Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Authors = Yuzhu Xiong

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5763 KiB  
Article
Sodium Alginate/UiO-66-NH2 Nanocomposite for Phosphate Removal
by Xiaohang Lin, Yuzhu Xiong and Fuping Dong
Nanomaterials 2024, 14(14), 1176; https://doi.org/10.3390/nano14141176 - 10 Jul 2024
Cited by 5 | Viewed by 2203
Abstract
Environmental pollution of phosphorus is becoming increasingly concerning, and phosphate removal from water has become an important issue for controlling eutrophication. Modified metal–organic framework (MOF) materials, such as UiO-66-NH2, are promising adsorbents for phosphate removal in aquatic environments due to their [...] Read more.
Environmental pollution of phosphorus is becoming increasingly concerning, and phosphate removal from water has become an important issue for controlling eutrophication. Modified metal–organic framework (MOF) materials, such as UiO-66-NH2, are promising adsorbents for phosphate removal in aquatic environments due to their high specific surface area, high porosity, and open active metal sites. In this study, a millimeter-sized alginate/UiO-66-NH2 composite hydrogel modified by polyethyleneimine (UiO-66-NH2/SA@PEI) was prepared. The entrapping of UiO-66-NH2 in the alginate microspheres and its modification with PEI facilitate easy separation in addition to enhanced adsorption properties. The materials were characterized by SEM, FTIR, XRD, and BET. Static, dynamic, and cyclic adsorption experiments were conducted under different pH, temperature, adsorbent dosage, and initial concentration conditions to assess the phosphate adsorption ability of UiO-66-NH2/SA@PEI. Under optimal conditions of 65 °C and pH = 2, 0.05 g UiO-66-NH2/SA@PEI adsorbed 68.75 mg/g, and the adsorption rate remained at 99% after five cycles of UiO-66-NH2/SA@PEI. These results suggest that UiO-66-NH2/SA@PEI composite materials can be used as an effective adsorbent for phosphate removal from wastewater. Full article
(This article belongs to the Special Issue Advanced Porous Nanomaterials: Synthesis, Properties, and Application)
Show Figures

Figure 1

13 pages, 11433 KiB  
Article
Nitrogen-Rich Porous Organic Polymers from an Irreversible Amine–Epoxy Reaction for Pd Nanocatalyst Carrier
by Ailing Li, Fuping Dong and Yuzhu Xiong
Molecules 2023, 28(12), 4731; https://doi.org/10.3390/molecules28124731 - 13 Jun 2023
Cited by 2 | Viewed by 1789
Abstract
Nitrogen-rich porous organic polymers were fabricated through a nonreversible ring-opening reaction from polyamines and polyepoxides (PAEs). The epoxide groups reacted with both primary and secondary amines provided by the polyamines at different epoxide/amine ratios with polyethylene glycol as the solvent to form the [...] Read more.
Nitrogen-rich porous organic polymers were fabricated through a nonreversible ring-opening reaction from polyamines and polyepoxides (PAEs). The epoxide groups reacted with both primary and secondary amines provided by the polyamines at different epoxide/amine ratios with polyethylene glycol as the solvent to form the porous materials. Fourier-transform infrared spectroscopy confirmed the occurrence of ring opening between the polyamines and polyepoxides. The porous structure of the materials was confirmed through N2 adsorption–desorption data and scanning electron microscopy images. The polymers were found to possess both crystalline and noncrystalline structures, as evidenced by X-ray diffraction and high-resolution transmission electron microscopy (HR-TEM) results. The HR-TEM images revealed a thin, sheet-like layered structure with ordered orientations, and the lattice fringe spacing measured from these images was consistent with the interlayer of the PAEs. Additionally, the selected area electron diffraction pattern indicated that the PAEs contained a hexagonal crystal structure. The Pd catalyst was fabricated in situ onto the PAEs support by the NaBH₄ reduction of the Au precursor, and the size of the nano-Pd was about 6.9 nm. The high nitrogen content of the polymer backbone combined with Pd noble nanometals resulted in excellent catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol. Full article
Show Figures

