Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Authors = Sayantan Choudhury ORCID = 0000-0002-0459-3873

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4571 KiB  
Article
Lateral Flow Assay for Preeclampsia Screening Using DNA Hairpins and Surface-Enhanced Raman-Active Nanoprobes Targeting hsa-miR-17-5p
by Ka Wai Ng, Siddhant Jaitpal, Ngoc Nhu Vu, Angela Michelle T. San Juan, Sayantan Tripathy, Rohit Sai Kodam, Abhishek Bastiray, Jae-Hyun Cho, Mahua Choudhury, Gerard L. Coté and Samuel Mabbott
Biosensors 2024, 14(11), 535; https://doi.org/10.3390/bios14110535 - 5 Nov 2024
Cited by 2 | Viewed by 1788
Abstract
Preeclampsia (PE) is a serious complication that poses risks to both mothers and their children. This condition is typically asymptomatic until the second or even third trimester, which can lead to poor outcomes and can be costly. Detection is particularly challenging in low- [...] Read more.
Preeclampsia (PE) is a serious complication that poses risks to both mothers and their children. This condition is typically asymptomatic until the second or even third trimester, which can lead to poor outcomes and can be costly. Detection is particularly challenging in low- and middle-income countries, where a lack of centralized testing facilities coincides with high rates of PE-related maternal mortality. Variations in the levels of hsa-miR-17-5p have been identified as constituting a potential early indicator for distinguishing between individuals with PE and those without PE during the first trimester. Thus, developing a screening test to measure hsa-miR-17-5p levels would not only facilitate rapid detection in the early stages of pregnancy but also help democratize testing globally. Here, we present a proof-of-principle lateral-flow assay (LFA) designed to measure hsa-miR-17-5p levels using DNA-hairpin recognition elements for enhanced specificity and nanoprobes for sensitive surface-enhanced resonance Raman scattering (SERS) signal transduction. The theoretical limit of detection for hsa-miR-17-5p was 3.84 × 10−4 pg/µL using SERS. Full article
Show Figures

Figure 1

29 pages, 967 KiB  
Article
Schwinger–Keldysh Path Integral Formalism for a Quenched Quantum Inverted Oscillator
by Sayantan Choudhury, Suman Dey, Rakshit Mandish Gharat, Saptarshi Mandal and Nilesh Pandey
Symmetry 2024, 16(10), 1308; https://doi.org/10.3390/sym16101308 - 3 Oct 2024
Cited by 2 | Viewed by 2235
Abstract
In this work, we study the time-dependent behavior of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger–Keldysh formalism in the presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for [...] Read more.
In this work, we study the time-dependent behavior of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger–Keldysh formalism in the presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for an inverted oscillator system, we use the invariant operator method to obtain its eigenstate and continuous energy eigenvalues. Using the expression for the eigenstate, we further derive the most general expression for the generating function as well as the out-of-time-ordered correlators (OTOCs) for the given system using this formalism. Further, considering the time-dependent coupling and frequency of the quantum inverted oscillator characterized by quench parameters, we comment on the dynamical behavior, specifically the early, intermediate and late time-dependent features of the OTOC for the quenched quantum inverted oscillator. Next, we study a specific case, where the system of an inverted oscillator exhibits chaotic behavior by computing the quantum Lyapunov exponent from the time-dependent behavior of OTOCs in the presence of the given quench profile. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2024)
Show Figures

Figure 1

82 pages, 5931 KiB  
Article
Primordial Gravitational Wave Circuit Complexity
by Kiran Adhikari, Sayantan Choudhury, Hardey N. Pandya and Rohan Srivastava
Symmetry 2023, 15(3), 664; https://doi.org/10.3390/sym15030664 - 6 Mar 2023
Cited by 7 | Viewed by 2343
Abstract
In this article, we investigate the various physical implications of quantum circuit complexity using the squeezed state formalism of Primordial Gravitational Waves (PGW). Recently, quantum information-theoretic concepts, such as entanglement entropy and complexity, have played a pivotal role in understanding the dynamics of [...] Read more.
In this article, we investigate the various physical implications of quantum circuit complexity using the squeezed state formalism of Primordial Gravitational Waves (PGW). Recently, quantum information-theoretic concepts, such as entanglement entropy and complexity, have played a pivotal role in understanding the dynamics of quantum systems, even in diverse fields such as high-energy physics and cosmology. This paper is devoted to studying the quantum circuit complexity of PGW for various cosmological models, such as de Sitter, inflation, radiation, reheating, matter, bouncing, cyclic and black hole gas models, etc. We compute complexity measures using both Covariance and Nielsen’s wave function method for three different choices of quantum initial vacua: Motta-Allen, α and Bunch–Davies. Besides computing circuit complexity, we also compute the Von Neumann entanglement entropy. By making the comparison between complexity and entanglement entropy, we are able to probe various features regarding the dynamics of evolution for different cosmological models. Because entanglement entropy is independent of the squeezing angle, we are able to understand more details of the system using Nielsen’s measure of complexity, which is dependent on both squeezing parameter and angle. This implies that quantum complexity could indeed be a useful probe to study quantum features on a cosmological scale. Quantum complexity is also becoming a powerful technique to understand the chaotic behaviour and random fluctuations of quantum fields. Using the growth of complexity, we are able to compute the quantum Lyapunov exponent for various cosmological models and comment on its chaotic nature. Full article
(This article belongs to the Special Issue Role of Black Holes in Testing Modified Theories of Gravity)
Show Figures

Figure 1

20 pages, 704 KiB  
Article
Circuit Complexity in Interacting Quenched Quantum Field Theory
by Sayantan Choudhury, Rakshit Mandish Gharat, Saptarshi Mandal and Nilesh Pandey
Symmetry 2023, 15(3), 655; https://doi.org/10.3390/sym15030655 - 5 Mar 2023
Cited by 10 | Viewed by 2441
Abstract
In this work, we explore the effects of quantum quenching on the circuit complexity of quenched quantum field theory with weakly coupled quartic interactions. We use the invariant operator method under a perturbative framework to compute the ground state of this system. We [...] Read more.
In this work, we explore the effects of quantum quenching on the circuit complexity of quenched quantum field theory with weakly coupled quartic interactions. We use the invariant operator method under a perturbative framework to compute the ground state of this system. We give the analytical expressions for specific reference and target states using the ground state of the system. Using a particular cost functional, we show the analytical computation of circuit complexity for the quenched and interacting field theory. Furthermore, we give a numerical estimate of circuit complexity with respect to the quench rate, δt, for two coupled oscillators. The parametric variation in the unambiguous contribution of the circuit complexity for an arbitrary number of oscillators has been studied with respect to the dimensionless parameter (t/δt). We comment on the variation in the circuit complexity for different values of coupling strength, different numbers of oscillators and even in different dimensions. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Quantum Mechanics)
Show Figures

Figure 1

40 pages, 1450 KiB  
Article
Circuit Complexity in Z2 EEFT
by Kiran Adhikari, Sayantan Choudhury, Sourabh Kumar, Saptarshi Mandal, Nilesh Pandey, Abhishek Roy, Soumya Sarkar, Partha Sarker and Saadat Salman Shariff
Symmetry 2023, 15(1), 31; https://doi.org/10.3390/sym15010031 - 22 Dec 2022
Cited by 15 | Viewed by 2808
Abstract
Motivated by recent studies of circuit complexity in weakly interacting scalar field theory, we explore the computation of circuit complexity in Z2 Even Effective Field Theories (Z2 EEFTs). We consider a massive free field theory with higher-order Wilsonian operators such [...] Read more.
Motivated by recent studies of circuit complexity in weakly interacting scalar field theory, we explore the computation of circuit complexity in Z2 Even Effective Field Theories (Z2 EEFTs). We consider a massive free field theory with higher-order Wilsonian operators such as ϕ4, ϕ6, and ϕ8. To facilitate our computation, we regularize the theory by putting it on a lattice. First, we consider a simple case of two oscillators and later generalize the results to N oscillators. This study was carried out for nearly Gaussian states. In our computation, the reference state is an approximately Gaussian unentangled state, and the corresponding target state, calculated from our theory, is an approximately Gaussian entangled state. We compute the complexity using the geometric approach developed by Nielsen, parameterizing the path-ordered unitary transformation and minimizing the geodesic in the space of unitaries. The contribution of higher-order operators to the circuit complexity in our theory is discussed. We also explore the dependency of complexity on other parameters in our theory for various cases. Full article
(This article belongs to the Special Issue Symmetry and Geometry in Physics II)
Show Figures

Figure 1

26 pages, 605 KiB  
Article
Circuit Complexity from Supersymmetric Quantum Field Theory with Morse Function
by Sayantan Choudhury, Sachin Panneer Selvam and K. Shirish
Symmetry 2022, 14(8), 1656; https://doi.org/10.3390/sym14081656 - 11 Aug 2022
Cited by 12 | Viewed by 2455
Abstract
Computation of circuit complexity has gained much attention in the theoretical physics community in recent times, to gain insights into the chaotic features and random fluctuations of fields in the quantum regime. Recent studies of circuit complexity take inspiration from Nielsen’s geometric approach, [...] Read more.
Computation of circuit complexity has gained much attention in the theoretical physics community in recent times, to gain insights into the chaotic features and random fluctuations of fields in the quantum regime. Recent studies of circuit complexity take inspiration from Nielsen’s geometric approach, which is based on the idea of optimal quantum control in which a cost function is introduced for the various possible path to determine the optimum circuit. In this paper, we study the relationship between the circuit complexity and Morse theory within the framework of algebraic topology, which will then help us study circuit complexity in supersymmetric quantum field theory describing both simple and inverted harmonic oscillators up to higher orders of quantum corrections. We will restrict ourselves to N=1 supersymmetry with one fermionic generator Qα. The expression of circuit complexity in quantum regime would then be given by the Hessian of the Morse function in supersymmetric quantum field theory. We also provide technical proof of the well known universal connecting relation between quantum chaos and circuit complexity of the supersymmetric quantum field theories, using the general description of Morse theory. Full article
Show Figures

Figure 1

54 pages, 1793 KiB  
Article
Circuit Complexity from Cosmological Islands
by Sayantan Choudhury, Satyaki Chowdhury, Nitin Gupta, Anurag Mishara, Sachin Panneer Selvam, Sudhakar Panda, Gabriel D. Pasquino, Chiranjeeb Singha and Abinash Swain
Symmetry 2021, 13(7), 1301; https://doi.org/10.3390/sym13071301 - 20 Jul 2021
Cited by 59 | Viewed by 5028
Abstract
Recently, in various theoretical works, path-breaking progress has been made in recovering the well-known page curve of an evaporating black hole with quantum extremal islands, proposed to solve the long-standing black hole information loss problem related to the unitarity issue. Motivated by this [...] Read more.
Recently, in various theoretical works, path-breaking progress has been made in recovering the well-known page curve of an evaporating black hole with quantum extremal islands, proposed to solve the long-standing black hole information loss problem related to the unitarity issue. Motivated by this concept, in this paper, we study cosmological circuit complexity in the presence (or absence) of quantum extremal islands in negative (or positive) cosmological constant with radiation in the background of Friedmann-Lemai^tre-Robertson-Walker (FLRW) space-time, i.e., the presence and absence of islands in anti de Sitter and the de Sitter space-time having SO(2, 3) and SO(1, 4) isometries, respectively. Without using any explicit details of any gravity model, we study the behavior of the circuit complexity function with respect to the dynamical cosmological solution for the scale factors for the above mentioned two situations in FLRW space-time using squeezed state formalism. By studying the cosmological circuit complexity, out-of-time ordered correlators, and entanglement entropy of the modes of the squeezed state, in different parameter space, we conclude the non-universality of these measures. Their remarkably different features in the different parameter space suggests their dependence on the parameters of the model under consideration. Full article
(This article belongs to the Special Issue Manifest and Hidden Symmetries in Field and String Theories)
Show Figures

Figure 1

128 pages, 6748 KiB  
Article
The Cosmological OTOC: A New Proposal for Quantifying Auto-Correlated Random Non-Chaotic Primordial Fluctuations
by Sayantan Choudhury
Symmetry 2021, 13(4), 599; https://doi.org/10.3390/sym13040599 - 3 Apr 2021
Cited by 21 | Viewed by 3365
Abstract
The underlying physical concept of computing out-of-time-ordered correlation (OTOC) is a significant new tool within the framework of quantum field theory, which now-a-days is treated as a measure of random fluctuations. In this paper, by following the canonical quantization technique, we demonstrate a [...] Read more.
The underlying physical concept of computing out-of-time-ordered correlation (OTOC) is a significant new tool within the framework of quantum field theory, which now-a-days is treated as a measure of random fluctuations. In this paper, by following the canonical quantization technique, we demonstrate a computational method to quantify the two different types of cosmological auto-correlated OTO functions during the epoch when the non-equilibrium features dominates in primordial cosmology. In this formulation, two distinct dynamical time scales are involved to define the quantum mechanical operators arising from the cosmological perturbation scenario. We have provided detailed explanation regarding the necessity of this new formalism to quantify any random events generated from quantum fluctuations in primordial cosmology. We have performed an elaborative computation for the two types of two-point and four-point auto-correlated OTO functions in terms of the cosmological perturbation field variables and its canonically conjugate momenta to quantify random auto-correlations in the non-equilibrium regime. For both of the cases, we found significantly distinguishable non-chaotic, but random, behaviour in the OTO auto-correlations, which was not pointed out before in this type of study. Finally, we have also demonstrated the classical limiting behaviour of the mentioned two types of auto-correlated OTOC functions from the thermally weighted phase-space averaged Poisson brackets, which we found to exactly match the large time limiting behaviour of the auto-correlations in the super-horizon regime of the cosmological scalar mode fluctuation. Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Feature Papers 2021)
Show Figures

