining unclear, accumulating
evidence suggests that Nrf2 plays a pivotal role, and its activity may serve as a novel
therapeutic target [22]. In both NSC34 cells expressing mutSOD1 and MNs isolated from
familial SOD1-associated ALS patients, Nrf2 levels have been shown to be lower than those
found in control conditions [126,127]. This implies a disturbance in the Nrf2 pathway and a
defective response to oxidative stress. It is important to note that Nrf2 levels may fluctuate
throughout the course of the disease. Interestingly, the Nrf2 pathway is naturally activated
in muscle tissue during the onset of pathology in the SODG93A mouse model [128]. Dysreg-
ulation of the Nrf2 pathway has also been observed in sALS patients who do not express
mutSOD1, suggesting that Nrf2 may play a role in ALS independently of mutSOD1 [128].
Further research is needed to fully comprehend the mechanistic underpinnings of Nrf2
pathway activation and impairment in ALS.

In the context of the redox system, catalase, an enzyme responsible for converting
H2O2 into water and oxygen, which is normally absent from mitochondria, was found
to enhance mitochondrial antioxidant defenses and mitochondrial function in primary
cultures of astrocytes carrying SOD1G93A when genetically modified to target mitochon-
dria [129]. However, overexpression of catalase in SOD1G93A mice had no discernible
effect on their lifespan, indicating that intervention in this pathway alone is insufficient to
halt disease progression [129].
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Oxidative damage in ALS has also been attributed to other mutated ALS-linked genes.
For instance, mutations in TDP-43, a protein belonging to the heterogeneous nuclear ri-
bonucleoproteins (hnRNP) family, have been found to disrupt the Nrf2 pathway [130–132].
This disruption likely occurs through the interaction of TDP-43 with another hnRNP family
member, hnRNP K, which influences its expression and the RNA-binding properties of the
protein [131], subsequently affecting its antioxidant gene transcripts’ binding and function.
Consequently, while Nrf2 signaling remains activated in response to stress, its function is
compromised due to the abnormal binding of hnRNP K to antioxidant gene transcripts,
leading to uncontrolled oxidative damage and toxicity [131]. Multiple lines of evidence
support the association between TDP-43 and the dysregulated Nrf2 pathway.

In fibroblasts from patients with the TDP-43M337V mutation and in astrocyte cultures
from TDP-43Q331K mice, GSH levels (downstream of Nrf2 activation) were found to be
decreased, indicating an impaired oxidative stress response. Moreover, NSC-34 cells over-
expressing TDP-43M337V showed a decline in antioxidant defenses, leading to increased
intracellular lipid peroxidation, lower cell viability, nuclear accumulation of Nrf2, and de-
creased protein expression of NAD(P)H quinone dehydrogenase 1 (NQO1, downstream of
Nrf2 signaling) [130]. Similar results were obtained in another study using cells expressing
TDP43 with two mutations (M337V/Q331K) [132].

Regarding C9orf72, few studies directly implicate oxidative damage as a causative
factor in the disease. Nevertheless, evidence suggests a connection between oxidative
stress and ALS in the context of C9orf72 mutations. Oxidative stress and DNA damage
were found to be increased in iPSC-derived C9orf72 MNs [43]. Additionally, another study
demonstrated that dysfunction in iPSC-derived astrocytes from ALS patients with mutated
C9orf72 was also associated with elevated oxidative stress. Interestingly, the medium from
these cell cultures induced oxidative stress in wild-type MNs [133].

While substantial evidence strongly underscores the contribution of excessive ROS
in ALS, which are primarily generated within mitochondria, as well as compromised
antioxidant defenses [22,134], the precise role of oxidative damage in the development
and progression of the disease remains a subject of inquiry. Specifically, it remains to be
elucidated whether oxidative damage serves as a primary instigator of the disease or arises
as a secondary consequence stemming from the initial toxic mechanisms that trigger the
onset of ALS.

2.3. Metabolic Dysregulation

The investigation of energy homeostasis in ALS research has revealed significant
dysregulation in both ALS patients [135] and in models of the disease involving SOD1 and
TDP-43 [136–140]. ALS patients exhibited an imbalance between food intake and energy
expenditure [141], and research has shown increased energy demands in the muscles of
SOD1 (G86R and G93A) mice compared to controls [136]. Interestingly, by using mice
expressing human SOD1 exclusively in skeletal muscle, Martin and Wong showed that the
presence of hSOD1 only in skeletal muscle resulted not only in limb weakness and muscle
wasting but also in abnormalities in adipose tissue, suggesting a relationship between
muscle and adipose tissue in the context of ALS disease [142].

Malnutrition is a recognized problem among ALS patients, with its prevalence ranging
from 15% to 55%, and it is negatively correlated with disease severity [143–146]. There is
substantial evidence suggesting that malnutrition serves as a prognostic factor for poorer
survival rates among ALS patients [144–148]. The progression of malnutrition typically
leads to weight loss [147,149], attributable to dysphagia resulting from bulbar weakness or
heightened metabolic activity [148,150–152].

Interestingly, studies have indicated that individuals with a lower BMI are at an
increased risk of developing ALS [153], while, conversely, overweight individuals face a
lower risk of up to 40% [154]. Consequently, weight loss emerges as a crucial prognostic
factor for patients [155] and can serve as a valuable clinical indicator of the necessity for
nutritional support.
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Several studies have reported instances of hypermetabolism, characterized by an
increase in measured metabolic rate compared to calculated values, in a significant propor-
tion of ALS patients [144,148–151,156–159]. Many of these studies have applied equations
for predicting resting energy expenditure [160], although these equations still require
validation for ALS [161] and often do not account for the muscle atrophy frequently ob-
served in ALS patients [159]. The prevalence of hypermetabolism in sALS patients has
been documented to range from 25% to 68% [144,148–151,158,159], while it was reportedly
found in 100% of fALS individuals [156]. Notably, approximately 80% of ALS patients
in one study were found to maintain a consistent metabolic phenotype over time, and
this phenotype showed no correlation with disease characteristics [148]. However, it was
observed that hypermetabolism negatively correlated with age but positively correlated
with BMI and fat-free mass [148]. In contrast, some studies have reported an increase in
hypermetabolism as patients neared the end of life [149], although this finding was not
replicated in other research [148,150,151]. Nevertheless, a trend towards worse survival
among hypermetabolic ALS patients was subsequently noted [158]. Further insights come
from reports of increased prevalence of hypermetabolism in ALS patients compared to
age- and sex-matched control individuals [159]. In this study, hypermetabolism was as-
sociated with a significant reduction in fat-free mass in ALS patients [159]. Notably, this
study was the first to consider the muscle atrophy observed in these patients, reporting a
prevalence of 41% hypermetabolism in ALS patients compared to 12% in healthy, matched
subjects [159]. Importantly, hypermetabolic ALS individuals in this study experienced a
significantly faster rate of functional decline and worse survival than normometabolic ALS
patients [159], underscoring the potential utility of metabolic indices in predicting ALS
outcomes. However, a systematic review [162] analyzing 29 selected articles from various
databases and aiming to correlate changes in metabolic parameters with ALS progression
and survival concluded that the use of different metabolic parameters and methodologies
across studies made it challenging to establish correlations [162]. The parameters examined
varied widely, including BMI (65.5%), hypertension (20.7%), cardiovascular risk (6.89%),
obesity (10.3%), diabetes (13.8%), and glycaemia (10.3%) [162]. Despite the assumption
that metabolism influences ALS, the study could not definitively establish an association
between metabolism and disease development [162]. The authors emphasized the need
for standardized methodologies and the analysis of metabolic parameters across different
studies to yield more conclusive results [162].

The dysregulation of metabolic pathways associated with stress and oxidative re-
sponses may contribute significantly to the progression of ALS [163]. Despite extensive re-
search, the root causes of metabolic dysregulation and its effects on neuronal metabolism in
ALS patients remain incompletely understood. Nevertheless, mitochondria have emerged
as central players in this process [148]. Numerous studies employing proteomic approaches
have reported substantial alterations in proteins linked to glycolysis, mitochondrial func-
tion, and stress responses, particularly in SOD1G93A mice when compared to control ani-
mals [163–168]. A recent study employed targeted proteomics to quantify proteins involved
in metabolic pathways at the pre-onset, onset, and end stages of the disease in the spinal
cord of SOD1G93A mice [163]. Their findings revealed significant changes in metabolic pro-
tein profiles, even at early stages preceding disease onset. Notably, an increased abundance
of phosphofructokinase and lactate dehydrogenase—crucial enzymes regulating glycolysis
and tricarboxylic acid (TCA) cycle rates, respectively—was observed [163]. These results
align with a prior study that reported heightened glycolytic flux in a neuronal cell line
expressing SOD1G93A [169]. Moreover, increased glucose uptake was detected in the spinal
cords of transgenic SOD1G93A mice during the pre-symptomatic stage, which progressively
declined as the disease advanced [170]. Importantly, an elevated rate of glycolysis can
impact other metabolic pathways, including the pentose phosphate pathway, potentially
decreasing cellular antioxidant capacity and triggering cellular apoptosis [171]. At the
later stages of the disease, reductions in the levels of various glycolytic proteins (aldolase,
glyceraldehyde phosphatase, and phosphoglycerate kinase), which are important pro-
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teins involved in the malate–aspartate shuttle (cytoplasmic and mitochondrial aspartate
aminotransferases, and mitochondrial malate dehydrogenase), pyruvate dehydrogenase,
and TCA cycle enzymes (malate and isocitrate dehydrogenase-related proteins) were re-
ported [163]. Conversely, certain proteins related to fatty acid metabolism and the ETC
exhibited increased abundance in the spinal cords of SOD1G93A mice [163]. These alter-
ations in protein content are consistent with a shift from glycolysis to oxidative metabolism,
which was also been reported in the muscles of SOD1 mice [172,173], which have higher
energetic needs [136]. This shift in metabolic strategy is probably driven by the height-
ened energy demands of large MNs, which are particularly susceptible to changes in
metabolism [163]. Interestingly, the glycolytic ATP production rate showed potential
diagnostic and therapeutic interest in lymphoblasts from ALS patients [174].