Figure 1

15 pages, 2827 KiB  
Article
Impact of Pressure on Arsenic Released from Pore Water in Clayey Sediment
by Cong Xiao, Yuzhu Chen, Teng Ma and Wen Xiong
Toxics 2022, 10(12), 738; https://doi.org/10.3390/toxics10120738 - 29 Nov 2022
Cited by 3 | Viewed by 1764
Abstract
Overpumping can cause arsenic to be released from the pore water in clayey aquitards into aquifers. The amount of water pumped during groundwater exploitation may change over time, leading to different soil-compaction rates or patterns. However, the impact of pressure on the release [...] Read more.
Overpumping can cause arsenic to be released from the pore water in clayey aquitards into aquifers. The amount of water pumped during groundwater exploitation may change over time, leading to different soil-compaction rates or patterns. However, the impact of pressure on the release of arsenic during the compaction of a clayey aquitard is poorly understood. We performed a laboratory-compaction experiment using clayey sediment to identify the effects of compaction rates and patterns on arsenic release by analyzing the chemical characteristics and arsenic species present in pore water samples collected at different stages of the compaction experiment. A rapid (PV increased linearly) and a slow (PV increased exponentially) water-release patterns were recognized according to the compaction rate. We observed that arsenic concentrations in the slow pattern (6.7 to 36.4 μg/L) were considerably higher than those in the rapid pattern (7.6 to 16.1 μg/L). Furthermore, concentrations were the highest in the accelerated compaction pattern (16.8 to 47.4 μg/L), followed by those in the constant and decelerated patterns (4.3 to 14.4 μg/L). Overall, compaction rate and pattern did not alter the arsenic-release mechanism; however, they did alter the moisture content of the sediment at each stage, which indirectly led to differences in the released arsenic concentrations. These results suggest that pumping rates and patterns must be considered to prevent arsenic contamination in groundwater-extraction scenarios. Full article
Show Figures

Figure 1

15 pages, 4463 KiB  
Article
In Situ Growth of Zeolitic Imidazolate Framework-L in Macroporous PVA/CMC/PEG Composite Hydrogels with Synergistic Antibacterial and Rapid Hemostatic Functions for Wound Dressing
by Hang Yang, Xianyu Lan and Yuzhu Xiong
Gels 2022, 8(5), 279; https://doi.org/10.3390/gels8050279 - 1 May 2022
Cited by 20 | Viewed by 4287
Abstract
Although many advances have been made in medicine, traumatic bleeding and wound infection are two of the most serious threats to human health. To achieve rapid hemostasis and prevent infection by pathogenic microbes, the development of new hemostatic and antibacterial materials has recently [...] Read more.
Although many advances have been made in medicine, traumatic bleeding and wound infection are two of the most serious threats to human health. To achieve rapid hemostasis and prevent infection by pathogenic microbes, the development of new hemostatic and antibacterial materials has recently gained significant attention. In this paper, safe, non-toxic, and biocompatible polyvinyl alcohol (PVA); carboxymethyl cellulose (CMC), which contains several carboxyl and hydroxyl groups; and polyethylene glycol (PEG), which functions as a pore-forming agent, were used to prepare a novel PVA/CMC/PEG-based composite hydrogel with a macroporous structure by the freeze-thaw method and the phase separation technique. In addition, a PVA/CMC/PEG@ZIF-L composite hydrogel was prepared by the in situ growth of zeolitic imidazolate framework-L (ZIF-L). ZIF-L grown in situ on hydrogels released Zn2+ and imidazolyl groups. They elicited a synergistic antibacterial effect in hemostasis with PVA and CMC, rendering the PVA/CMC/PEG@ZIF-L hydrogel with a good antibacterial effect against Staphylococcus aureus. At the same time, the macroporous structure enabled the rapid release of Zn2+ and imidazolyl groups in ZIF-L and promoted cell proliferation at an early stage, enhancing the coagulation efficiency. A rat liver injury model was used to confirm its rapid hemostasis capacity. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels)
Show Figures