Figure 1

103 pages, 5818 KiB  
Article
The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions
by Kaushik Y. Bhagat, Baibhab Bose, Sayantan Choudhury, Satyaki Chowdhury, Rathindra N. Das, Saptarshhi G. Dastider, Nitin Gupta, Archana Maji, Gabriel D. Pasquino and Swaraj Paul
Symmetry 2021, 13(1), 44; https://doi.org/10.3390/sym13010044 - 30 Dec 2020
Cited by 21 | Viewed by 5443
Abstract
The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general [...] Read more.
The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional PotentialWell problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2020)
Show Figures

Figure 1

164 pages, 9428 KiB  
Article
:THE COSMOLOGICAL OTOC: Formulating New Cosmological Micro-Canonical Correlation Functions for Random Chaotic Fluctuations in Out-Of-Equilibrium Quantum Statistical Field Theory
by Sayantan Choudhury
Symmetry 2020, 12(9), 1527; https://doi.org/10.3390/sym12091527 - 16 Sep 2020
Cited by 38 | Viewed by 4664
Abstract
The out-of-time-ordered correlation (OTOC) function is an important new probe in quantum field theory which is treated as a significant measure of random quantum correlations. In this paper, using for the first time the slogan “Cosmology meets Condensed Matter Physics”, we demonstrate a [...] Read more.
The out-of-time-ordered correlation (OTOC) function is an important new probe in quantum field theory which is treated as a significant measure of random quantum correlations. In this paper, using for the first time the slogan “Cosmology meets Condensed Matter Physics”, we demonstrate a formalism to compute the Cosmological OTOC during the stochastic particle production during inflation and reheating following the canonical quantization technique. In this computation, two dynamical time scales are involved—out of them, at one time scale, the cosmological perturbation variable, and for the other, the canonically conjugate momentum, is defined, which is the strict requirement to define the time scale-separated quantum operators for OTOC and is perfectly consistent with the general definition of OTOC. Most importantly, using the present formalism, not only one can study the quantum correlation during stochastic inflation and reheating, but can also study quantum correlation for any random events in Cosmology. Next, using the late time exponential decay of cosmological OTOC with respect to the dynamical time scale of our universe which is associated with the canonically conjugate momentum operator in this formalism, we study the phenomenon of quantum chaos by computing the expression for the Lyapunov spectrum. Furthermore, using the well known Maldacena Shenker Stanford (MSS) bound on the Lyapunov exponent, λ2π/β, we propose a lower bound on the equilibrium temperature, T=1/β, at the very late time scale of the universe. On the other hand, with respect to the other time scale with which the perturbation variable is associated, we find decreasing, but not exponentially decaying, behaviour, which quantifies the random quantum correlation function out-of-equilibrium. We have also studied the classical limit of the OTOC and checked the consistency with the large time limiting behaviour of the correlation. Finally, we prove that the normalized version of OTOC is completely independent of the choice of the preferred definition of the cosmological perturbation variable. Full article
(This article belongs to the Special Issue New Advances of Cosmology and Astrophysics)
Show Figures