When glucose demand outstrips the available supply, neurons begin to utilize ketone
bodies produced by the liver and, notably, by astrocytes [175–179]. The production of
ketone bodies by astrocytes, which enhances oxidative metabolism, is reflected in the up-
regulation of proteins related to β-oxidation, fatty acid metabolism [137,163], and the levels
of 3-hydroxy-3-methylglutaryl-CoA lyase, a key enzyme in the ketogenic process [179].
Dysregulated fatty acid metabolism has been reported in both ALS animal models and
ALS patients, with evidence suggesting that dyslipidemias play a pivotal role in disease
progression [141].

Positive protein inclusions of TDP-43 are an almost ubiquitous feature in ALS cases,
establishing them as a fundamental pathological hallmark of the disease [180,181]. Through
metabolic profiling, significant changes in glycolysis and pentose phosphate pathways were
found in Drosophila models of TDP-43 proteinopathy [140]. The TDP-43 mutants exhibited
increased levels of pyruvate, suggesting an upsurge in glycolytic activity and a substantial
upregulation of phosphofructokinase, the enzyme governing the rate-limiting step in gly-
colysis [140]. These findings align with previous research showing elevated pyruvate levels
in the plasma of ALS patients [182,183]. The Drosophila TDP-43 mutants also presented
an intensified glycolytic input into the pentose phosphate pathway and heightened levels
of glucose-6-phosphate dehydrogenase, potentially providing a mechanism to counteract
oxidative stress by enhancing NADPH production [140].

Another study adopted a metabolic profiling approach using astrocytes reprogrammed
from fibroblasts obtained from C9orf72, sALS, and age-matched control subjects to explore
C9orf72-dependent metabolic dysfunctions [184]. This study unveiled distinct metabolic
profiles and the loss of metabolic flexibility in C9orf72 and sALS cells in comparison
to controls [184]. Specifically, deficiencies were noted in the metabolism of adenosine,
fructose, and glycogen along with disruptions in the membrane transport of mitochondrial
substrates, contributing to the loss of metabolic flexibility in C9orf72 and sALS cells. These
findings underscore the importance of metabolic flexibility in scenarios characterized by
bioenergetic stress [184].

Metabolomic investigations have identified distinct metabolite profiles in samples from
both ALS patients and mouse models when compared to controls [182,183,185–192]. These
studies have revealed alterations in metabolites linked to glucose metabolism [185,189–191],
with correlations established between these changes and ALS disease progression [186,190,191].
Some preliminary studies have even explored the potential of these metabolic profiles to predict
ALS onset [182]. Additionally, elevated levels of ketone bodies have been observed in the cere-
brospinal fluid of ALS patients, suggesting potential alterations in lipid beta oxidation [185,186].
Notably, distinct metabolite profiles have been observed among different subtypes of ALS
patients, underscoring the heterogeneity of the disease [187,188].

2.4. Mitochondrial Dynamics and Biogenesis

Mitochondrial dynamics and biogenesis are tightly regulated by a complex network
of signaling pathways within cells [193]. Mitochondria exist as part of a highly dynamic
network that relies on a delicate balance between fission and fusion events to maintain their
functional integrity. These processes control mitochondrial size, number, and shape, facili-
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tating the mixing of mitochondrial contents, including proteins, lipids, and DNA [194,195].
Fission plays a crucial role in eliminating dysfunctional mitochondria, while fusion enables
the intermingling of contents from both functional and defective mitochondria, thereby
preserving overall mitochondrial integrity [196].

The key regulator of mitochondrial fission is dynamin-related protein 1 (Drp1), which
becomes phosphorylated and relocates from the cytosol to the OMM when a mitochondrion
is targeted for fission [197,198]. Drp1 is recruited by various receptor proteins, including
mitochondrial fission factor (Mff) [199], mitochondrial fission 1 protein (Fis1) [200], and
mitochondrial dynamics proteins of 49 and 51 kDa (MiD49/51) [201]. Following recruit-
ment, Drp1 oligomerizes and forms a ring-like structure through self-assembly and GTP
hydrolysis, and this structure severs the mitochondrial membrane, leading to mitochondrial
fragmentation [202,203].

Conversely, the process of mitochondrial fusion involves both the IMM and the OMM.
Major players in OMM fusing are mitofusins 1 and 2 (Mfn1 and Mfn2), while optic atrophy
protein 1 (OPA1) governs the IMM fusion [204,205]. Mfn1 and Mfn2, situated in the OMM,
facilitate the fusion of mitochondrial membranes. OPA1, located in the IMM, interacts with
both Mfn isoforms, forming intermembrane protein complexes that orchestrate the fusion of
the OMM to the IMM [206,207]. Given the critical dependency and sensitivity of neurons to
alterations in mitochondrial dynamics, several studies have underscored the link between
the disruption of mitochondrial dynamics regulators, such as Drp1, Mfn2, and OPA1,
and the emergence of dysfunctional mitochondria, often leading to neurodegenerative
processes [208–211].

The disruption of mitochondrial dynamics has been extensively documented in both
animal models [31,34,35,212,213] and ALS patients [214]; however, the precise mechanisms
underlying these alterations are still a subject of debate. While specific changes may vary
among different ALS models, most studies consistently reveal an increase in mitochondrial
fission relative to fusion [30,31,215]. In the case of SOD1G93A mice, researchers noted an
initial increase in the mitochondrial fusion proteins Mfn1 and OPA1 during the early stages
of the disease, followed by a significant decrease in later stages [31]. This biphasic pattern
could suggest an initial protective response involving mitochondrial fusion followed by a
gradual shift towards increased fission. Lines of evidence have revealed that mitochondrial
dynamics are also under cellular redox control. It was also already discussed here that
mutSOD1 may contribute to an imbalance in the GSH:GSSG ratio towards a more oxidizing
environment [111]. Using HeLa cells, Shutt and collaborators have shown that GSSG
strongly induces mitochondrial fusion by inducing the formation of disulfide-mediated
Mfn oligomers in a process requiring GTP hydrolysis, whereas neutralizing oxidative stress
with GSH or ROS scavengers impaired the fusion process [216]. On the other hand, a
study conducted using endothelial cells showed that the depletion of the mitochondrial-
located protein disulfide isomerase A1, an oxidoreductase with thiol reductase activity for
Drp1, induced a ROS-mediated protein post-translational modification in which a reactive
cysteine thiol is transformed into cysteine sulfenic acid. This Drp1 post-translational
modification, termed protein sulfenyltion, is a key initial readout of redox signaling that
ultimately leads to mitochondrial fragmentation, further ROS increases, and mitochondrial
respiratory impairment [217]. This way, one can hypothesize that this or similar ROS-
mediated sulfenylation processes can occur in ALS and further increase mitochondrial
fission and its detrimental effects. Additionally, mitochondrial fission-related proteins,
such as pSer637-Drp1 and Fis1, were found to increase during the early stages of the
disease, potentially targeting cells for apoptosis and mitophagy [31]. Similar alterations in
mitochondrial dynamics were observed in skeletal muscle biopsies from ALS patients [214]
and in the MNs of rat spinal cords [212].

Although less extensively studied, models of ALS associated with TDP-43 [34,35,213],
FUS [218,219], and C9orf72 [70] mutations have also exhibited evidence of mitochondrial
fragmentation. For instance, in TDP-43 models, there was an increase in Fis1 protein
levels and phosphorylated Drp1 along with decreased Mfn1 protein expression in the
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brain lysates of transgenic (TDP43PrP) mice expressing full-length human TDP-43 (hTDP-
43) driven by the mouse prion promoter [213]. Moreover, OPA1 protein expression was
found to be increased in brain lysates of 3-month-old TDP-43A315TKi animals, decreasing
with age, particularly at 15 months of age. This suggests that young TDP-43A315TKi ALS
mice experience enhanced mitochondrial fusion that shifts toward greater mitochondrial
fragmentation as they age [34]. Interestingly, overexpression of mutant TDP-43 (Q331K
and M337V) in cultured neurons led to a shift in the mitochondrial fission–fusion balance
towards fission, causing mitochondrial fragmentation in the dendrites and cell bodies of
MNs rather than in axons. Conversely, TDP-43 knockdown shifted the balance towards
fusion, resulting in mitochondrial elongation. These findings indicate a specific role of TDP-
43 in regulating mitochondrial dynamics [35]. Mitochondrial fragmentation has also been
reported in MNs expressing either R521G or R521H FUS [218] and in HT-22 mouse neuronal-
like cells expressing the P525L-mutant FUS [219] compared to neurons expressing wild-type
FUS. Similarly, FUS transgenic flies exhibited mitochondrial fragmentation compared to
wild-type flies [219]. Additionally, a reduction in the length of mitochondria was observed
in fibroblasts from patients expressing ALS mutant C9orf72, suggesting a disruption in
mitochondrial dynamic balance driven by the most prevalent ALS mutation [70].