Graphical abstract

15 pages, 4690 KiB  
Article
Multiple Intermolecular Interaction to Improve the Abrasion Resistance and Wet Skid Resistance of Eucommia Ulmoides Gum/Styrene Butadiene Rubber Composite
by Mingyang Li, Kuiye Wang and Yuzhu Xiong
Materials 2021, 14(18), 5246; https://doi.org/10.3390/ma14185246 - 12 Sep 2021
Cited by 16 | Viewed by 2974
Abstract
A rubber composite was prepared by using methyltriethoxysilane (MTES) to modify silica (SiO2) and epoxidized eucommia ulmoides gum (EEUG) as rubber additives to endow silica with excellent dispersion and interfacial compatibility under the action of processing shear. The results showed that [...] Read more.
A rubber composite was prepared by using methyltriethoxysilane (MTES) to modify silica (SiO2) and epoxidized eucommia ulmoides gum (EEUG) as rubber additives to endow silica with excellent dispersion and interfacial compatibility under the action of processing shear. The results showed that compared with the unmodified silica-reinforced rubber composite (SiO2/EUG/SBR), the bound rubber content of MTES-SiO2/EEUG/EUG/SBR was increased by 184%, and its tensile strength, modulus at 100% strain, modulus at 300% strain, and tear strength increased by 42.1%, 88.5%, 130.8%, and 39.9%, respectively. The Akron abrasion volume of the MTES-SiO2/EEUG/EUG/SBR composite decreased by 50.9%, and the wet friction coefficient increased by 43.2%. The wear resistance and wet skid resistance of the rubber composite were significantly improved. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

12 pages, 33782 KiB  
Article
Construction of Porous Starch-Based Hydrogel via Regulating the Ratio of Amylopectin/Amylose for Enhanced Water-Retention
by Huiyuan Luo, Fuping Dong, Qian Wang, Yihang Li and Yuzhu Xiong
Molecules 2021, 26(13), 3999; https://doi.org/10.3390/molecules26133999 - 30 Jun 2021
Cited by 36 | Viewed by 4850
Abstract
The performance of hydrogels prepared with traditional natural starch as raw materials is considerable; the fixed ratio of amylose/amylopectin significantly limits the improvement of hydrogel structure and performance. In this paper, starch hydrogels were prepared by physical blending and chemical grafting, with the [...] Read more.
The performance of hydrogels prepared with traditional natural starch as raw materials is considerable; the fixed ratio of amylose/amylopectin significantly limits the improvement of hydrogel structure and performance. In this paper, starch hydrogels were prepared by physical blending and chemical grafting, with the aid of ultrasonic heating. The effects of different amylose/amylopectin ratios on the microstructure and water retention properties of starch hydrogels were studied. The results show that an increase in amylopectin content is beneficial to improve the grafting ratio of acrylamide (AM). The interaction between the AM grafted on amylopectin and amylose molecules through hydrogen bonding increases the pores of the gel network and thins the pore walls. When the amylopectin content was 70%, the water absorption (swelling 45.25 times) and water retention performance (16 days water retention rate 44.17%) were optimal. This study provides new insights into the preparation of starch-based hydrogels with excellent physical and chemical properties. Full article
(This article belongs to the Special Issue Preparation and Applications of Hydrogels)
Show Figures

Figure 1

16 pages, 5689 KiB  
Article
Rivet-Inspired Modification of Aramid Fiber by Decorating with Silica Particles to Enhance the Interfacial Interaction and Mechanical Properties of Rubber Composites
by Yihang Li, Yuzhu Xiong and Qingpo Zhang
Materials 2020, 13(11), 2665; https://doi.org/10.3390/ma13112665 - 11 Jun 2020
Cited by 7 | Viewed by 3524
Abstract
A rivet–inspired method of decorating aramid fiber (AF) with silica particles (SiO2) is proposed to produce SiO2@AF hybrid materials that have largely enhanced interfacial interaction with the rubber matrix. AF was firstly surface-modified with polyacrylic acid (PAA) to obtain [...] Read more.
A rivet–inspired method of decorating aramid fiber (AF) with silica particles (SiO2) is proposed to produce SiO2@AF hybrid materials that have largely enhanced interfacial interaction with the rubber matrix. AF was firstly surface-modified with polyacrylic acid (PAA) to obtain PAA–AF, and SiO2 was silanized with 3-aminopropyltriethoxysilane to obtain APES–SiO2. Then, SiO2@AF was prepared by chemically bonding APES–SiO2 onto the surface of PAA–AF in the presence of dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). With the incorporation of SiO2@AF into the rubber matrix, SiO2@AF hybrid materials with high surface roughness can play a role as ‘rivets’ to immobilize large numbers of rubber chains on the surface. The tear strength and tensile strength of rubber composite that filling 4 phr SiO2@AF are dramatically increased by 97.8% and 89.3% compared to pure rubber, respectively. Furthermore, SiO2@AF has superiority in enhancing the cutting resistance of rubber composites, in contrast with unmodified AF and SiO2. SiO2@AF is suitable to be applied as a novel reinforcing filler in rubber composites for high performance. Full article
(This article belongs to the Special Issue Advanced Composite Materials: Theory, Design and Applications)
Show Figures