Figure 1

70 pages, 5422 KiB  
Article
Cosmological Spectrum of Two-Point Correlation Function from Vacuum Fluctuation of Stringy Axion Field in De Sitter Space: A Study of the Role of Quantum Entanglement
by Sayantan Choudhury and Sudhakar Panda
Universe 2020, 6(6), 79; https://doi.org/10.3390/universe6060079 - 5 Jun 2020
Cited by 16 | Viewed by 3474
Abstract
In this work, we study the impact of quantum entanglement on the two-point correlation function and the associated primordial power spectrum of mean square vacuum fluctuation in a bipartite quantum field theoretic system. The field theory that we consider is the effective theory [...] Read more.
In this work, we study the impact of quantum entanglement on the two-point correlation function and the associated primordial power spectrum of mean square vacuum fluctuation in a bipartite quantum field theoretic system. The field theory that we consider is the effective theory of axion field arising from Type IIB string theory compacted to four dimensions. We compute the expression for the power spectrum of vacuum fluctuation in three different approaches, namely (1) field operator expansion (FOE) technique with the quantum entangled state, (2) reduced density matrix (RDM) formalism with mixed quantum state and (3) the method of non-entangled state (NES). For a massless axion field, in all three formalisms, we reproduce, at the leading order, the exact scale invariant power spectrum which is well known in the literature. We observe that due to quantum entanglement, the sub-leading terms for these thee formalisms are different. Thus, such correction terms break the degeneracy among the analysis of the FOE, RDM and NES formalisms in the super-horizon limit. On the other hand, for massive axion field we get a slight deviation from scale invariance and exactly quantify the spectral tilt of the power spectrum in small scales. Apart from that, for massless and massive axion field, we find distinguishable features of the power spectrum for the FOE, RDM, and NES on the large scales, which is the result of quantum entanglement. We also find that such large-scale effects are comparable to or greater than the curvature radius of the de Sitter space. Most importantly, in near future if experiments probe for early universe phenomena, one can detect such small quantum effects. In such a scenario, it is possible to test the implications of quantum entanglement in primordial cosmology. Full article
(This article belongs to the Special Issue Cosmic String Theory and Observations)
Show Figures

Figure 1

77 pages, 654 KiB  
Article
Cosmic Microwave Background from Effective Field Theory
by Sayantan Choudhury
Universe 2019, 5(6), 155; https://doi.org/10.3390/universe5060155 - 19 Jun 2019
Cited by 27 | Viewed by 2894
Abstract
In this work, we study the key role of generic Effective Field Theory (EFT) framework to quantify the correlation functions in a quasi de Sitter background for an arbitrary initial choice of the quantum vacuum state. We perform the computation in unitary gauge, [...] Read more.
In this work, we study the key role of generic Effective Field Theory (EFT) framework to quantify the correlation functions in a quasi de Sitter background for an arbitrary initial choice of the quantum vacuum state. We perform the computation in unitary gauge, in which we apply the Stückelberg trick in lowest dimensional EFT operators which are broken under time diffeomorphism. In particular, using this non-linear realization of broken time diffeomorphism and truncating the action by considering the contribution from two derivative terms in the metric, we compute the two-point and three-point correlations from scalar perturbations and two-point correlation from tensor perturbations to quantify the quantum fluctuations observed in the Cosmic Microwave Background (CMB) map. We also use equilateral limit and squeezed limit configurations for the scalar three-point correlations in Fourier space. To give future predictions from EFT setup and to check the consistency of our derived results for correlations, we use the results obtained from all classes of the canonical single-field and general single-field P ( X , ϕ ) model. This analysis helps us to fix the coefficients of the relevant operators in EFT in terms of the slow-roll parameters and effective sound speed. Finally, using CMB observations from Planck we constrain all these coefficients of EFT operators for the single-field slow-roll inflationary paradigm. Full article
(This article belongs to the Special Issue The Cosmological Constant Puzzle)
12 pages, 721 KiB  
Article
Bell Violation in Primordial Cosmology
by Sayantan Choudhury, Sudhakar Panda and Rajeev Singh
Universe 2017, 3(1), 13; https://doi.org/10.3390/universe3010013 - 17 Feb 2017
Cited by 34 | Viewed by 4128
Abstract
In this paper, we have worked on the possibility of setting up an Bell’s inequality violating experiment in the context of primordial cosmology following the fundamental principles of quantum mechanics. To set up this proposal, we have introduced a model-independent theoretical framework using [...] Read more.
In this paper, we have worked on the possibility of setting up an Bell’s inequality violating experiment in the context of primordial cosmology following the fundamental principles of quantum mechanics. To set up this proposal, we have introduced a model-independent theoretical framework using which we have studied the creation of new massive particles for the scalar fluctuations in the presence of an additional time-dependent mass parameter. Next we explicitly computed the one-point and two-point correlation functions from this setup. Then, we comment on the measurement techniques of isospin breaking interactions of newly introduced massive particles and its further prospects. After that, we give an example of the string theory-originated axion monodromy model in this context. Finally, we provide a bound on the heavy particle mass parameter for any arbitrary spin field. Full article
(This article belongs to the Special Issue Varying Constants and Fundamental Cosmology)
Show Figures

Figure 1

Back to TopTop