Mitochondrial biogenesis plays a pivotal role in maintaining mitochondrial homeosta-
sis throughout the cellular life cycle, ensuring that the physiological demands of eukaryotic
cells are met by synthesizing new mitochondrial components to replace damaged mito-
chondria [29,220]. This tightly regulated process involves the coordinated efforts of both
mtDNA and the nuclear genome to create new mitochondria [221]. One of the principal
regulators of mitochondrial biogenesis is peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α), which stimulates mitochondrial biogenesis by activating
various transcription factors, including nuclear respiratory factor 1 (NRF1) and nuclear
respiratory factor 2 (NRF2, also known as GA-binding protein-GABP and not to be con-
fused with Nrf-2) [29,220]. These transcription factors, in turn, activate mitochondrial
transcription factor A (Tfam), which is responsible for the transcription of nuclear-encoded
mitochondrial proteins and the maintenance and replication of mtDNA [29].

Numerous studies have provided evidence of altered mitochondrial biogenesis
markers in both ALS mouse models and patients [222–224]. In the mouse model carry-
ing SOD1G93A, research has revealed diminished levels of PGC-1α mRNA in the spinal
cord [222–224] and skeletal muscle [214,224]. Notably, increased levels of PGC-1α mRNA
were reported in the skeletal muscle of the same mouse model [222]. Furthermore, pro-
tein expression levels of PGC-1α were found to be reduced in the skeletal muscle of the
SOD1G93A model [214,224] and in the skeletal muscle of ALS patients [214]. Collectively,
these findings suggest that both PGC-1α mRNA and protein expression may play a role
in the pathogenesis of the disease, particularly in the context of SOD1 mutations. In this
same model, Tfam mRNA levels were shown to decrease in the spinal cord and skeletal
muscle [224]. Additionally, protein levels of NRF1 were found to be diminished in the
skeletal muscle of the SOD1G93A mouse model [214,224] and in the skeletal muscle of
ALS patients [214]. Taken together, these observations of varying protein and mRNA
levels of mitochondrial markers in both animal models and patients, particularly in the
spinal cord and skeletal muscle of individuals with SOD1 mutations, indicate a potential
disruption in the mitochondrial biogenesis process affecting the cellular capacity to
maintain a healthy network of functional mitochondria, which further underscoring
mitochondrial relevance in ALS pathogenesis. Interestingly, Tfam protein levels in the
lymphoblasts of ALS patients are of potential diagnostic and therapeutic interest [174].

Several studies have reported variations in mtDNA levels in both ALS mouse models and
patients, shedding light on the complexity of mitochondrial dynamics [225,226]. For instance,
the SOD1 knockout mouse model (SOD−/−) exhibited heightened mtDNA levels in skeletal
muscle [225]. In patients—notably those with SOD1 and C9orf72 mutations—peripheral
blood mtDNA levels were also found to be elevated [226]. Additionally, fibroblasts from
C9orf72 patients displayed increased mtDNA levels and mitochondrial mass [70]. These
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observed increases in mtDNA content likely represent a compensatory mechanism in response
to the abnormal mitochondrial function observed in these individuals [70,226]. Conversely,
fibroblasts from patients harboring TARBDP mutations exhibited reduced mitochondrial mass,
without alteration in mtDNA levels [70]. This suggests that TARBDP mutant fibroblasts might
not possess the capacity to activate mitochondrial proliferation mechanisms to counterbalance
dysfunctional mitochondria.

In summary, various studies indicate that mtDNA levels are subject to alterations,
spanning from mouse models to human patients, hinting at their potential as a marker for
the pathological processes underlying ALS. Furthermore, these mtDNA alterations seem
to differ when comparing different mutations [70,226], especially between mutSOD1 and
C9orf72 patients versus TARBDP patients. As a result, these findings prompt speculation
that distinct mutations may induce specific modifications in mitochondrial biogenesis
markers, although further research is needed to elucidate the precise mechanisms involved.

2.5. Mitochondrial Trafficking in ALS

Mitochondrial trafficking in neurons is a highly orchestrated process that varies de-
pending on the direction of the movement, the polarity, and the arrangement of neuronal
microtubules (MTs) [227]. MTs are polymeric structures composed of α- and β- tubulin
heterodimers with a polar head-to-tail structure. Within MTs, α-tubulin monomers are
oriented toward the slower-growing end (the minus end), while β-tubulin faces the faster-
growing end (the plus end). In neurons, the minus end faces the cell body and the plus
end extends toward the cellular extremities [228,229]. Mitochondria can move in both
directions along these MTs. Retrograde transport, from the extremities to the cell body, is
powered by dynein motors, whereas the anterograde transport, from the cell body to the
extremities, is orchestrated by the kinesin superfamily [230,231]. These movements are
energy-dependent, relying on ATP hydrolysis [232].

In addition to the transporting complexes, various protein adaptors play critical
roles in the trafficking of neuronal mitochondria. These adaptors include the mitochon-
drial rho (MIRO)/Milton complex in Drosophila [233,234], trafficking kinesin protein
(TRAK) 1 and 2 in mammals [235,236], syntabulin [237], and RAN-binding protein 2
(RANBP2) [238], among others. Beyond MTs, actin filaments and their associated protein
motor adaptors also contribute significantly to mitochondrial movement. Myosins 2
and 19, for instance, play crucial roles in the short-distance movement of mitochondria
along these filaments [239,240]. During mitochondrial transit, there are instances when
they must halt to facilitate proper axonal and synaptic functions, which necessitates
dissociation from the motor proteins and docking [241]. Syntaphilin appears to be a key
protein involved in this process, immobilizing mitochondria by anchoring them to the
MTs (Figure 2) [242,243].

While the precise biological and molecular origins of the phenomenon remain a topic
of significant debate, the defective axonal trafficking of mitochondria stands out as one
of the earliest neuropathological features observed in ALS models [244]. Various lines
of evidence have consistently demonstrated that alterations in mitochondrial trafficking
and morphology occur within the sciatic nerve of ALS SOD1 mutant mice. Notably, these
abnormalities manifest in the early stages of ALS, even before any clinical symptoms
become apparent. This malfunction typically commences with disruptions in retrograde
mitochondrial transport, which precede defects in anterograde transport and ultimately cul-
minate in mitochondrial fragmentation, as also observed in TDP43 ALS mutant mice [245].
These retrograde transport impairments have been associated with the inadequate removal
of damaged mitochondria via mitophagy [246,247]. In both ALS models, anomalies in
anterograde transport appeared at later stages of the disease and were linked to abnormal
mitochondrial clustering (Figure 2) [245]. The net increase in the retrograde trafficking
of mitochondria may signify an enhanced clearance of damaged mitochondria via mi-
tophagy [248]. Nevertheless, it is important to note that in rat cortical neurons transfected
with mutSOD1, a different scenario unfolds; these neurons exhibited decreased antero-
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grade transport of mitochondria, without concurrent retrograde transport issues. This
disturbance resulted in increased mitochondrial content in cell bodies compared to the cell
axons, potentially triggering axonal stress by limiting mitochondrial Ca2+ buffering and
diminishing ATP synthesis derived from mitochondria (Figure 2) [249,250].
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Figure 2. Dysregulated mitochondrial trafficking in ALS Models. Anomalies in mitochondrial traf-
ficking are a prevalent phenomenon across various ALS models. Notably, both anterograde and
retrograde transport processes are compromised in this context. Intriguingly, emerging research sug-
gests a temporal sequence in which retrograde transport disruption precedes anterograde transport
impairment. Dysfunction in retrograde transport is intimately associated with mitophagy deficits,
resulting in the inefficient removal of dysfunctional mitochondria in TDP 43 ALS mutant mice.
Conversely, cortical neurons from the E18 embryos of ALS SOD1 mutant rats exhibit alterations in
anterograde transport linked to a reduction in Miro expression, ultimately leading to mitochondrial
transport stagnation. These perturbations in both transport pathways culminate in abnormal mi-
tochondrial clustering, diminished Ca2+ buffering capacity, and compromised ATP production. In
extreme cases, these abnormalities can trigger axonal stress, ultimately contributing to cell death
and neurodegeneration.

Exploring the molecular mechanisms underlying the reduction of anterograde trans-
port in cortical neurons from the E18 embryos of ALS SOD1 mutant rats, researchers have
identified a decreased expression of Miro protein in these neurons. This is a hallmark of
PINK1/Parkin-dependent mitophagy [248], where PINK1 phosphorylates Miro, targeting it
for Parkin-dependent degradation [251] and ultimately leading to the cessation of mitochon-
drial transport and the buildup of damaged mitochondria. Interestingly, it has been found
that either the restoration of Miro1 expression or the knockdown of Pink1 can restore mito-
chondrial motility [248]. Additionally, various causes of alterations in mitochondrial have
been proposed, including pathogenic mutations affecting the axonal transport machinery
itself, such as kinesin-1, dynein, Profilin 1, Dynactin, and α-tubulin [244,252–254]. Further-
more, indirect processes appear to contribute significantly to this phenomenon, involving
pathogenic kinase signaling, microtubule destabilization, and protein aggregation [244].

It is essential to emphasize that different mutant models yield distinct effects, under-
scoring the significance of recognizing that diverse alterations may arise when utilizing
different biological models and cell types.