Figure 1

15 pages, 6750 KiB  
Article
Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Delivery
by Liangyu Lu, Mengyu Ma, Chengtao Gao, Hongwei Li, Long Li, Fuping Dong and Yuzhu Xiong
Pharmaceutics 2020, 12(2), 98; https://doi.org/10.3390/pharmaceutics12020098 - 25 Jan 2020
Cited by 27 | Viewed by 5015
Abstract
Modern pharmaceutics requires novel drug loading platforms with high drug loading capacity, controlled release, high stability, and good biocompacity. Metal–organic frameworks (MOFs) show promising applications in biomedicine owing to their extraordinarily high surface area, tunable pore size, and adjustable internal surface properties. However, [...] Read more.
Modern pharmaceutics requires novel drug loading platforms with high drug loading capacity, controlled release, high stability, and good biocompacity. Metal–organic frameworks (MOFs) show promising applications in biomedicine owing to their extraordinarily high surface area, tunable pore size, and adjustable internal surface properties. However, MOFs have low stability due to weak coordinate bonding and limited biocompatibility, limiting their bioapplication. In this study, we fabricated MOFs/polysilsesquioxane (PSQ) nanocomposites and utilized them as drug carriers. Amine-functionalized MOF (UiO-66-NH2) nanoparticles were synthesized and encapsulated with epoxy-functionalized polysilsesquioxane layer on the surface via a facile process. MOFs possessed high surface area and regular micropores, and PSQs offered stability, inertness, and functionality. The obtained UiO-66-NH2@EPSQ nanocomposites were utilized as carriers for ibuprofen, a drug with carboxylic groups on the surface, and demonstrated high drug loading capacity and well-controlled release property. The UiO-66-NH2@EPSQ nanocomposite exhibited low cytotoxicity to HeLa cells within a wide concentration range of 10–100 µg/mL, as estimated by the MTT method. The UiO-66-NH2@EPSQ drug release system could be a potential platform in the field of controlled drug delivery. Full article
Show Figures

Figure 1

18 pages, 2371 KiB  
Article
Structural and Functional Characterization of Stx2k, a New Subtype of Shiga Toxin 2
by Anna C. Hughes, Yuzhu Zhang, Xiangning Bai, Yanwen Xiong, Yan Wang, Xi Yang, Qingping Xu and Xiaohua He
Microorganisms 2020, 8(1), 4; https://doi.org/10.3390/microorganisms8010004 - 18 Dec 2019
Cited by 30 | Viewed by 4648
Abstract
Shiga toxin (Stx) is the major virulence factor of Shiga toxin-producing Escherichia coli (STEC). Stx evolves rapidly and, as such, new subtypes continue to emerge that challenge the efficacy of existing disease management and surveillance strategies. A new subtype, Stx2k, was recently identified [...] Read more.
Shiga toxin (Stx) is the major virulence factor of Shiga toxin-producing Escherichia coli (STEC). Stx evolves rapidly and, as such, new subtypes continue to emerge that challenge the efficacy of existing disease management and surveillance strategies. A new subtype, Stx2k, was recently identified in E. coli isolated from a wide range of sources including diarrheal patients, animals, and raw meats, and was poorly detected by existing immunoassays. In this study, the structure of Stx2kE167Q was determined at 2.29 Å resolution and the conservation of structure with Stx2a was revealed. A novel polyclonal antibody capable of neutralizing Stx2k and an immunoassay, with a 10-fold increase in sensitivity compared to assays using extant antibodies, were developed. Stx2k is less toxic than Stx2a in Vero cell assays but is similar to Stx2a in receptor-binding preference, thermostability, and acid tolerance. Although Stx2k does not appear to be as potent as Stx2a to Vero cells, the wide distribution and blended virulence profiles of the Stx2k-producing strains suggest that horizontal gene transfer through Stx2k-converting phages could result in the emergence of new and highly virulent pathogens. This study provides useful information and tools for early detection and control of Stx2k-producing E. coli, which could reduce public risk of infection by less-known STECs. Full article
(This article belongs to the Special Issue Shiga Toxin-Producing Escherichia coli)
Show Figures

Figure 1

10 pages, 5443 KiB  
Article
Mercapto-Functionalized Porous Organosilica Monoliths Loaded with Gold Nanoparticles for Catalytic Application
by Hongwei Li, Junhui Pan, Chengtao Gao, Mengyu Ma, Liangyu Lu, Yuzhu Xiong and Fuping Dong
Molecules 2019, 24(23), 4366; https://doi.org/10.3390/molecules24234366 - 29 Nov 2019
Cited by 7 | Viewed by 3573
Abstract
Porous organosilica monoliths have attracted much attention from both the academic and industrial fields due to their porous structure; excellent mechanical property and easily functionalized surface. A new mercapto-functionalized silicone monolith from a precursor mixture containing methyltrimethoxysilane; 3-mercaptopropyltrimethoxysilane; and 3-mercaptopropyl(dimethoxy)methylsilane prepared via a [...] Read more.
Porous organosilica monoliths have attracted much attention from both the academic and industrial fields due to their porous structure; excellent mechanical property and easily functionalized surface. A new mercapto-functionalized silicone monolith from a precursor mixture containing methyltrimethoxysilane; 3-mercaptopropyltrimethoxysilane; and 3-mercaptopropyl(dimethoxy)methylsilane prepared via a two-step acid/base hydrolysis–polycondensation process was reported. Silane precursor ratios and surfactant type were varied to control the networks of porous monolithic gels. Gold nanoparticles were loaded onto the surface of the porous organosilica monolith (POM). Versatile characterization techniques were utilized to investigate the properties of the synthesized materials with and without gold nanoparticles. Scanning electron microscopy was used to investigate the morphology of the as-synthesized porous monolith materials. Fourier transform infrared spectroscopy was applied to confirm the surface chemistry. 29Si nuclear magnetic resonance was used to investigate the hydrolysis and polycondensation of organosilane precursors. Transmission electron microscopy was carried out to prove the existence of well-dispersed gold nanoparticles on the porous materials. Ultraviolet–visible spectroscopy was utilized to evaluate the high catalytic performance of the as-synthesized Au/POM particles Full article
(This article belongs to the Special Issue Synthesis of Functional Silicon Compounds)
Show Figures

Figure 1

22 pages, 4962 KiB  
Review
Functional Metal Organic Framework/SiO2 Nanocomposites: From Versatile Synthesis to Advanced Applications
by Mengyu Ma, Liangyu Lu, Hongwei Li, Yuzhu Xiong and Fuping Dong
Polymers 2019, 11(11), 1823; https://doi.org/10.3390/polym11111823 - 6 Nov 2019
Cited by 46 | Viewed by 9519
Abstract
Metal organic frameworks (MOFs), also called porous coordination polymers, have attracted extensive attention as molecular-level organic-inorganic hybrid supramolecular solid materials bridged by metal ions/clusters and organic ligands. Given their advantages, such as their high specific surface area, high porosity, and open active metal [...] Read more.
Metal organic frameworks (MOFs), also called porous coordination polymers, have attracted extensive attention as molecular-level organic-inorganic hybrid supramolecular solid materials bridged by metal ions/clusters and organic ligands. Given their advantages, such as their high specific surface area, high porosity, and open active metal sites, MOFs offer great potential for gas storage, adsorption, catalysis, pollute removal, and biomedicine. However, the relatively weak stability and poor mechanical property of most MOFs have limited the practical application of such materials. Recently, the combination of MOFs with inorganic materials has been found to provide a possible strategy to solve such limitations. Silica, which has excellent chemical stability and mechanical properties, shows great advantages in compounding with MOFs to improve their properties and performance. It not only provides structured support for MOF materials but also improves the stability of materials through hydrophobic interaction or covalent bonding. This review summarizes the fabrication strategy, structural characteristics, and applications of MOF/silica composites, focusing on their application in chromatographic column separation, catalysis, biomedicine, and adsorption. The challenges of the application of MOF/SiO2 composites are addressed, and future developments are prospected. Full article
(This article belongs to the Special Issue Coordination Polymers: Properties and Applications)
Show Figures