2.6. Mitochondria and Endoplasmic Reticulum Crosstalk

Mitochondria play a significant role in managing Ca2+ levels, influencing energy
metabolism and cellular activities. This is especially relevant for neurons given that mito-
chondria localize in neuronal cell bodies and in dendrites, axons, and synaptic terminals.
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When there is a high concentration of Ca2+ in microdomains near mitochondria, the or-
ganelle efficiently accumulates Ca2+, primarily through the Ca2+ uniporter (MCU). This
electrogenic carrier is situated at the IMM and operates based on the negative transmem-
brane potential of mitochondria. This accumulation is facilitated by microdomains adjacent
to endoplasmic reticulum (ER) subcompartments that physically interact with mitochon-
dria, referred to as endoplasmic reticulum–mitochondria-associated membranes (MAMs)
(reviewed in [255]). MAMs have also been demonstrated to play a crucial role in regulating
autophagy and mitochondrial dynamics through the modulation of Drp1 or Mfn2 [256,257].
These complex structures are composed of numerous proteins from both mitochondria and
the ER, with additional components yet to be identified [258]. Intriguingly, mass spectro-
metric analysis has identified more than 1000 proteins in MAM fragments [259]. As MAMs
function as a signaling hub, their effectiveness heavily relies on proteins that perform di-
verse tasks. These proteins are categorized based on their primary functions. For instance,
in the domain of Ca2+ transport, inositol 1,4,5-triphosphate receptor (IP3R), VDAC1, 2b
isoform of Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA), Sigma-1 receptor (Sig-
mar1), and glucose-regulated protein 75 (Grp75) [260–263] have been extensively studied.
Regarding autophagy, autophagy-related 14 (ATG14) and autophagy-related 5 (ATG5) play
pivotal roles [264]. Tethering proteins responsible for the physical contact between mito-
chondria and the ER, such as ER protein vesicle-associated membrane protein-associated
protein B (VAPB) and protein tyrosine phosphatase interacting protein 51 (PTPIP51) [265],
are also noteworthy.

Numerous studies indicate that ALS-associated mutations are linked to impaired
enzymatic activities within MAM domains, specifically impacting calcium transfer between
the ER and mitochondria (reviewed in [266]). Notably, proteins like TDP-43 and FUS
induce the dissociation of VAPB and PTPIP51 [265,267], thereby modifying calcium transfer
dynamics between these organelles [265]. Moreover, mutations in the VAPB gene have been
demonstrated to induce a familial variant of ALS. This could be attributed to a decrease in
the effectiveness of Ca2+ elimination, potentially resulting from inadequate energy to power
the Ca2+ ATPases, leading to the accumulation of surplus Ca2+ within mutated neurons
and triggering changes in synaptic vesicle release and the development of synapses [268].
These findings are further supported by a study showing that disruption of VAPB–PTPIP51
tethering and the related delivery of Ca2+ from ER stores to mitochondria occurs in neurons
derived from iPS cells obtained from patients carrying pathogenic c9orf72 expansions
associated with ALS/FTD [269]. Recently, Pilotto and colleagues discovered that ER stress
in human C9ORF72-ALS/FTD iPSCs and C9orf72 mouse neurons initiates a compensatory
mechanism [270]. This involves the upregulation of GRP75 expression at MAMs, effectively
counteracting early mitochondrial Ca2+ imbalance. Over time, PolyGA inclusions sequester
GRP75, resulting in its diminished presence at the MAMs and leading to functional loss
and subsequent mitochondrial dysfunction [270].

Several molecules have been investigated as potential therapeutic agents addressing
dysfunction at MAMs in ALS (reviewed in [271]). For instance, salubrinal, an ER stress
inhibitor, displayed promising results in SOD1G93A mice, alleviating disease progression
by enhancing survival rates and promoting neuromuscular junction reinnervation [272].
Additionally, PRE-084, a sigma-1 receptor agonist, demonstrated notable effects, reducing
SOD1G93A-induced cell death and extending the survival time of mice [273]. Another
example is Sephin1, an ER stress inhibitor, which exhibited significant efficacy in preventing
motor neuron degeneration in both in vitro and in vivo ALS models [274,275]. These
studies highlight diverse strategies and potential therapeutic avenues for addressing MAM
dysfunction in ALS.

2.7. Autophagy and Mitophagy

Autophagy is a pivotal catabolic process in cellular recycling and the maintenance of
intracellular homeostasis that involves the breakdown of unnecessary or damaged cellular
components through lysosomal degradation [276]. More specifically, a form of autophagy
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known as macroautophagy encompasses a series of intricate signaling events that ini-
tiate with the sequestration of proteins and damaged organelles into autophagosomes,
followed by their digestion via lysosomal hydrolysis [277]. Dysregulation of autophagic
flux has been closely associated with various pathological processes [278,279], including
neurodegenerative diseases, such as ALS [280].

In ALS, autophagy is known to occur in the MNs of the spinal cord in both postmortem
human ALS patients [281,282] and animal models of the disease [283–286]; however, its
precise functional role in disease progression remains elusive. Mutations in genes encod-
ing proteins for crucial selective autophagy receptors, such as optineurin (OPTN) [217],
p62/Sequestosome-1, and Tank-binding protein (TBK1) [287], have been implicated in ALS,
contributing to the impairment of autophagic flux. For instance, ALS patients with C9orf72
expansion exhibited p62 inclusions [281,282], and pathogenic mutations in SOD1 were
found to lead to polyubiquitinated aggregates of misfolded mutSOD1 that interact with
p62, thereby enhancing the association between mutSOD1 and microtubule-associated light
chain 3-II (LC3-II), a primary autophagic marker embedded into autophagosomes [288,289].

Moreover, mutations in the OPTN gene have been found in ALS patients [217] and
colocalize with SOD1 inclusions [290]. Overexpression of missense mutated OPTN re-
sulted in increased LC3-II levels, potentially impairing autophagosome transport or fusion
events [291]. ALS cases have been associated with genes involved in vesicular trafficking,
including VCP, CHMP2B, VAPB, ALS2, and DCTN1 (genes encoding valosin-containing
protein, charged multivesicular body protein 2B, VAMP associated protein B, alsin Rho
guanine nucleotide exchange factor, and dynactin subunit 1 protein, respectively), which
may influence autophagy flux either directly or indirectly [292].

Several studies underscore the critical role of autophagy in ALS pathogenesis. mut-
SOD1 mouse models have exhibited hyperactivated autophagy, characterized by AMPK
activation and mTOR downregulation [293], along with increased conversion of LC3-I into
LC3-II [294], indicative of heightened autophagic vacuole formation [295,296]. These
models have also shown elevated levels of autophagic regulators, such as TFEB, in-
volved in autophagy initiation and lysosomal biogenesis [297], and Beclin1, an autophagic
initiator [298], resulting in increased LC3-II levels [299]. Additionally, mutSOD1′s toxic
effect extends to excessive interaction with dynein, a protein responsible for axonal retro-
grade transport. This overload disrupts autophagosome retrograde transport, contributing
to the failure of late-stage fusion steps in autophagy [300].

In the context of TDP-43 and FUS, both proteins, much like SOD1, tend to undergo
misfolding and aggregation, a process that coincides with autophagic impairment [301,302].
Notably, previous studies have demonstrated that the pharmacological enhancement of
autophagy using rapamycin decreased cell death in neurons carrying FUS mutations [303].
Additionally, it promoted the clearance of TDP-43 aggregates in Drosophila and mouse
models, resulting in a reduction of ALS symptoms [304,305].

Concerning C9orf72, human neurons derived from iPSC obtained from individuals
with C9orf72 repeat expansions exhibited elevated p62 levels and heightened sensitivity
to autophagy inhibitors like chloroquine and 3-methyladenine compared to control neu-
rons [306]. These findings suggest a compromised autophagy function in these neurons.
In addition, the loss-of-function of C9orf72 can disrupt the mTOR signaling pathway, in-
hibiting its activity [307,308]. Furthermore, there is a correlation between C9orf72 loss and
an increase in lysosomal biogenesis along with an upsurge in swollen lysosomes [308].
Supporting these observations, C9orf72 KO mice displayed elevated levels of lysosomal
markers such as LC3I, LAMP1, and PSAP [309], indicating that C9orf72 likely plays a
regulatory role in the autophagy/lysosome pathway.

Although extensive research has explored the autophagy process in ALS, the selective
degradation of mitochondria through autophagy, known as mitophagy, has only recently
gained attention. Mitophagy is of great significance as it serves to eliminate defective
and irreparable mitochondria, preventing their accumulation and potential harm to the
cell [310]. Consequently, mitophagy plays a central role in mitochondrial quality control.
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In cases of mitochondrial dysfunction, the protein PINK1, which typically relocates
from the OMM to the IMM for cleavage under normal circumstances, accumulates on the
OMM. This accumulation acts as a signal for the recruitment of the E3 ubiquitin ligase
Parkin [311]. PINK1 phosphorylates Parkin and ubiquitin, activating Parkin’s E3 ligase
activity [311]. Subsequent pathways have been proposed to describe the connection to the
autophagy process, although some uncertainties persist. For instance, parkin-independent
mitophagy pathways have been identified, notably through the recruitment of the au-
tophagy receptor OPTN by PINK1 [312]. Nevertheless, during mitophagy, defective mito-
chondria must either be enveloped by an autophagosome or fused with a lysosome [311].
Of note, mutations associated with ALS in genes such as OPTN and TBK1 have been
shown to disrupt mitophagy. This disruption may result in the accumulation of dysfunc-
tional mitochondria, potentially contributing to the neuronal degeneration observed in
ALS [313,314].

Recently, a novel concept has emerged regarding the removal of dysfunctional mi-
tochondria within cells, termed “mitoautophagy” [315]. In a groundbreaking study, it
was discovered that a substantial number of flawed mitochondria in corticospinal motor
neurons (CMNs), particularly in young prpTDP-43A315T and PFN1G118V mice, underwent
a self-destructive process without relying on lysosomes or autophagosomes as typically
observed in mitophagy [315]. Interestingly, distinct mechanisms of mitochondrial removal
were identified in CMNs from SOD1G93A and prpTDP-43A315T mice, with the former be-
ing autophagosomal dependent. This suggests that mitoautophagy might be specific to
TDP-43-associated pathology [315]. This difference was attributed to the absence of TDP-43
pathology in SOD1G93A mice [315]. As ALS patients with SOD1 mutations also lack TDP-43
pathology [315,316], this raised the possibility that various pathways for mitochondrial
removal are activated in MNs, each potentially playing a distinct role in ALS develop-
ment. Consequently, further research is warranted to comprehensively unravel the intricate
relationship between mitochondria and ALS pathological processes.

2.8. Apoptotic Mechanisms

The apoptosis in MNs plays a pivotal role in the neurodegeneration observed in ALS.
Various apoptotic markers have been identified in postmortem spinal cord tissues of ALS
patients [317,318] and ALS mouse models [319]. The activation of several caspases has been
closely associated with ALS neurodegeneration, encompassing upstream caspases 1 and 9
as well as downstream executioner caspases 3 and 7 [320–322]. Additionally, the release
of cytochrome c from mitochondria to the cytosol has been observed in the spinal cords
of SOD1G93A transgenic mice, underscoring the clear involvement of the mitochondrial
apoptotic pathway in mutSOD1-mediated toxicity [322].

In concert with apoptotic pathways, ROS and calcium overload have emerged as
common pathological features in the neurodegenerative process of ALS, implicating mi-
tochondrial dysfunctions and cell-death mechanisms. In terms of calcium uptake, it was
noted that mutSOD1 impaired mitochondrial calcium-loading capacity in the brain and
spinal cord of G93A mutant transgenic mice early in the disease course, long before motor
weakness sets in, and massive neuronal death occurred [323].

With respect to calcium dysregulation, several studies have explored the role of the
mitochondrial permeability transition pore (mPTP) in the degeneration of MNs in ALS.
The mPTP is a megachannel located in the IMM known to function in both physiological
and pathological conditions [324], including various neurodegenerative disorders [325].
While under normal physiological conditions, the mPTP serves as a rapid mitochondrial
efflux mechanism for managing ROS and calcium overload, under pathological conditions,
prolonged mPTP opening can lead to rapid mitochondrial swelling driven by the osmotic
pressure of matrix solutes. This ultimately results in the rupture of the OMM and the
collapse of ∆Ψm, culminating in apoptotic cell death when sufficient ATP is available or
necrosis when ATP levels are insufficient [326,327].
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Despite the ongoing quest to fully understand the molecular identity of the pore-
forming unit, various models have been proposed. These range from models that involve
regulatory proteins, such as cyclophilin D (Cyp-D), adenine nucleotide translocator (ANT),
VDAC, hexokinase-II (HK-II), mitochondrial creatine kinase (mtCK), and translocator
protein of 18 kDa (TSPO) [328,329], to more recent hypotheses that also encompass ATP
synthase [329,330].

Specifically concerning ALS, high expression levels of mPTP regulators, including
VDAC, ANT, and Cyp-D, were found in mouse MNs, as well as nitration of Cyp-D and
ANT in spinal cord fractions of symptomatic G93Ahigh-mSOD1 mice [331]. Additionally, the
genetic deletion of Cyp-D delayed disease onset and extended the survival of G93A-mSOD1
mice expressing high and low levels of the mutant protein. These findings suggest that
mPTP is involved in the causal mechanisms of MN degeneration in mouse ALS, partly
due to oxidative and nitrative damage to pore regulatory proteins [331]. Moreover, a
study comparing knockout Cyp-D mice overexpressing SOD1 mutations (G93A, G85R, and
G37R) with littermates overexpressing Cyp-D found that the absence of Cyp-D improved
mitochondrial ATP synthesis, reduced the levels of misfolded SOD1 aggregates in the
spinal cord, and suppressed MN death [332]. Intriguingly, an increased expression of
Cyp-D was also observed in association with mitochondrial ROS production and enhanced
mitoflash activity in the muscle of SOD1G93A transgenic mice at the onset of symptoms [333].
Furthermore, the application of cyclosporin A (CsA), an inhibitor of Cyp-D, attenuated
SOD1G93A-induced mitoflash activity, suggesting the involvement of mPTP opening in
muscle dysfunction [333].

Considering that the denervation of skeletal muscle deprives it of any electric
stimulation—resulting in the loss of physiological calcium uptake by mitochondria,
increasing mitochondrial ROS production and triggering mPTP opening—it is plausible
to propose that mPTP opening is a key element in the denervation process observed in
ALS [334]. Further research is required to elucidate this aspect comprehensively.

2.9. Mitochondrial Dysfunction as Cause and/or Consequence in ALS

As described above, mitochondrial dysfunction in ALS is a multifaceted phenomenon,
and determining whether it is a cause or consequence of the disease remains a challenge.
While the literature suggests that mitochondrial impairment is observed early in the dis-
ease process (e.g., [335–337]), pinpointing the exact initiating event is complicated by the
heterogeneity of ALS cases [187,338,339].

The fact that numerous studies reported mitochondrial abnormalities in ALS patients
and animal models at early, pre-symptomatic stages suggests that mitochondrial dysfunc-
tion is an early event in the disease cascade, possibly contributing to the initiation or
acceleration of ALS pathogenesis. On the other hand, mitochondrial dysfunction could
also be a consequence of the disease’s evolution. Motor neuron degeneration, protein ag-
gregation, and other ALS-related mechanisms may induce stress on mitochondria, leading
to their dysfunction as a downstream effect [340]. Importantly, mitochondrial dysfunction
and ALS pathogenesis may engage in a reciprocal relationship, forming a vicious cycle;
initial mitochondrial impairment could exacerbate disease progression, while ongoing
neurodegeneration may further compromise mitochondrial function. The presence of spe-
cific genetic mutations associated with both mitochondrial function and ALS adds another
layer of complexity. Interactions between genetic susceptibility and environmental factors
may influence the dynamics of mitochondrial involvement in ALS. The elusive nature
of causality underscores the urgency of continued investigations to unravel the intricate
relationship between mitochondria and ALS, paving the way for targeted and effective
therapeutic interventions.

3. Preclinical and Clinical Endeavors Targeting Mitochondria

Understanding and harnessing ways to enhance mitochondrial function has emerged
as a promising avenue for therapeutic development in ALS and other neurodegenerative
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diseases. This section delves into innovative approaches, compounds, and therapies that
target mitochondria to restore their vitality, promote cellular energy production, and ulti-
mately address the underlying causes of diseases associated with mitochondrial dysfunc-
tions, such as ALS. From metabolic enhancers to antioxidants and mitochondria-targeted
agents, these approaches offer hope for more effective treatments and improved quality of
life for those affected by ALS and other mitochondrial-related conditions (Figure 3). The
results of relevant clinical trials (Table 1) will also be discussed in this section.

Table 1. Clinical trials discussed in this review.

Clinical
Trial ID Study Name Condition Phase/Type Sponsor Starting

Date
End
Date

Number of
Patients

NCT01257581
Phase 2 Selection Trial of High Dosage

Creatine and Two Dosages of Tamoxifen in
Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 2

Nazem Atassi,
Massachusetts

General Hospital
2011-03 2013-02 60

NCT02306590
Efficacy, Safety and Tolerability of High
Lipid and Calorie Supplementation in

Amyotrophic Lateral Sclerosis

Amyotrophic
Lateral Sclerosis

(ALS)

Prospective,
multicenter,
randomized,

stratified,
parallel-group,

double-blind trial

Albert Christian
Ludolph, Prof.,

University
of Ulm

2015-02 2018-09 207

NCT04172792

Safety and Tolerability of Fat-rich vs.
Carbohydrate-rich High-caloric Food

Supplements in Patients with Amyotrophic
Lateral Sclerosis (ALS)

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 1

Albert Christian
Ludolph, Prof.,

University
of Ulm

2019-11 2021-04 64

NCT00243932 Clinical Trial of High Dose CoQ10 in ALS
Amyotrophic

Lateral Sclerosis
(ALS)

Phase 2 Columbia
University 2005-04 2008-03 185

NCT01492686
Efficacy and Safety Study of MCI-186 for
Treatment of Patients with Amyotrophic

Lateral Sclerosis (ALS) 2

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 3

Mitsubishi
Tanabe Pharma

Corporation
2011-12 2014-10 137

NCT04165824 Safety Study of Oral Edaravone
Administered in Subjects with ALS

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 3

Mitsubishi
Tanabe Pharma

America Inc.
2019-11 2021-10 185

NCT01281189

A Randomized, Double-Blind,
Placebo-Controlled, Multi-Center Study of
the Safety and Efficacy of Dexpramipexole

in Subjects with Amyotrophic
Lateral Sclerosis

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 3 Knopp

Biosciences 2011-03 2012-11 942

NCT00329056

A Double-Blind, Prospective, Randomized
Comparison of 2 Doses of MitoQ and

Placebo for the Treatment of Patients with
Parkinson’s Disease

Parkinson’s
Disease (PD)

Double-Blind,
Prospective,
Randomized
Comparison

Antipodean
Pharmaceuticals,

Inc.
2006-05 2007-11 128

NCT00047723 Minocycline to Treat Amyotrophic
Lateral Sclerosis

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 3

National Institute
of Neurological
Disorders and

Stroke (NINDS)

2003-01 2007-01 400

NCT01232738

A Multi-Center Controlled Screening Trial
of Safety and Efficacy of Rasagiline in

Subjects with Amyotrophic Lateral
Sclerosis (ALS)

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 2

Yunxia Wang,
MD, University

of Kansas
Medical Center

2011-12 2013-05 36

NCT01786603 Rasagiline in Subjects with Amyotrophic
Lateral Sclerosis (ALS)

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 2

Richard Barohn,
MD, University

of Kansas
Medical Center

2013-11 2016-07 80

NCT01879241

Efficacy, Safety, and Tolerability Study of 1
mg Rasagiline in Patients with

Amyotrophic Lateral Sclerosis (ALS)
Receiving Standard Therapy (Riluzole)-An

AMG Trial with a Market
Authorized Substance

Amyotrophic
Lateral Sclerosis

(ALS)
Phase 2

Albert Christian
Ludolph, Prof.,

University
of Ulm

2013-06 2016-08 252
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Figure 3. Mitochondria-targeted therapies for ALS featuring (A) metabolic enhancers, (B) antiox-
idants, and (C) anti-apoptotic agents. Abbreviations: AcCoA: acetyl coenzyme A; CK: Creatine
kinase; ETC: electron transport chain; FAO: fatty acid beta-oxidation; mPTP: mitochondrial perme-
ability transition pore; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PDP,
pyruvate dehydrogenase phosphatase; ROS: reactive oxygen species; RNS: reactive nitrogen species;
TCA: tricarboxylic acid cycle.

3.1. Approaches for Direct Enhancement of Mitochondrial Function

Metabolic enhancers represent a compelling class of therapeutic interventions in the
context of ALS and other neurodegenerative disorders. These approaches aim to boost
cellular energy production and stimulate mitochondrial function. As metabolic deficits are
a hallmark feature in ALS, emerging research suggests that enhancing metabolic pathways
within mitochondria may hold the key to slowing or mitigating disease progression.

3.1.1. Dichloroacetate

Dichloroacetate (DCA), investigated in multiple neurodegenerative diseases [341],
represents an alternative approach for indirectly enhancing mitochondrial function. As
a pyruvate dehydrogenase kinase (PDK) inhibitor, DCA stimulates the conversion of
pyruvate to acetyl coenzyme A (AcCoA), supplying additional energy substrates to the
TCA cycle (Figure 3A).

Administered to mutant SOD1G93A or SOD1G86R mice at 500 mg/kg/day during the
pre-symptomatic stage, DCA improved survival, delayed disease onset, reduced spinal
motor neuron loss, and enhanced mitochondrial function [173,342]. For example, DCA
treatment in SOD1G86R mice not only improved glycolytic capacity but also upregulated
the expression of genes associated with mitochondrial biogenesis (e.g., Pgc-1α and Mfn2),
believed to impede disease progression in this animal model [173]. Moreover, DCA (5 mM)
improved the mitochondrial function of abnormal glial cells isolated from the spinal cords
of adult paralytic SOD1G93A rats, enhancing respiratory capacity and decreasing toxicity to
MNs [343].

Additionally, administering DCA (100 mg/kg for 10 days) to symptomatic SOD1G93A

rats reduced MN degeneration, gliosis, and the number of GFAP/S100β double-labeled hy-
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pertrophic glial cells in the spinal cord. These findings indicate DCA’s potential therapeutic
strategy for ALS by modulating glial metabolism and mitigating MN degeneration [343].

However, no clinical trials have assessed DCA effectiveness in ALS patients, necessi-
tating further research.

3.1.2. Ketogenic and High-Fat Diets

Various dietary interventions aim to delay ALS progression and counteract the hyper-
metabolism associated with the condition. Two notable approaches include the Ketogenic
Diet (KD) [344,345] and the High-Fat Diet (HFD) [136,346–348] (Figure 3A).

A KD, characterized by high fat intake, increases circulating ketones, while restrict-
ing carbohydrates and proteins [349,350]. The primary ketones acetoacetate and D-β-3-
hydroxybutyrate, produced in the liver, serve as an energy source when glucose availability
is limited [351]. Studies report that a KD, comprising 60% fat, 20% carbohydrates, and 20%
protein, improves motor function and safeguards MNs in SOD1G93A mice [344,345].

This diet exerts its effects partially through alterations in mitochondrial function,
promoting ATP synthesis, and restoring the activity of complex I in the ETC, which is
often impaired in ALS [345]. Furthermore, it was demonstrated that caprylic triglyceride,
a precursor to ketone bodies, enhanced motor function and protected MNs in SOD1G93A

mice by boosting oxidative metabolism, thereby increasing mitochondrial basal and max-
imum oxygen consumption [344]. Converted rapidly to caprylic acid, it easily traverses
membranes, becoming β-oxidized to AcCoA in the mitochondria. Consequently, it supplies
ketone bodies to the TCA cycle, serving as a rapid energy source when cellular glucose
levels are low. Notably, neither the KD nor caprylic triglyceride significantly altered the
survival of SOD1-G93A transgenic mice [344,345].

Regarding the HFD, studies have indicated its potential to slow disease progression in
ALS mouse models. One study employing a diet composed of 47% fat, 38% carbohydrates,
and 15% protein reduced disease progression in a SOD1G93A mouse model [348]. Similarly,
another study utilizing a HFD comprising 21% fat and 0.15% cholesterol extended the mean
survival of SOD1G86R mice [136]. To investigate the impact of high-caloric diets on ALS
patients, a double-blinded trial known as the LIPCAL-ALS study (NCT02306590) enrolled
201 patients; participants were assigned to receive either a high-caloric fatty diet (HCFD,
405 kcal/day, 100% fat) or a placebo in conjunction with riluzole (100 mg/day). However,
the results did not provide conclusive evidence of a life-prolonging effect of the diet on
the overall ALS patient population. Nevertheless, post-hoc analysis revealed a significant
survival benefit for a subgroup of fast-progressing patients [352]. Given the potential
influence of caloric content on the intervention’s efficacy, a clinical Phase I LIPCALII study
(NCT04172792) is set to explore whether an ultra-high caloric diet (UHCD), featuring twice
the caloric content compared to LIPCAL-ALS, can be well tolerated by ALS patients over
four weeks and if it can exceed the beneficial effects of LIPCAL-ALS. In another study [353]
assessing the effects of a high-caloric nutrition protocol on ALS patients with percutaneous
gastrostomy, 40 patients were randomly assigned to either a routine diet (control group) or
high-caloric nutrition combined with the routine diet (Ensure group) for six months. This
study demonstrated a significant increase in cumulative survival rates in the Ensure group,
suggesting the potential of this approach to enhance nutritional status and longevity.

In summary, the mechanisms through which HFD and KD modify ALS disease pro-
gression in mouse models are unclear. However, it is suggested that the high fat content
of these diets might elevate phospholipids and cholesterol, which are crucial components
for axonal membrane assembly and regeneration [354]. In alignment with this hypothesis,
it was demonstrated that abnormally elevated cholesterol levels were associated with
increased survival in ALS patients, by more than 12 months, suggesting hyperlipidemia as
a prognostic factor [355].
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3.1.3. Acetyl-Carnitine

Acetyl-carnitine (ALC) is a crucial cellular source of acetyl groups (Figure 3A), particu-
larly in high-energy demanding situations, playing a pivotal role in transporting long-chain
fatty acids across mitochondrial membranes and limiting β-oxidation rates [356].

Studies administering 50 mg/kg/day of ALC orally before disease onset significantly
delayed symptoms, slowed motor function deterioration, and extended lifespan in mutant
SOD1G93A mice; subcutaneous ALC injection to symptomatic mutant SOD1G93A mice
improved survival [357].

In a randomized double-blind, placebo-controlled Phase II trial involving 82 patients
receiving 3 g/day of ACL or a placebo with riluzole (100 mg/day), ALC demonstrated mild
enhancements in ALSFRS score and respiratory capacity. Notably, it doubled the median
survival range compared to the placebo group, indicating effectiveness, tolerability, and
safety in ALS treatment [358]. A recent study involving 32 ALS patients revealed ALC’s
improvement in the redox state, persisting six months post-treatment, offering potential
disease biomarkers and drug effects indicators in clinical practice and trials [359].

3.2. Antioxidants

Mitochondrial dysfunction, either causal or consequential to oxidative stress, con-
tributes to ALS pathogenesis. While oxidative damage and mitochondrial dysfunction
are recognized contributors to ALS pathogenesis, it is disheartening that all antioxidant
treatments tested in patients have thus far proved ineffective. This highlights the urgent
need for advancements in antioxidant therapies for ALS treatment. In the following section,
we delve into various preclinical and clinical trials, both completed and ongoing, that
explore antioxidants capable of influencing mitochondrial homeostasis (Figure 3B).

3.2.1. N-acetyl-L-cysteine (NAC)

N-acetyl-L-cysteine (NAC), a membrane-permeable antioxidant, replenishes cellular
cysteine and glutathione pools, mitigating free radical damage [360,361] (Figure 3B). In a
preclinical study, NAC (1 mM, 24 h) attenuated mitochondrial ROS production, restored
MTT reduction rates to control levels, and elevated ATP levels in human neuroblastoma
SH-SY5Y cell lines harboring the SOD1G93A mutation [362]. In SOD1G93A transgenic mice,
a daily dose of 2.0 mg/kg significantly extended survival and improved motor perfor-
mance [360]. However, a double-blind, placebo-controlled clinical trial involving 110
ALS patients using subcutaneous NAC infusion (50 mg/kg daily) did not show a sub-
stantial increase in 12-month survival or disease progression slowdown [363]. In G93A
mice, intranasal NAC administration with the nanocarrier PEG-PCL-Tat significantly in-
creased spinal cord accumulation, extending median survival by 11.5 days. These findings
highlight the potential of this approach as a promising Drug Delivery System for ALS
therapeutics [364]. However, the potential benefits of NAC in ALS remain uncertain, neces-
sitating further clinical trials in humans. The ability of NAC to traverse the Blood–Brain
Barrier (BBB) has been a subject of controversy and is likely influenced by dosage and
administration routes [365]. Consequently, multiple NAC derivatives have been synthe-
sized to overcome this limitation. Important examples include N-acetylcysteine ethyl ester
(NACET), which is proposed to improve pharmacokinetics but undergoes rapid transfor-
mation into NAC and cysteine resulting low plasma levels [366]; N-acetylcysteine butyl
ester (NACBE), which is highly lipophilic and was shown to have superior effects after
oxidative insult exposure compared to NAC [367]; and N-acetylcysteine amide (NACA),
which was developed to enhance lipophilicity, membrane permeability, and the capability
to traverse the BBB [368]. Previous studies have supported the protective properties of
NACA, suggesting its potential clinical utility [369].

3.2.2. Edaravone

Edaravone, the active component of Radicut®, is a potent free radical scavenger widely
employed in the treatment of cerebral ischemia in Japan [370,371]. Its neuroprotective



Cells 2024, 13, 248 24 of 46

role arose from its ability to eliminate lipid peroxides and hydroxyl radicals [372,373]
(Figure 3B). While the precise mechanisms are not fully understood, it has been proposed
that in addition to its radical-scavenging properties, edaravone might inhibit the mPTP,
contributing to its neuroprotective effects [374]. It benefits various CNS cell types, including
neurons, microglia [375], astrocytes [376], and oligodendrocytes [377], partly attributable to
its anti-inflammatory properties [378]. Preclinical studies indicate improved motor function,
slowed disease progression, and mitigated motor neuron degeneration in transgenic SOD1
rodent models of ALS treated with edaravone doses ranging from 1.5 to 15 mg/kg [379,380].

In an open-label Phase II study with 20 ALS patients, intravenous administration of
edaravone (30 or 60 mg daily) was safe, well-tolerated, and slowed disease progression, as
measured by the ALS-FRS scale, during the six-month treatment period compared to the
six months before edaravone administration [381]. A subsequent double-blind, placebo-
controlled study with 102 ALS patients showed a smaller reduction in ALSFRS-R scores in
the edaravone group over a 24-week treatment period [371].

In a recent Phase III study (NCT01492686), a 24-week, double-blind, parallel-group
study of edaravone showed less decline in ALSFRS-R scores at 6 months and less deteriora-
tion in quality of life in patients receiving edaravone compared to those receiving standard
care [382]. Currently, edaravone is approved for ALS treatment in Japan and South Korea
and it was also approved by the FDA in May 2017 [383]. However, the precise mechanism
of action of edaravone in ALS treatment remains to be fully elucidated.

A Phase I trial of an oral formulation of edaravone (TW001) developed by the Treeway
company demonstrated safety, tolerability, and adequate exposure levels [384]. Further-
more, in a Phase III trial (NCT04165824), oral edaravone showed a favorable safety profile
in ALS patients after 48 weeks of treatment [385]. A recent meta-analysis [386] suggests
potential clinical benefits of edaravone in ALS treatment, with no significant increase in
adverse events or deaths in compiled randomized clinical trials. However, more high-
quality research is needed for further confirmation due to the small sample sizes in the
included studies.

3.2.3. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine), a neurohormone secreted by the pineal
gland, possesses ROS-scavenging activity and amphiphilic properties, permeating both
lipophilic and hydrophilic cellular environments [387] (Figure 3B). Its potential as an
experimental drug has been explored in various neurodegenerative diseases characterized
by excessive ROS production owing to its robust antioxidant properties [388].

In addition to acting as a potent free radical scavenger, melatonin augments cellular
antioxidant defenses by stimulating vital antioxidant enzymes (SOD, glutathione peroxi-
dase, and glutathione reductase) and elevating GSH levels [389]. Furthermore, melatonin
plays a role in preserving mitochondrial homeostasis, decreasing free radical generation,
and protecting mitochondrial ATP synthesis by stimulating the activities of complexes I
and IV [390].

In transgenic SOD1G93A mice, the oral administration of melatonin (57–88 mg/kg/day)
at the pre-symptomatic stage delayed disease progression and extended survival [87]. The
same study demonstrated that the rectal administration of 300 mg/day of melatonin in
31 sALS patients was well tolerated over 2 years, reducing circulating serum protein
carbonyl levels. However, it did not show upregulation of genes encoding antioxidant
enzymes [87]. The decreased oxidative damage in ALS patients under melatonin treatment,
coupled with its established safety in humans, emphasizes the need for further clinical
trials to elucidate its neuroprotective effects in ALS.

More recently, it was reported that administering melatonin (30 mg/kg) to pre-
symptomatic SOD1G93A-transgenic mice significantly delayed disease onset, neurolog-
ical deterioration, and mortality [391]. These effects involved inhibition of the caspase-
1/cytochrome c/caspase-3 pathways and the loss of melatonin receptor 1A. Conversely,
melatonin administration (0.5, 2.5, and 50 mg/kg, i.p.) to pre-symptomatic SOD1G93A-
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transgenic mice reduced their survival [392]. This study revealed increased MN loss,
elevated 4-hydroxynonenal (4-HNE) levels, and upregulated expression of human SOD1 in
mice treated with melatonin compared to untreated animals. These findings suggest that
melatonin might exacerbate the phenotype in the SOD1G93A mouse ALS model due to the
upregulation of toxic human SOD1, which may override its antioxidant and anti-apoptotic
effects [392]. This raises the possibility that the SOD1G93A ALS mouse model may not be
ideal for evaluating the neuroprotective properties of melatonin or other compounds with
complex antioxidative properties. Further research is warranted to unravel the mechanisms
of melatonin’s action and determine whether its antioxidant and anti-apoptotic effects can
translate into clinical benefits.

3.2.4. Mitochondria-Targeted Antioxidants

One promising avenue in ALS research involves mitochondria-targeted antioxidants,
such as 10-(60-ubiquinonyl) decyltriphenylphosphonium, known as MitoQ (Figure 3B).
This compound features a triphenylphosphonium (TPP) functional group linked to the
antioxidant ubiquinone [393] that penetrates biological membranes and selectively accu-
mulates within mitochondria, driven by the ∆Ψm [394]. Positioned within mitochondria,
MitoQ effectively shields these critical organelles from oxidative damage [393,395].

Inside mitochondria, complex II reduces the ubiquinone moiety of MitoQ to its active
ubiquinol form, bolstering the defense against oxidative damage [395]. Various oxidants
can convert ubiquinol back to ubiquinone, efficiently reversed by the respiratory chain [396]
and ensuring continual recycling. MitoQ efficiently mitigates oxidative damage in chronic
hepatitis C virus patients, decreasing liver damage [397]. Additionally, it has shown
promise in neurodegenerative diseases like Parkinson’s [398,399] and Alzheimer’s [400,401],
by decreasing oxidative damage. However, a Phase II clinical trial for Parkinson’s disease
(NCT00329056) yielded disappointing results [402].

Despite the setback in Parkinson’s disease trials, MitoQ has shown potential in ALS; it
ameliorated nitroxidative stress and mitochondrial dysfunction in astrocytes expressing
SOD1G93A, decreasing toxicity to MNs in co-cultures [403]. In SOD1G93A mice, MitoQ
(500 µM) administration improved the ALS phenotype by slowing mitochondrial function
decline in the spinal cord and quadriceps muscle, increasing the lifespan of the animals [404].
This treatment reduced nitroxidative markers and pathological signs in the spinal cord
along with the recovery of neuromuscular junctions and a marked increase in hindlimb
strength [404]. MitoQ rapidly crosses the BBB [400] and is well tolerated in animals and
humans [397], with nausea being the most common side effect [405].

These findings underscore the potential of mitochondria-directed antioxidants as a
strategy to delay ALS symptoms, warranting further development.

Another mitochondria-targeted antioxidant in ALS research is the mitochondria-
targeted carboxy-proxyl (Mito-CP). Like MitoQ, this features a TPP cation covalently
coupled to carboxy-proxyl nitroxide, accumulating within mitochondria [406]. Low doses
of Mito-CP (1–10 nM) effectively prevented MN death expressing SOD1G93A induced by
proapoptotic stimuli that trigger ROS formation [407]. It also prevented mitochondrial
dysfunction, decreasing O2

.− production in SOD1G93A astrocytes and promoting MN
survival [403].

While these results are promising, further investigations are necessary to explore other mi-
tochondriotropic compounds, focusing on reducing toxicity and enhancing therapeutic efficacy.

In addition, it is crucial to prioritize investment in the development of ALS models that
faithfully represent the diverse subtypes of the disease. This approach aims to address the
challenge of translating positive effects observed in preclinical trials with antioxidants into
meaningful efficacy during clinical trials. These models should serve as robust platforms
for conducting preclinical trials before advancing to clinical trials [22]. Human induced
pluripotent stem cells have opened avenues to explore therapeutic development relevant
to human diseases [408,409]. An example is the generation of MNs from a patient-derived
iPSC line carrying the SOD1-A4V mutation that demonstrated significant disease pheno-
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types, including proteinopathy, structural attrition, axonopathy, synaptic pathology, and
functional defects. This model holds the potential to emerge as a robust preclinical platform
for evaluating the therapeutic efficacy of diverse molecules in addressing this disease [66].

3.3. Antiapoptotic Agents
3.3.1. mPTP-Targeting Agents

As discussed in Section 2.8, emerging evidence points towards the involvement of
mPTP in ALS pathogenesis. Initial studies used CsA, which, when administered intrac-
erebroventricularly (25 µg every other day) at the symptomatic stage in SOD1G93A mice,
extended their survival [410]. Similarly, intracerebroventricular administration of CsA
(20 µg/mouse/week) in pre-symptomatic SOD1G93A mice delayed the onset of hindlimb
weakness, prolonged the time from onset to paralysis, and extended life span [411]. How-
ever, it is important to note that CyA struggles to cross the BBB [411,412] and its benefits
could be confounded by its immunosuppressant effects due to calcineurin inhibition. There-
fore, it is advisable to explore other mPTP inhibitors that lack calcineurin effects.

One such strategy involves mPTP stabilization using cholest-4-en-3-one oxime, known
as olesoxime (TRO19622), which binds to VDAC and TSPO [413,414] (Figure 3C). Subcuta-
neous administration of TRO19622 (3 or 30 mg/kg) in pre-symptomatic SOD1G93A mice
improved motor function and prolonged survival [415]. Additionally, administration of
TRO19622 (600 mg/kg of food pellets) in pre-symptomatic SOD1G93A mice delayed muscle
denervation, decreased astrogliosis, prevented microglia activation, and protected MNs
in the lumbar spinal cord, suggesting its potential as a neuroprotective agent to delay
ALS neurodegeneration [416]. However, a Phase II–III clinical trial failed to demonstrate
efficacy in 512 ALS patients receiving 330 mg TRO19622 daily compared to a matching
placebo group receiving 50 mg riluzole twice a day for 18 months. None of the assessed
parameters, including slow vital capacity, manual muscle testing, and rates of deterio-
ration of ALSFRS-R scores, revealed a significant clinical benefit of TRO19622 treatment
compared with the placebo, except for a minimal increase in the ALSFRS-R global score
over 9 months [417]. Several factors may explain the absence of clinical efficacy, including
differences in the timing of administration relative to disease onset, the limitations of
animal models in predicting clinical outcomes [418], and the need for further investigation
into the survival-promoting effects of TRO19622 on human MNs derived from ALS patient
induced pluripotent stem cells [419].

Another compound of interest is GNX-4728, a cinnamic anilide derivative that in-
hibits mPTP opening and has shown promise in the SODG93A mouse model (Figure 3C).
Systemic treatment with GNX-4728 (15 mg/kg) in C57BL/6 mice significantly increased
mitochondrial calcium retention capacity (CRC) in the heart and brain. Importantly, the
increase in CRC in the brain suggests its potential to cross the BBB [420]. Furthermore,
systemic administration of GNX-4728 (300 µg every other day, i.p.) in pre-symptomatic
SOD1G37R mice delayed disease onset, increased lifespan, protected against motor neuron
and mitochondrial degeneration, attenuated spinal cord inflammation, and preserved
neuromuscular junction (NMJ) innervation in the diaphragm in ALS mice [420].

These findings highlight the potential of mPTP-targeting agents as a therapeutic
approach in ALS, with the need for further research to optimize their clinical translation.

3.3.2. Rasagiline

Rasagiline, a monoamine oxidase B inhibitor primarily used to treat Parkinson’s
disease [421,422], has shown neuroprotective properties beyond its MAO inhibitory activ-
ity [423] (Figure 3C). In vitro studies suggest its neuroprotective role, partly mediated by
anti-apoptotic properties [424–426]. Rasagiline may protect mitochondria by preventing
mPTP opening, inhibiting caspase 3 activation [425], or by upregulating the anti-apoptotic
Bcl-2 and Bcl-xL genes and downregulating the pro-apoptotic Bad and Bax genes [426].

In ALS, oral rasagiline (0.5–2 mg/kg/day), administered alone or with riluzole
(30 mg/kg/day) at the pre-symptomatic stage, improved motor performance and extended
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survival in SOD1G93A mice [427]. A Phase II clinical trial involving 23 ALS patients receiv-
ing rasagiline (2 mg/day) showed increased ∆Ψm and oxygen radical antioxidant capacity
(ORAC) in lymphocytes and a decrease in the apoptotic marker Bcl-2/Bax ratio [428]. While
this trial did not find significant improvements in the rate of ALSFRS-R score decline, it
did identify differences in symptom duration among patients administered who received
rasagiline compared to placebo controls (NCT01232738) [428]. This raises the question of
whether rasagiline-induced mitochondrial changes could slow motor function decline and
extend ALS patient survival.

However, another Phase II clinical trial involving 80 ALS patients receiving rasagiline
(2 mg/day for 12 months) did not demonstrate improvements in mitochondrial and molec-
ular biomarkers (∆Ψm, ORAC, and Bcl-2/Bax ratio) or differences in the average 12-month
ALSFRS-R slope between the rasagiline and placebo groups. Variability among patients
and differences in sample processing timing at various centers involved in this clinical
trial (NCT01786603) may explain the discrepant results regarding rasagiline’s impact on
mitochondrial markers [429].

Post-hoc analysis of a Phase II clinical trial involving 252 patients (NCT01879241)
suggested that 1 mg of rasagiline, in addition to riluzole (100 mg/day), could slow disease
progression in patients with normal to fast disease progression. This effect was observed in
function (ALSFRS-R decline at 6, 12, and 18 months) and survival (at 6 and 12 months) [430].
This study emphasizes the importance of stratifying disease progression rates in clinical
trials, as the response to drugs and their disease-modifying effects may vary according to
progression rate [430]. However, as the trial did not initially specify an analysis by progres-
sion rate, cautious interpretation is necessary. Future clinical trials are needed to establish
rasagiline’s therapeutic potential in ALS, especially for normal- to fast-progressing forms.

In conclusion, rasagiline’s effects in ALS research reveal its complex potential as a
therapeutic agent, with varying outcomes in clinical trials. Further research and careful
patient stratification are essential to unlock its full therapeutic benefits in ALS treatment.

4. Conclusions

Throughout this review, we have delved into the complex interplay between mito-
chondrial dysfunction and the pathogenesis of ALS, a multifaceted disease characterized
by the progressive degeneration of MNs and with elusive therapeutic options.

Mitochondria have emerged as a compelling convergent target for ALS treatment.
Mitochondrial dysfunction, encompassing bioenergetic deficits, oxidative stress, impaired
calcium handling, and disrupted dynamics, plays a pivotal role in the cascade of events that
ultimately leads to motor neuron demise in ALS. The evidence gleaned from preclinical
models and clinical trials underscores the significance of mitochondrial abnormalities
in this devastating disease. As the intricate web of mechanisms underpinning ALS has
unraveled, mitochondria have emerged as a nexus where various pathological processes
converge. The potential of mitochondria as a therapeutic target in ALS is multifaceted
and encompasses:

1. Restoring Energy Balance: Mitochondrial dysfunction in ALS often leads to a decline
in cellular energy production, which is particularly detrimental to highly energy-
demanding MNs. Strategies aimed at rejuvenating mitochondrial function and en-
suring an adequate supply of ATP hold promise in sustaining motor neuron health
and function.

2. Attenuating Oxidative Stress: Mitochondria are both sources and targets of oxida-
tive stress in ALS. Therapies aimed at reducing mitochondrial-generated ROS and
bolstering endogenous antioxidant defenses offer potential avenues for alleviating
oxidative damage.

3. Regulating Calcium Homeostasis: Impaired calcium homeostasis in ALS contributes
to mitochondrial dysfunction and subsequent neuronal death. Interventions that
restore the calcium balance within neurons and mitochondria may mitigate excitotoxi-
city and improve neuronal survival.
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4. Enhancing Mitochondrial Dynamics: Maintaining a healthy mitochondrial network
through processes such as fission, fusion, and mitophagy is crucial for cellular health.
Targeting these dynamic processes to ensure the timely removal of damaged mitochon-
dria and the efficient distribution of healthy ones may have therapeutic implications.

5. Unveiling Genetic Insights: Genetic mutations associated with ALS, such as those
in the SOD1, C9ORF72, and FUS genes, can directly impact mitochondrial function.
Understanding the precise mechanisms by which these mutations affect mitochondria
could pave the way for gene-specific therapies.

As we reflect on the current state of ALS research and treatment, it is evident that
mitochondrial-targeted strategies hold significant potential. Several promising compounds,
such as NAC, CoQ10, MitoQ, and other mitochondria-targeting antioxidants, have shown
efficacy in preclinical models by mitigating mitochondrial dysfunction and delaying dis-
ease progression. These candidates provide a glimmer of hope for ALS patients and
their families.
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