Graphical abstract

13 pages, 5136 KiB  
Article
Raspberry-Like Polysilsesquioxane Particles with Hollow-Spheres-on-Sphere Structure: Rational Design, Controllable Synthesis, and Catalytic Application
by Jian Li, Fuping Dong, Liangyu Lu, Hongwei Li, Yuzhu Xiong and Chang-Sik Ha
Polymers 2019, 11(8), 1350; https://doi.org/10.3390/polym11081350 - 14 Aug 2019
Cited by 22 | Viewed by 6309
Abstract
Raspberry-like hollow-spheres-on-sphere (HSOS) particles with reactive surfaces, uniform sizes and monodisperse properties were rational designed and fabricated to immobilize gold nanoparticles for the catalytic reduction of 4-nitrophenol. HSOS polysilsesquioxane (PSQ) particles were constructed by an organic alkali catalyzed sol-gel process from trialkoxysilane precursors [...] Read more.
Raspberry-like hollow-spheres-on-sphere (HSOS) particles with reactive surfaces, uniform sizes and monodisperse properties were rational designed and fabricated to immobilize gold nanoparticles for the catalytic reduction of 4-nitrophenol. HSOS polysilsesquioxane (PSQ) particles were constructed by an organic alkali catalyzed sol-gel process from trialkoxysilane precursors with stabilized polystyrene (PS) nanoparticles as both a sacrifice template and a Pickering emulsifier. The PSQ particles were fabricated in an ice bath with methyltrimethoxysilane and mercaptopropyltrimethoxysiane as a co-precursor, tetramethylammonium hydroxide (TMAH) as a catalyst, polyvinylpyrrolidone (PVP) and sodium lignosulfonat as co-stabilizers and PS latex as a hard template. The formation mechanism of the hierarchical particles was investigated in detail by the time study through imaging the particles at regular time intervals during the reaction process. Various effect factors on the morphology were studied systematically which showed that the precursor composition, the content of PS, TMAH and PVP are the most important factors. The hierarchical structure combined with the mercaptopropyl groups on both the surface and the skeleton to make it possible to adsorb guest molecules. Au nanoparticles were immobilized on the particles for the catalytic reduction of 4-nitrophenol to 4-aminophenol. The unique PSQ colloids with hollow-spheres-on-sphere extended the family of the hierarchical structures and has shown the potential applications in separations, drug delivery and heterogeneous catalysts. Full article
(This article belongs to the Collection Silicon-Containing Polymeric Materials)
Show Figures

Figure 1

15 pages, 8094 KiB  
Article
Recycled-Oil-Based Polyurethane Modified with Organic Silicone for Controllable Release of Coated Fertilizer
by Qian Wang, Fuping Dong, Jun Dai, Qingpo Zhang, Meng Jiang and Yuzhu Xiong
Polymers 2019, 11(3), 454; https://doi.org/10.3390/polym11030454 - 10 Mar 2019
Cited by 37 | Viewed by 5840
Abstract
Fertilizer is very important for increasing food yield, but the extensive use of fertilizer will cause environmental pollution. To enhance the effectiveness of fertilizer, we developed the double organic silicone-modified recycled-oil-based polyurethane as a coating material to prepare degradable polymer coating urea for [...] Read more.
Fertilizer is very important for increasing food yield, but the extensive use of fertilizer will cause environmental pollution. To enhance the effectiveness of fertilizer, we developed the double organic silicone-modified recycled-oil-based polyurethane as a coating material to prepare degradable polymer coating urea for constant fertilizer release. The moisture, heat resistance, and sustained release properties of polyurethane coating materials were investigated by modification with hydroxyl-terminated polydimethyl silicone (HTPMS) and γ-Aminopropyl triethoxy silane (KH550). The content and distribution of the siloxane groups were effectively controlled by adjusting the content ratio of two kinds of organosilicon. Meanwhile, the organic–inorganic hybrid structure was further controlled to form three-dimensional networks with a uniform distribution and a small scale. The moisture and heat resistance of polyurethane were thus improved, resulting in reduced porosity and an excellent sustained release performance. Observably, the best sustained release property of modified polyurethane coated urea was obtained when the ratio of KH550 to HTPMS is 0.3:0.7. Full article
(This article belongs to the Collection Silicon-Containing Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop