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Abstract: The underlying physical concept of computing out-of-time-ordered correlation (OTOC) is
a significant new tool within the framework of quantum field theory, which now-a-days is treated
as a measure of random fluctuations. In this paper, by following the canonical quantization tech-
nique, we demonstrate a computational method to quantify the two different types of cosmological
auto-correlated OTO functions during the epoch when the non-equilibrium features dominates in
primordial cosmology. In this formulation, two distinct dynamical time scales are involved to define
the quantum mechanical operators arising from the cosmological perturbation scenario. We have
provided detailed explanation regarding the necessity of this new formalism to quantify any random
events generated from quantum fluctuations in primordial cosmology. We have performed an elab-
orative computation for the two types of two-point and four-point auto-correlated OTO functions
in terms of the cosmological perturbation field variables and its canonically conjugate momenta to
quantify random auto-correlations in the non-equilibrium regime. For both of the cases, we found
significantly distinguishable non-chaotic, but random, behaviour in the OTO auto-correlations, which
was not pointed out before in this type of study. Finally, we have also demonstrated the classical
limiting behaviour of the mentioned two types of auto-correlated OTOC functions from the thermally
weighted phase-space averaged Poisson brackets, which we found to exactly match the large time
limiting behaviour of the auto-correlations in the super-horizon regime of the cosmological scalar
mode fluctuation.

Keywords: cosmology beyond the standard model; quantum dissipative systems; stochastic pro-
cesses; effective field theories; non-equilibrium quantum field theory
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1. Introduction

The underlying physical concept of out-of-time ordered correlation (OTOC) func-
tions [1-9] within the framework of quantum field theory is considered to be a very strong
theoretical tool to describe random phenomena in the quantum regime, particularly the
phenomena of quantum chaos. This concept was first introduced within the framework
of superconductivity to explicitly compute the vertex correction factor of current in Ref-
erence [10]. For the last few years, in the various contexts of gravitational paradigm, this
computational tool has been frequently used to describe various random-chaotic phe-
nomena very successfully. One can physically interpret OTO functions as a quantum
analogue of the usual classical sensitivity against very small random fluctuations in the
initial conditions.

To describe this in a better way, let us consider two quantum operators in different
time scales, X (t1), Xi(t2), its canonically conjugate momenta ITx, (#;) and Ilx, (t;), and
using these operators the auto-correlated OTOs are defined as:

Auto — Correlated OTOC;,

Two — point function :

Four — point function :

Yi(ty, t2) = —([X1(t), X1(t2)])p = _Z(ltl) Trlexp(—pH(t1)) [X1(t1), X1(t2)]], 1)
Ci(t, k) = —([X1(h), X1(t2)]*)p = Z(ltl) Tr [GXP(*ﬁH(h)) [Xl(tl)fxl(tz)}z} , )

Auto — Correlated OTOC,

Two — point function :

Four — point function :

Ya(t1, ) := —([Tx, (f1), T1x, (£2)])p = _Z(ltl) Tr [exp(—BH(t1)) [TIx, (1), Ix, (t2)]] , ®)
Calty, ta) = —([TTx, (t1), T, (2)] ) = _Z(ltl) Trexp(—H () [TTx, (1), TTx, (12)]%], @)

where the quantum partition function at finite temperature can be expressed as:

Quantum Partition function :

h

Z(t1) = Tr[exp(—BH(t1))] where B = % with k=1, h=—=1, ®)

27

where H(t;) is the Hamiltonian of the quantum system under consideration which is
defined at the time scale ¢;. Here in the quantum regime is the effect of perturbation by the
quantum operators Ilx, (#;) and ITx, (f,) on the measurement of the quantum operators
X1 (t1) and X1 (t2) on later time scales. In this theoretical construction, we assume that the
corresponding one-point functions trivially vanish for both of the operators:

One — point function; :

(X1 (t0)p = g Tlexp(~BH () Xa(t)] =0, ©

(X1 (t2))p = gy Tlexp(—pH(t2))Xa(12)] =0, %
One — point function; :

(T, (1)) = 5 Tlexp(—BH(1))Tx, (1)] =0, ®)

(I, (2))p = Tr[exp(—BH(t2))11x, (2)] = 0. ©)

b
Z(t2)
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The huge applicability of OTOC as a strong theoretical probe of gravity dual theories
in terms of AdS/CFT [11,12] has attracted a lot of attention recently in various works.
Many such examples can be given that feature the importance of the OTO functions in
AdS/CFT [11,12]. Particularly, the study of shock waves [13-17] in black hole physics is
one of the remarkable examples, which can be understood by various types of geometries
within the framework of AdS/CFT. In addition, it is important to note that this particular
study finally led to maximum saturation bound on Lyapunov exponent in the quantum
regime. In the gravitational paradigm, this bound is explained in terms of the well-known
red shift factor which is defined near the black hole event horizon having a Hawking
temperature. In this context, the Sachdev-Ye—Kitaev (SYK) model [18-52] is the most
famous example which explains the quantum mechanical features of 0 + 1 dimensional
Majorana fermions having inherent infinitely long disorder. From the past understanding
from various works, it is a very well known fact that any gravitational paradigm having
their own CFT dual are described by the strongly coupled quantum field theories.

Now we will point towards an unusual application of computing auto-correlations of
OTO functions within the framework of primordial cosmology, which we have proposed in
Reference [53] to describe the cosmological cross-correlated OTO function. In primordial
cosmology, the most significant quantities that we study are the N-point functions of the
scalar-tensor metric fluctuations. Here we consider the Friedmann-Lemaitre-Robertson—
Walker (FLRW) spatially flat background metric to describe our homogeneous, isotropic
and expanding observed universe. Using this metric, cosmological perturbation theory
can be studied to explain the origin of the mentioned scalar-tensor fluctuations. These
quantum fluctuations are very fundamental objects from which one can compute all N-
point functions in primordial cosmology [54-81]. Additionally, these quantum fluctuations
can be treated as a seed of cosmological perturbations to describe the formation of galaxy
and cluster formation at present. These correlators are described in a same time scale as
the late time scale of our universe and describe the equilibrium configuration.

Then one can immediately ask about the question regarding the possible options
left to explore the physics of primordial quantum fluctuations from the studies of these
mentioned correlators:

e  First possibility:

The first possibility is to include future observational aspects to verify various theoret-

ical proposals in cosmology. These theoretical proposals are appended below:

1.  Primordial gravitational waves and tensor-to-scalar ratio [79,82-112].
2. Primordial non-Gaussianity [54-81].
3. Spectral running and scale dependence in primordial power spectrum [86,102,
113-115].

4. New consistency relations [85,87,90,116-118].

e  Second possibility:
The second possibility is probing of new physics by including significant features
in primordial cosmology. This can be done by incorporating the concept of out-of-
equilibrium in primordial cosmological quantum correlation functions. Before this
work and previous work done by us in Reference [53], it was not at all mentioned in
the corresponding literature how to compute and finally quantify the cosmological
correlators at out-of-equilibrium. It is also not even clear to what exact quantity one
needs to compute to give an estimation of these mentioned new correlators. After
this work, we are hopeful that at least technically we have provided some correct
estimations of these non-equilibrium quantum correlators within the framework
of primordial cosmology. Now to connect with the real cosmological scenario, let
us mention some aspects appearing in the timeline of our universe where one can
implement the presented methodology:

1. stochastic particle production during inflation [53,119-123],
2. warm Inflationary framework [124-126],
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3.  reheating [127-131],
4.  stochastic inflationary framework [132-136],
5. quantum quench [137-148] in cosmology.

In Figure 1, we show a schematic diagram representing the different roles of cosmo-
logical OTOC within the framework of primordial cosmology. Then, further in Figure 2,
we show the diagrammatic representation of two-point and four-point time ordered auto-
correlators for the momentum and field. Next, in Figure 3, we show the diagrammatic
representation of two-point OTO auto-correlators for the momentum and field within the
framework of primordial cosmology.

Finally, in Figures 4 and 5, we show the diagrammatic representation of four-point
OTO auto-correlators for the field and momentum within the framework of primordial cos-
mology. Now we mention the major highlights of our obtained results in this paper (Note:
Except the small details presented for cosmological perturbation theory for scalar modes,
the rest of the computations presented in this paper are completely new. We have presented
the details in terms of the massless, partially massless and massive scalar fields, which
are not commonly discussed in the cosmology text book literature. As a result of this, the
partial details of the computations are provided in the text portion of the paper and the
rest of the details are presented in the Appendices. We believe this will be helpful for
general readers.):

e Highlight I:

The computation method presented in this paper helps us to quantify the quantum

auto-correlations within the framework of primordial cosmology with random fluc-

tuations. In this article, we have computed the expressions for the two-point and
four-point auto-correlated cosmological OTO functions in the quantum regime. These
computed expressions are completely new and the detailed discussions will be helpful
to understand the underlying physical problem that we have studied in this paper.

e  Highlight II:

We have additionally studied the classical limits of the two-point and four-point

auto-correlated cosmological OTO functions in terms of the phase-space thermal

weighted average of classical Poisson brackets. Most importantly, this computation
will provide the non-standard random behaviour, which is perfectly consistent with
the expectations from the present scenario. Last but not the least, this particular
computation will be very helpful to understand the super-horizon classical limiting
behaviour of the computed auto-correlated OTO functions.

e  Highlight III:

The late time behaviour of the four-point auto-correlated OTO functions helps us to

study the equilibrium feature of the quantum correlations which we have computed

from the scalar cosmological perturbations. Obviously the scalar cosmological pertur-
bation and its related stuffs upto quantizing the Hamiltonian is very well known, but
the rest of the computations in this context are completely new. For better understand-
ing purposes, we have provided a small portion of the cosmological perturbation with
scalar modes before starting the computation of two- and four-point auto-correlated
OTO functions.
e  HighlightIV:

We have provided the detailed computation of the normalised version of the four-

point auto-correlated cosmological OTO functions which we found that are completely

independent of the choice of the time-dependent perturbation variable appearing
in the cosmological perturbation theory. To justify this statement, we have used
co-moving gauge for simplicity.
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Figure 1. Schematic diagram representing the different roles of cosmological out-of-time ordered correlation (OTOC) within
the framework of primordial cosmology.
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Q
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* ‘- .. *
.
o
o

-
*
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(¢ (%1, 72) e (%2, T2) e (x3, 72) ¢ (X4, 72))

[Fi.elc\ and Momentum Auto-Correlated two and four point TO contributions in CosmoLogjl

Figure 2. Diagrammatic representation of two-point and four-point time ordered auto-correlators for the momentum and

field within the framework of primordial cosmology.
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Figure 3. Diagrammatic representation of two-point OTO auto-correlators for the momentum and field within the framework

of primordial cosmology.
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Figure 4. Diagrammatic representation of four-point OTO auto-correlators for the field within the framework of

primordial cosmology.
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This paper is organized as follows:

In Section 2, we discuss the formalism of computing the auto-correlated OTO func-
tions in the context of primordial cosmology. This formalism is new, which we have
highlighted in this paper.

In Section 3, we provide the detailed derivation of quantum two-point and four-point
auto-correlated OTO amplitudes and the related OTO function within the framework
of primordial cosmology. This is the new calculation that we have provided in this

paper.

In Sections 4 and 5, we present the numerical results from the quantum two-point

and four-point auto-correlated OTO functions and also discuss about its physical

interpretation. It is important to note that the numerical predictions obtained from the

mentioned computations are also new and provide a new direction in the framework

of primordial cosmology.

In Section 6, we discuss the classical limit of the two-point and four-point OTO

amplitudes and the related implications in cosmology. This is another new result

we have provided in this paper which gives us a better understanding of the super-
horizon classical limiting behaviour of the system under consideration.

In Appendices A-J, we provide the details of the computations used in various

sections of the paper. We believe this will help the general readers to understand the

underlying physical problem that we have addressed in this paper.

- ) o — T
:‘ .'0" :‘ .'0“ HC (X, 7—2) :i .”OQHC (X, TQ)
E- g“ :- ““ 1 :- 2 3 4““
L 2% % 4% g Y
HC (X, T )“’.. -: "0. -: HC(X7 7—1) "0. -:
i e —T | X ¥ T
<H§(X, ’7’1)1_[(; (X, TQ)HC(X, Tl)HC(X, T2)>5 <H<(X, Tl)HC(X, TQ)HC(X, TQ)HC(X, 7‘1)>[3
te ‘ . 7_2 e, ‘ ) 7_2
: s e (%, 72) s Il (x, 72)
1%32 3 %4 5 :
T T 1% 3 %4
ITe (x,71) : “’.. : “‘.. Il (x,71) : :: s :: - "’..
. *, ' &, ’7-1 - ~ ‘ ~ ‘ MY . 7-1
(¢ (x, 72) e (x, 71) e (%, 72) e (%, 71)) g (IL¢ (x, 72) e (x, 1) e (x, 1) e (%, 72)) 5

Momenktum Aubto-Correlator 0T0 conkributions in Cosmology

Figure 5. Diagrammatic representation of four-point OTO auto-correlators for the momentum within the framework of

primordial cosmology.

2. Formulation of Non-Chaotic Auto-Correlated OTO Functions in
Primordial Cosmology

2.1. Non-Chaotic Auto-Correlated OTO Functions

Let us consider two quantum mechanical operators X and Y which are defined at two

different time scale, i.e., X(t), X(7) and Y(t), Y(7). Then we will extract the information
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regarding the non-chaotic but random quantum mechanical correlation functions using the
prescription of OTOC. In this context, the non-chaotic OTOCs are defined in terms of these
quantum operators as:

2 —point OTOC = Yi(t,7) := —([X(t), X(7)])p, (10)
2 — point OTOC; : Yz(t, T) = —<[Y(t),Y(T)]>ﬁ, (11)
4—point OTOC; :  Ci(t,7) := —([X(t), X(T)]*)p, (12)
4—point OTOC; 1 Ca(t,7) := —([Y (1), Y (1)), (13)

where the thermal average of any operator is defined as:
Thermal average : (A(t))g := %Tr[exp(—‘[%H) A()], (14)

where the partition function of the system is defined as:
Partition function: Z = Tr[exp(—BH)]. (15)

Explicitly, in terms of thermal averaging one can further write:

2 — point OTOC; :
2 — point OTOC; :
4 — point OTOC; :

4 — point OTOC; :

Yi(t,7) =~ Trlexp(~BH) [X(0, X(D)],  (16)
Ya(t, 1) i= — Telexp(~BH) [Y(),Y(@],  (7)
Cilt7) i= — T [exp(—BH) [X(0), X(0F],  (19)

Colt,7) 1= —%Tr [exp(—pH) V() Y(OP].  (19)

One can further write these contributions in terms of the thermal density matrix as:

2 — point OTOC; :
2 — point OTOC; :
4 — point OTOC; :

4 — point OTOC; :

Yi(t,7) == —Tr[o [X(t), X(D)]], (20)
Ya(t, 7) == —Tefo [Y (1), Y()]], (21)
Ci(t7) = =Te[p [X(1), X(T)]?], (22)
Colt, ) = —Te[p [¥ (1), Y(T)], (23)

where in this context the thermal density matrix is defined as:

Thermal density matrix: p = %Tr[exp(—/%H)]. (24)

Now, in the large time limit, the thermal average of the following four-point function
can be factorized as:

E
Ny
ﬁ
=
ﬁ
=
2
Ny
=
I

—~
>
~~
—
~—
>
~~
~
N
>
~~
~_
N
>
~~
—
~—
=
I

(X(1)X(1))p

(X(H)X(t))p

+ O(exp(—(t+1)/t3)), (25)

2—point disconnected 2—point disconnected ~Sub—leading contribution

(X(H)X(t))p

(X(1)X(1))p

+ O(exp(—(t+1)/tq)), (26)

2—point disconnected 2—point disconnected Sub—leading contribution
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Y@YOYmyp = Y(OY()p (Y(O)Y(t)p  + Olexp(—(t+1)/ta)), (27)

2—point disconnected 2—point disconnected Sub—leading contribution
YOY(OY(D)Y(t)p = (Y()Y(t))p (Y(0)Y(1))p  + Olexp(—(t+7)/tq)), (28)

——— N————’
2—point disconnected 2—point disconnected

Sub—leading contribution

where the two-point disconnected thermal two-point correlators can be expressed as:

2 — point correlator; :
2 — point correlator; :
2 — point correlators :

2 — point correlatory :

(X(OX(0)5 =~ Telexp(~H) XOX(B)],  (9)
(X(2)X (1)) = ~ 5 Telexp(~BH) X()X(1)], (30
(YY) =~ 5 Tlexp(—pH) Y(OY()], @D

(Y(0)Y(1))p = —%Tr[eXp(—ﬁH) Y(1)Y(7)], (32)

where the time scale ¢, is identified as the dissipation or equilibrium time scale, which is

given by:

1
Dissipation/equilibrium time scale: t; ~ f = T with kg = 1. (33)

Here, T is the equilibrium temperature of the quantum mechanical system under
consideration. It is important to mention here that the above-mentioned four possible
four-point thermal correlation functions can be factorized into the multiplication of two
distinctive disconnected two-point contributions if one can wait for a large time scale. The
factorization, along with the sub-leading decaying contribution, is actually expected from
our basic understanding of quantum statistical field theory. When we give a response to
a quantum system it goes to out-of-equilibrium phase and the corresponding correlation
function in the quantum regime starts randomly fluctuating with respect to the evolutionary
time scale. During this initial time scale when the initial response is provided in terms of
the initial condition to the quantum system, it is not possible to factorize the present four
possibilities of the four-point out-of-time ordered correlation (OTOC) functions. If we wait
for a long enough time then it is expected that the quantum random fluctuations achieve
the thermodynamic equilibrium. During this time scale, one can actually factorize these
four possible four-point OTOCs in terms of the products of two disconnected two-point
functions and the sub-leading contribution actually decay with respect to the very late time
scale with a finite small saturation value. As a result, from this late time scale, t;, which is
identified to be dissipation time scale, will give the measure of the inverse temperature at
thermodynamic equilibrium.

On the other hand, ([X(f), X(T)]2>ﬁ and ([Y(t), Y(T)]2>/3 can be expressed in the long

time limit as:

Ca(t,T) = —([X(8), X(0)]*)p

Calt,T) = —([Y (1), Y(0)1*)p

—O(exp(=(t+1)/t4)), (34)

(35)
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Now using these results considering the large time equilibrium behaviour, one can
further compute the expressions for the normalised OTOCs in the present context, which
are given by:

Gi(t,7) _, {1 _ RIXOX(D)X()X(2))] }
(X(H)X (1)) p(X(T)X(T))p
Leading contribution
O(exp(—(t+7)/ta))
(X(H)X(1)p(X(T)X(T))p ~
Sub—leading decaying contribution
Co(t, 7) _ 2{1 CR[Y(O)Y(D)Y()Y(1))] }
(Y)Y (1)) p{Y(T)Y(T))p
Leading contribution
O(exp(—(t+17)/t1))
(Y)Y ()Y (T)Y(T))p

Sub—leading decaying contribution

(36)

(37)

In this paper, our prime objective was to compute these leading order contributions
in the context of primordial cosmology, where we chose these two quantum operators
as the perturbation field operator and its canonically conjugate momentum operator
as appearing in the context of cosmological perturbation theory. To remind all of us
again, here it is important to note down that during the computation of OTOCs we
will only consider the contributions from the same quantum operators in cosmology
but defined in two separated time scale. Here all of these sub-leading contributions
will give a correct understanding of the large time limiting behaviour which helps to
further comment on the equilibrium behaviour of the quantum correlation functions and to
estimate the temperature at thermodynamic equilibrium. In this paper, we are very hopeful
to get distinctive behaviour from the mentioned two OTOCs in the context of cosmology
compared to the result obtained from the cosmological OTOC in our previous paper [53].
Instead of getting a random chaotic behaviour, we are very hopeful to describe a general
non-chaotic random behaviour out of the OTOCs that we are studying particularly in this
paper within the framework of primordial cosmology. Once we derive these mentioned
OTOCs in this paper, then the study of all types of random fluctuations will be completed
and we strongly believe this complete study will be helpful to study various unexplored
features of primordial cosmology in the quantum out-of-equilibrium regime. In the next
subsection, we will talk about the eigenstate representations of these new class of OTOCs
which will be very relevant for the computation of OTOCs in the context of quantum
mechanical system which have the eigenstate representation of the Hamiltonian explicitly.

2.2. Eigenstate Representation of Non-Chaotic OTOC in Quantum Statistical Mechanics

In this subsection, our prime objective is to give a simpler representation, which
is known as the eigenstate representation of the OTOC. This can only be possible if the
quantum system under consideration has eigenstates, i.e., the system Hamiltonian has
eigenstates. We will explicitly show from a general calculation how one can express
the complicated definitions of OTOCs mentioned in an earlier section in a very simpler
language. This representation of OTOCs is very useful for the computational purpose as
it allows us to separately take care of the contributions coming from the micro-canonical
part of the OTOCs and the thermal Boltzmann factor, where both of them are the building
blocks of the total contribution appearing in the OTOCs in the eigenstate representation.
Once we compute both of these building blocks separately, one can get to know the full
information regarding the the quantum randomness which is appearing in the expressions
for the total thermal OTOCs from a quantum mechanical system. Not only that, but also
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in the eigenstate representations of the OTOCs the total expressions are computed after
taking the sum over all the individual contributions obtained from all possible eigenstates.
In this connection, it is important to note down here that the from the final answers of the
OTOCs one can actually categorize all classes of available quantum mechanical systems
into two families which we are discussed in detail in the following:

1.

First family of quantum systems:

The first family of quantum mechanical systems deals with only the micro-canonical
part of the OTOCs. After taking the sum over all possible contributions from the
eigenstates, one can find out that for these classes of quantum systems the cumulative
contribution actually gives the expression for the thermal partition function for the
class of quantum systems which will further cancel with the expression for the thermal
partition function which is appearing in the denominator of these OTOCs to make the
consistency with the definition of thermal average of any quantum mechanical opera-
tor at finite temperature over all possible eigenstates of the Hamiltonian of the system.
This makes the final expression for OTOCs completely dependent on the micro-
canonical part of the OTOCs after taking the sum over all eigenstate contributions.
One of the well-known examples of these classes of models is the quantum harmonic
oscillator (QHO) which can be solely represented by the contributions from the micro-
canonical part after summing over all possible eigenstates of the Hamiltonian of the
QHO. In this connection here, it is important to note that, at the perturbation level,
cosmology with a free massive scalar field theory in an FLRW space-time can be
represented as a quantum parametric oscillator with a time-dependent frequency in
the Fourier space, but instead of having a harmonic oscillator type of representation
within the framework of quantum mechanical framework of cosmology, we do not
have any eigenstates (We all know that our universe evolved with respect to the time
scale once. Therefore, if we want to explain the background framework of primordial
cosmology in the quantum regime then the Euclidean vacuum state or the Bunch-
Davies vacuum state or the more generalized De Sitter isommetric a-vacua cannot
be treated as the eigenstate of the quantum Hamiltonian of parametric harmonic
oscillator in the Fourier space representation as we cannot repeat the evolution of
our universe. Therefore, that time-dependent Fourier mode integrated continuous
function of energy cannot be treated as the eigen energy spectrum as appearing in
the present context, where eigenstates of the Hamiltonian play a significant role to
determine the expression for OTOCs). Instead of having a eigenstate in the context
of cosmology one can define wave function of the universe and instead of having a
discrete eigen energy spectrum in the context of cosmology we can find a continuous
time-dependent momentum integrated spectrum over all Fourier modes.

Second family of quantum systems:

The second family of the quantum systems are those in which these defined OTOCs
are quantified by the Boltzmann part as well as the micro-canonical part. In addition,
after summing over all possible quantum states and implementing the definition of the
thermal average of a quantum operator one can find out the final result is dependent
on the inverse of the temperature, which can take care of the behaviour of the OTOCs
when it reaches the thermodynamic equilibrium after waiting for large enough time
in the late time scale and particularly this feature is completely absent in the context
of the first family of the quantum mechanical systems. One of the simplest examples
of this class of models is a particle in one dimensional potential. Like the previous
class, here also at the perturbation level cosmology with a self interacting scalar field
or considering the interaction between different scalar fields in a FLRW background,
one can represent the total theory by a perturbation in the single quantum parametric
oscillator with a time-dependent frequency in the Fourier space for the self interacting
case. Instead of having a very simple perturbation theory of harmonic oscillator within
the framework of quantum mechanical framework of cosmology, we have a very
complicated version because of the absence of eigenstates. By applying the general
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perturbation technique, one can actually compute the correction in the energy eigen
spectrum if the Hamiltonian of the quantum system has the eigenstate representation.
In this connection, one needs to cite the example of simple harmonic oscillator again
where one can analytically compute these corrections very easily and most of us have
studied this from all quantum mechanics books exist in the literature. On the other
hand, in the self interacting picture or for the case of the interaction between many
scalar fields in the spatially flat FLRW cosmological background, computation of the
quantum correction factors are extremely complicated.

Now we will discuss in detail the construction of eigenstate representation of the non-
chaotic OTOCs in this paper. To elaborate the computation in the eigenstate representation
we will talk about two canonically conjugate quantum mechanical operators in two different
times scales t and 7, i.e., (t),q(7) and p(t), p(7), respectively. As we have already pointed
and elaborately discussed in the previous section, once we consider the OTOCs between
the same quantum mechanical operators in different time scales, it is expected to have
these classes of OTOCs which will quantify the quantum fluctuations in terms of general
non-chaotic random correlation functions within the framework of quantum statistical
mechanics. We will further generalize this idea to compute the cosmological OTOCs in the
later part of this paper, though in the context of quantum field theory of cosmology we do
not have any eigenstate representation.

In this context, we are interested to compute the expressions for the following quanti-
ties, which are given by:

2 — point OTOCy : Y1(t, 7) := —([q(t),q(T)])p, (38)
2 — point OTOCz : Ya(t, 7) := —([p(t), p(7)]) g, (39)
4 — point OTOC; : Ci(t,7) := —([q(t),q(T)]*)p, (40)
4 —point OTOC; : Cy(t,7) := —{[p(t), p(T)]*)p, (41)
and also the normalised version of these 4-point OTOCs can be represented by:
_ boint norm : o Ci(t, 1)  (la®aP)e
4~ pointnorm. OTOC: 1l 1) = 1ot it (maells —  @Oa(t)pla(ma(x)l5 2
_ voint norm : o Gt 1) @) p(0)P)g
4~ pointnomm. OTOC: : 20 = M (p(@p (s~ POPE)s (TP (D)5 )

where f = 1/T (in kg = 1) is the equilibrium temperature of the quantum mechanical
system under consideration for the present study and it is expected that the system will
achieve thermodynamic equilibrium if we wait for a very longer time in the evolutionary
time scales t and T under consideration for this problem.

Next, we consider energy eigenstate |n) of the system time-independent Hamiltonian
H, which satisfies the following time-independent Schroinger equation:

H|n) = E,|n) vV n=0,1,2,------ 00, (44)

where E, represents the energy eigenvalues associated with the eigen energy state |n).
Using this eigenstate representation, one can further write the expressions for these classes
of OTOCs in the following simpler language:

Yi(t 1) = Z(lﬁ) ioexp<—/315n) e (1), (45)
Yo(t,7) = Z(l) ij:oexp(ﬁEn) @t 1), (46)
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Nl(t, T) :

No(t, T) :

Cq( Z exp(—BE,) D pll )(t, T), 47)

DR (t,7), (48)

1
Gy Z(,B Zexp —BE,) D

where the time-dependent diagonal matrix element representing the micro-canonical part
of the OTOCs are given by the following expressions:

EM(t,7) == —(n[g(), q(7)]|n), (49)
£ (t,7) == —(nl[p(1), p(1)]In), (50)
DY (t,7) == —{nllg(t), (0P n), (51)
DY (t,7) := —(nl[p(t), p(v)]*|n) (52)

Additionally, in the normalised representation, the above-mentioned 4-point OTOCs
further can be recast as:

1

D) = Z N nioexp(ﬁEn) D (t,7), (53)
Co(t,7) = Z(ﬁ);z(”) gexp(—[szsn) PPt 1), (54)
where the time-dependent normalisation factors N (¢, 7) and Na(t, T) are defined as:
(q(t)a())p(q(T)a(T))p
oD (}i ~BE)) G0l ) (2 exp(~BEn) (mlq()g <r>|m>>, 55)
<P(t) () p(p(T)p(T))p
Z25) (ZeXP ) (ilp(t) )(ZeXP —BEm) m|P(T)P(T)|m>>- (56)

In the present context, in the eigenstate representation of the time-independent
Hamiltonian of the system under consideration, the partition function is defined by the
following expression:

(57)

249 5ol

The above-mentioned results actually represent the eigenstate representation of
OTOCs which can be decomposed into two important parts: (1) one part takes care
of the temperature dependence through the thermal Boltzmann factor and (2) another
part will capture the temperature-independent but time-dependent contribution of the
micro-canonical statistical ensemble average computed for any arbitrary nth eigenstate
and after getting the contribution for any nth eigenstate, we have to take sum over all
possible eigenstates including the thermal Boltzmann factor. For this purpose, we take all
values of the number 1, which actually runs from 0 to co and at the end of the day one
can explicitly compute the useful eigenstate simplified representation of the previously
mentioned non-chaotic class of OTOCs in the present context.

Now to further simplify the expressions for the two different types of micro-canonical
OTOCs, represented by ’Dﬁ,l) (t,7) and D,(ZZ) (t,T), it would be simpler if we were able to
express them in terms of the matrix elements of the two canonically conjugate quantum
mechanical operators defined in the two separate time scales f and 7, i.e., (t),q(7) and
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p(t), p(7), respectively, where these matrix elements are explicitly computed by sandwich-
ing between any nth arbitrary eigenstates. To implement this simplest computational
strategy, we need to explicitly use the following quantum completeness condition which
can be written in terms of the energy eigenstates as:

Completeness condition: ) [n)(n| =1 (58)
n=0

As a consequence, the micro-canonical part of the 4-point OTOCs can be expressed in
terms of the required matrix elements as:

D7) = ~{ullge) g = T e (Gnen). @
D7) = ~trlpo), P = ¥ g (e ), @)

where the individual time-dependent matrix elements, gty (t,7) and G (t,T), can be
expressed as:

Gt T) = i(nl[q(t), q ()] m), (61)
Gal(t,T) == i(n|[p(t), p(v)]|m). (62)

Now we take the Hermitian conjugate of both of these matrix elements, which are
given by the following expressions:

(050 0)" = ~itnllq(®),q(@)]Im)* = ~ilmlg(), q(0)]) ) = Gt ), (63)
(620)" = ~itallp(e), p@)]m)* = —ilm|[p(e), p(0))'|n) = G ), (69
where we have used the following facts:

[q(t),q(0)]" = ~[q(t),q()], (65)
[p(5), p(0)]" = ~[p(t), p(1)]. (66)

Consequently, the micro-canonical part of the 4-point OTOCs can be further simpli-
fied as:

D (t,7) := ~(nllg(1), 4(0) ) = iog,%z(t,w o (1,7), (67)
DE(t,7) := —(n|[p(t), p(v)]*n) = iogfﬁz(t, )G (L, 7). (68)

Now, further in the quantum mechanical operator representation, the time dependence
of the operators ¢(t),q(7) and p(t), p(T) can be expressed in the Heisenberg picture as:

q(t) :== exp(iHt)q(0) exp(—iHt), (69)
q(t) :=exp(iHT)q(0) exp(—iHT), (70)
p(t) := exp(iHt)p(0) exp(—iHt), (71)
p(7) := exp(iHT)p(0) exp(—iHT). (72)

Using this representation, the coefficients and the matrix elements, as appearing in
the expressions for the micro-canonical part of the two-point and four-point OTOCs, can
be further computed as:
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& (b0) = itnllg(t),q(o)]ln) =2 1 sin(AEg (t = 1)) ux(0)q1r (0), 73)
k=0
&7 (1) = ilnlla(e), g(0)]ln) =2 ) sin(AEg (¢ = 7)) puk(0)pin(0), (74)
k=0
1 . RS ‘ .
n(t,7) = i(llp(t), p(0)]Im) = i Y [exp(AEk(t 7)) — exp(iAExy(t — 7)) 4uk(0)g1n (0), 75)
k=0
2 . e . .
(1) = inl[p(8), p()]lm) = i Y [exp(iAEu(t — 7)) — exp(iEgn(t = 1)) puk(0)pin (0). (76)
k=0
where we define AE;, n(0) and ppn (0) by the following simplified notations:
AEy, = Ey — Ey, (77)
qmn(0) = (m[g(0)|n), (78)
pun(0) = (m[p(0)|n). (79)
In addition, for this simplification we have used the completeness condition explicitly.
Additionally, it is important to note that here we have considered an N particle (many
body) non-interacting Hamiltonian to describe a quantum mechanical system in the present
context, which is represented by the following expression:
N2
H(Pll"‘/PN}lh/"'/’JN):Z 1’:: +U(Q11117N) (80)
a=1 o
Now, for the simplicity of further computation, we assume that each N particle has
the same mass, which is given by:
1
mazi vV a«a=12,---,N. (81)
Consequently, for this simplest physical situation, the N particle Hamiltonian can be
further simplified as:
S
H(pl:' o rpN;qlr' o qu) - Z P,x + U(QL' t /LIN) (82)
a=1
Using this many body N particle simplest but general form of the Hamiltonian, one
can further simplify the required matrix elements as given by the following expressions:
1 R
& (1) = ~(nllg(),q(n)]n) = 2i 1 sin(AEeu(t ~ 7)) 4 (0)41a (0), (59
k=0
2 R
&7 (67) = —(nlla(),q(0)]in) = 5 Y sin(AE(t = 7)) AEAEgy 4ui(0)q4 (0), (34)
k=0
Gim (t,7) i ) [exp(iAEyk(t — 7)) — exp(iAEg (t = T))] 4k (0)qn (0), (85)
k=0
(R . .
Gin(t,T) = =7 L lexplibEy(t - 1)) — exp(idEgy(t — 7))] AEwkAEqy 0k(0)1n (0), (36)

k=0
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where we have explicitly used the following information to convert the matrix elements
for canonically conjugate momentum defined at time ¢ = 0 to the matrix elements for the
position operator defined at the same time:

i

pan(0) = (nlp(0) m) = 1 (n][FF(0),4(0)]Im) = 2 AEuon 0). )

Consequently, the micro-canonical part of the OTOCs can be further simplified as:

D) = 2 sin(AEu(t — 1)) k() (0), (89)
EX(LT) = &Y Sin(AE(t — ) Eucon 0101 0), 9)
k=0
’D,(f)(t,’r) = ZOkZ Zoan qkm qms( )%n(o)
m=0k=0s

X [exp(IAE;(t — T)) — exp(iAEg, (t — T))][exp(iAEsu (t — T)) — exp(iAEps(t — 7))]

o 00 o0

- Zzzan )9k (0)ms (0)gsn (0)
m=0k=0s=0

—_—~—

X [exp (iAo (= 7)) + exp (iA B (£ = 7))

— exp(iAEgyon(t = 7)) — exp(iAE s (£ = 7)), 90)

Z%k )qkm (0)qms (0)qsn (0) EygExmEmsEsn

SR
N
2
I
&l
e
HMEB

m=0k=0s
X [exp (IAE (t — 7)) — exp(iAEg, (t — 7))][exp(iAEsu (t — T)) — exp(iAEps(t — 7))]
1 (e ) [e9) ()
= 1g 2 2 2 Ank(0)qkm(0)qus (0)sn (0) AEuk Ay AEsAEsn
m=0k=0s=0
X [eXp(iBExton(t — 7)) + exp(i s (£ — 7))
— exp(iA By (t = 7)) — exp(iAE s (= 7)), o1
where we have introduced a few new quantities, which are given by the following expressions:
AEyksy = AEy + AEsy = Ey — Ex + Es — E = Es — Ex = AEg, (92)
AEjyms = AMEgy + AEws = Ex — Eyy + Ejy — Es = Ex — Es = —AEg, (93)
AEymsn = AEgy + AEsn = Ex — Ey + Es — Ep, (94)
AEukms = DAEyx + AEms = En — Ex + Em — Es, (95)
which further give rise to the following properties:
AEmms = —AEyksn, (96)
AEykms = —AEgmsn- 97)
Consequently, using the eigenstate representation, one can write the expressions for
the non-chaotic OTOCs as:
‘ (e e}
Nt =g——— Z Y exp(—PBEn) sin(AE(t = 7)) uk(0)4n (0) , (98)

Z EXp n:O k=0
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YZ(t/ T) - E Z exp .BEH SIH(AEnk(t - T)) AEkAEg, an(o)qkn (O) ’ (99)
2 Z exp(—BE;) "=0k=0
GtT)=%—— Z Z Z Z (=BEn) 3uk(0)qkm (0)qms (0)gsn (0)
Z exp(— m=0k=0s=0n=0
xsin({gs—w}(t—r)) sin({Ek—(EnJgiEm)}(t—T)), (100)
1 (o] oo oo (o]
GtT)=—5——"— Z Z Z Z (—=BEn) 41k (0) ki (0)qms (0)qsu (0)
4 Z exp m=0k=05=0n=0
« A, AEyy AEmsAEon sin({Es _ @ } (t— r)) sin({Ek _ @ } (t— T)) (101)
To compute the normalisation factors, the following matrix elements play a significant
role:
(ilact) Z qj1(0)q1;(0 (102)
(mlq(T Z Ginr (0)grm (0 (103)
(jlp(t) Z pir(0)pii(0) = —7 k;) AEjAEy; ix(0)qx(0), (104)
1 [ee]
<m|P Z sz sz =7 Z AE;iAEjy, ‘imz(o)%m (0) (105)
4
i=0
and using these results the normalisation factors Ny and N, are computed as:
Z Z Z Z exp(—ﬁ(Ej + Em)) qjl<0)‘71j(0)qmr(0)qrm(0)
- j=01=0m=0r=0 - . ) (106)
(Z eXP(ﬁE‘))
i=0
YY) ) exp(—B(Ej+ En)) AExAEGAEyiAEiy ix(0)4x(0)qi(0)gim (0)
N j=0k=0m=0i=0 (107)

2
16 (;)exp(ﬁEi)>

Consequently, using the eigenstate representation, one can write the expressions for

the non-chaotic normalised four-point OTOCs as:
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4

exp(—B(E; + Em)) q]‘l(O)QZ]’(O)qmr(O)ern(o)>
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% AE,;j AE g AE s AEsy sin({Es - (E”;E’”)}(t - r)) sin({Ek - (E";E’”)}(t - T)). (109)
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Finally, the normalised four-point non-chaotic correlators can be further computed as:

cn([er BB ) an(fr Bt ) 0

2

(—=B(Ej + Em)) EjxExjEmiEim q]‘k(o)ﬁljk(o)qmi(o)qz'm(0)>
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There exists a lot of integrable and non integrable models in the context of quantum
statistical mechanics which can be written in terms of its eigenstate basis. For this class of
models using the above-mentioned general results, one is able to compute the expressions
for the desired non-chaotic OTOCs as well as the normalised four-point functions in the
simplest eigenstate representation of the Hamiltonian of the system under consideration.
We will not explicitly compute any results for a specific quantum model in this section
as our prime objective is to compute the expressions for the non-chaotic OTOCs and the
associated normalised four-point functions in the context of quantum field theory of curved
space-time, particularly for spatially flat FLRW cosmological background space-time where
the eigenstate formalism of representing OTOC is not applicable any more. A few more
things need to be pointed out for our understanding purpose of the derived correlators
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in the eigenstate representation. It is important to note the magnitudes or the amplitudes
of the desired micro-canonical part of the two-point functions in the present context
varying sinusoidally with both the time scale associated with any quantum mechanical
system under consideration in its eigenstate representation. Further, once we include
the contribution from the thermal Boltzmann factor and take a sum over all eigenstates
of the Hamiltonian of the quantum mechanical system, we get an overall exponential
fall in the amplitude of the two-point function. It is expected from these expressions
that at very low temperature the fall in the amplitude is very large. On the contrary,
at very high temperature the suppression in the Boltzmann factor and consequently in
the overall amplitude of the two-point function will be small. We can see that all of
these expressions for the canonical two-point functions are explicitly dependent on the
information of the particular quantum mechanical system under consideration through the
matrix elements of the canonically conjugate variable g at time scale t = 0 and T = 0 and the
difference in the energy levels of the eigenstates. Both of these contributions are time- and
equilibrium temperature independent. Therefore, this implies that the overall behaviour of
these two-point OTOCs are controlled by the canonical thermal Boltzmann factor and the
micro-canonical time-dependent correlation functions. Therefore, it is expected that the
overall cumulative contribution of the amplitude of the two-point function shows decaying
sinusoidal oscillating behaviour with respect to the time scales under considerations for
this study. Now we will comment on the overall behaviour of the four-point functions.
Like previously mentioned for the two-point function case, in the present context we can
also interpret that the overall amplitude of the un-normalised OTOCs is made up of two
important contributions. These are the canonical thermal Boltzmann factor and the micro-
canonical part of these four-point OTOCs of the correlators which are appearing from the
square of the commutator bracket. From the derived expressions for the desired four-point
un-normalised OTOCs, one can express the micro-canonical part of the quantum correlation
function in terms of the product of two sine functions with different frequencies along with
the contributions from the matrix elements of the canonical quantum operator g and its
conjugate momentum operator p at the time scales t = 0 and T = 0. If we look closely into
the expressions then one can find that the overall amplitude of the un-normalised four-
point OTOCs will be decaying due to the presence of the time-independent exponential
thermal Boltzmann factor and the rest of the contribution is oscillatory and time dependent.
This particular generic time-dependent part pointing towards the fact that the pair of
four-point OTOCs in which we are interested in this paper will not contribute to describe
the phenomena of quantum mechanical chaos as these correlators give oscillatory decaying
amplitude which will never be negative. However, once we include the contribution from
the normalisation factor, we get a non-chaotic random fluctuating dissipating behaviour
from the normalised four-point OTOCs.

2.3. Constructing Non-Chaotic OTOC in Cosmology

For (3 + 1) dimensional spatially flat FLRW space-time, the infinitesimal line element
in the conformally flat coordinate is described by:

Spatially flat FLRW cosmological metric : ds* = a?(7) (—drz + dxz). (112)
Here, a?(7) is the overall conformal factor which is actually playing the role of scale

factor in the conformal coordinate system. Here we have introduced the concept of
conformal time which can be expressed for different patches of the FLRW universe as:

1
- De Sitter
Ha(t
3u +(w)”h)[ ( )](L;U”h) here 0 < w,;, < = Reheati "
—  ’la , < S - n
(1 + 3w,0,) T where Wyep, 3 eheating
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where the scale factor in the conformal coordinate can be expressed as:

1 .
—— De Sitter
a(t) = Ht 2 (114)
- 1+ 3w (T+30y) 1 .
MT " where 0 < wy, < = Reheating
3(1 + wreh) 3
2.3.1. For Massless Scalar Field
For the massless case, the scalar field action in spatially flat FLRW background can be
written in the conformal coordinate as:
1 1
s=—; [dx V=309 = [drdxad(1) [(0ep(x 1))~ Qup(x 7)), (1)
from which one can further compute the Hamiltonian for the massless scalar field in
spatially flat FLRW background using conformal coordinate as:
3 I e a*(1) 2
H(t) = / x| P00 )+ 57 @) | where TT(x,T) = (7). (116)
In this case, the non-chaotic OTOCs for the massless case are given by:
2 — point OTOC; :  Yi(t,7) = —([¢(t), (T)])p, (117)
2 — point OTOC; : Y, (t,7) = —([I1(t),[1(7)])p, (118)
2
t),o(T
4— point OTOC; : Cy(t,7) = — (o). o) )p (119)
(@(0)p(1))p(P(T)(T))p
o~ 2
, (1), 11y
4 — point OTOC, : Cy(t, 1) = ——= — (120)
(LI(&TL(E)) p (TL(T)TL(T)) p
During inflation (when we fix d = 3), we actually consider massless scalar field, i.e.,
m << H. In this context, one needs to consider the following perturbation in the scalar
field in the De Sitter background:
Field perturbation: ¢(x,7) = ¢(1) + dp(x,T) (121)
—~— ——
Background field in FLRW  Perturbation in FLRW
to express the whole dynamics in terms of a gauge invariant description through a variable:
Perturbation variable: {(x,7) = — _Jm) dp(x,t) . (122)
d(P(T) ~—~—
dt Perturbation in FLRW
Background contribution
At the level of first-order perturbation theory in a spatially flat FLRW background
metric, fix the following gauge constraints:
op(x,T) =0, gij(x,T)= a*(1) [(1+22(x, T))di; + hij(x, 7)], 0ihij(x,T) =0 = hf(x, T). (123)

which fix the space-time re-parametrization in FLRW spatially flat background. In this
gauge, the spatial curvature of constant hyper-surface vanishes, which implies curvature
perturbation variable is conserved outside the horizon.
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Applying the ADM formalism, one can further compute that the second order per-
turbed action for scalar modes can be expressed by the following action after gauge fixing:

s=1farax SR o2 Gewnr] . a2

Perturbed kinetic term in first order

Overall time dependent factor

Now we introduce a new variable in cosmological perturbation theory, which is
known as the Mukhanov—Sasaki variable:

Mukhanov — —Sasaki variable : f(x,7) = z(7){(x,T), with z(1) = a%)dﬁ(;)’ (125)

where H = dIna(t)/dt is the Hubble parameter in the conformal coordinate. Here, this
new perturbation field variable serves the purpose of field redefinition in this context.
Translating in terms of the conformal time and applying integration by parts, the above-
mentioned action can be recast in the following form:

5= 3 ar P |@cfx )~ O (xT) + s e x| - a2

z(t

Now we transform this problem in Fourier space by making use of the following
Fourier transform on the rescaled field variable:

d3k
Fourier transformation in momentum space : f(x,7) = / Wfk(r) exp(ik.x), (127)

using which the action expressed in coordinate space can be recast in the momentum space as:

1
Action for parametric oscillator: S = = /dT A’k |ank(T)|2 - wlz((T)|fk(T)|2 , (128)
2 . _v_/ N———— —
Kinetic term Potential term

where we define the effective frequency wy (7) as:

Effective frequency :  wi(7) =k + m2(1) with m%¢(1) = “0) e

(129)

Here, mq(T) represents the conformal time-dependent effective mass parameter
which is appearing due to the cosmological perturbation of the cosmological spatially flat
FLRW metric in the first order and correspondingly the second order contribution in the
action for scalar curvature perturbation. Now one can further compute the expression for
this time-dependent effective mass parameter for different cosmological epochs as:

2

( 2 1) T2 De Sitter

s o1 dn) (V1)

Tl = e T R 2(3wyen — 1) 1 1 : 130
(14’3—5‘%}1)2;’0 < Wrep < 3 Reheating

Consequently, the Hamiltonian can be expressed in Fourier transformed space as:
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Fourier transformed Hamiltonian density = H (o)

H= [k |SIm@P+ JR@IAOF]  where () =a:fi(0), (131)

Kinetic term Potential term

where the perturbed field satisfies the constraint, f_i(7) = f{(7) = fi (7).
Now, in terms of scalar curvature perturbation variable, the following interesting
OTOCs can be computed explicitly:

2 — point OTOC: Y! (11, ) = —([{(n),{(n)])p (132)

2 — point OTOC: Y (1, ) = —([Iz(m), 11z ()], (133)

4— point OTOC: Cf(1y, 1) = T (Tli[ég((rl))>§<<g(2)])> o (134)
. _ (Mg (1), Tz ()] %)

4 — point OTOC : CZC(TLTZ) T O (1)) <HC(T2)H(:(T2)>[;' (135)

Similarly, in terms of rescaled perturbation variable, the OTOCs can be recast in the
following forms:

2 - point OTOC: Y/ (11, 1) = —([f(n), f(©)])p, (136)

2 - point OTOC: Y (1, 7) = —([H (1), Tf(2 )b (137)

4~ point OTOC: CJ(1,w) = T Tlg[f((T))>’ﬁf<5( )}>>( 5 (138)
2

4 — point OTOC: (7, 1) = <[ s, Hf(m} i (139)

- (T (r) (1)) p (T ()T (12) ) g

For both the cases, we use « vacua and Bunch-Davies vacuum as quantum vacuum
state.

2.3.2. For Partially Massless Scalar Field

For the partially massless case, the scalar field action in spatially flat FLRW background
can be written in the conformal coordinate as:

S = —1/d4x V-8 8 $)? — (chp)z}
/ dt dxa?(7) [(@ep(x,7)* — @ip(x 7)) — (cHp(x,7)*|,  (140)

and the corresponding Hamiltonian can be expressed in the conformal coordinate as:

= /d3x [21121(1_) I1%(x,7) + azéT) {(aigb(x, )2 4+ PH2 PP (x, T)}] where I1(x, T) = 0:¢(x, T). (141)

In this specific scenario, the conformal time-dependent effect mass parameter for
the partially massless scalar field in spatially flat FLRW cosmological background can be
expressed as:
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2 T2
Mg (T) = — = - =9 9 11 1 (142)
z(t) dr? 72 % = 0 < W, < 3 Reheating
reh

1
(1/2 ~1 ) (c2 — 2) —, where ¢ >V2 De Sitter

Since the expression for the conformal time-dependent effective mass parameter is
explicitly appearing in the expression for the effective conformal time-dependent frequency
parameter, the rest of the computations will be automatically modified accordingly. Further,
using the previously defined four set of OTOCs in the previous case, here also one can
compute the expression for the non-chaotic sets of quantum mechanical correlators.

2.3.3. For Massive Scalar Field

For the partially massless case, the scalar field action in spatially flat FLRW background
can be written in the conformal coordinate as:

1 1
s=—3 / dx \/—g [(a¢)2 - mg,,qﬂ] =3 / dt d3x a?(7) [(aTcp(x, 0))? — (i (x,7))? — P (T)m3P*(x, T)}, (143)
and the corresponding Hamiltonian can be expressed in the conformal coordinate as:

612 T
H(t) = / ABx [ Zazl(T>n2(x,T)+ é ){(ai¢(x,f)2+m§,¢2(x,r)}} where TI(x,T) = d¢(x, 7). (144)

In this specific scenario, the conformal time-dependent effect mass parameter for
the partially massless scalar field in spatially flat FLRW cosmological background can be
expressed as:

2
m 1
A .
2 B 1 d%z(7) B (V2 - }1) B H2 2 2’ mey > H De Sitter
Mg (T) = — > = — = (145)
Z(T) dT T 2(3w78h - 1) 1

1
—, 0 < Wy, < 3 Reheating

This expression will contribute to the effective conformal time-dependent frequency
parameter and consequently the rest of the computations will be automatically modified
accordingly. Further, using the previously defined four set of OTOCs, one can compute
the expression for the non-chaotic sets of quantum mechanical correlators in the context of
massive scalar field. There might be another possibility to have a conformal time-dependent
profile for the massive scalar field in the spatially flat FLRW geometrical background in the
context of cosmology. Now, it is important to note that it is not necessary to include such
time dependence explicitly in the mass profile of the heavy scalar field. If we consider this
possibility then it is possible to explore many more unexplored areas of theoretical physics
and its underlying connection with primordial aspects of cosmology. One can establish a
connection with condensed matter physics, quantum aspects of statistical mechanics and
quantum entanglement, violation of Bell’s inequality and the generation of long range
quantum mechanical correlation appearing in the context of quantum information aspects
of cosmology. This possibility is out of the scope of study at present in this paper. For this
reason, we will only look into the massive field mg > H, using which we will explore
few other features, which also show some new directions in the context of quantum field
theory of curved space-time, particularly in the context of spatially flat FLRW cosmology,
which is quite consistent with the observational aspects as well. Using the present setup,
our objective is to explore the behaviour of the quantum correlation functions in the out-
of-equilibrium regime of the quantum field theory of primordial cosmology appearing
in the early time scale of the evolution of our universe. Not only will we restrict ourself
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to describe the out-of equilibrium feature in the early time scale of our universe, but
also using the present computation and methodology we will probe the late large time
equilibrium features of the mentioned quantum correlation functions in the context of
primordial cosmology. By studying the conformal time-dependent behaviour of these
two sets of OTOCs, we can surely study the quantum mechanical random fluctuating
behaviour of cosmological correlators starting from a very early time to the late time scale
of our universe. Using this methodology, one can further quantify the quantum correlation
function in the context of reheating epoch as well as for the stochastic particle production
during the epoch of inflationary paradigm, where in both the cases the phenomena of
out-of-equilibrium physics play a significant role at the very early time scale. On the other
hand, at the very late time scale of the evolution history of our universe, the quantum
random fluctuation in the cosmological correlation shows equilibrium feature and from
this one can further estimate the corresponding equilibrium temperature. For this reason,
in the rest of our paper we will explicitly compute these results and will show how the
present methodology can be applicable to the mentioned epochs of our universe.

3. Quantum Non-Chaotic Auto-Correlated OTO Amplitudes and OTOC in
Primordial Cosmology

In this section, our prime objective is to explicitly derive and study the physical
outcomes of two different types of OTOCs which are constructed from field variables and
its canonically conjugate momenta appearing in the context of cosmological perturbation
theory written in spatially flat FLRW background. We will show from our computation that
these sets of OTOCs play a significant role in quantifying the effect of random fluctuations
in the quantum regime. Most importantly, our main claim in this paper is that these sets of
new OTOCs in the context of primordial setup of cosmology will describe the non-chaotic
time-dependent behaviour with respect the conformal time scale, which is obviously new
information in this literature and has not been explicitly studied earlier. Therefore, in this
paper we will completely devote our full energy to justifying this big claim through the
present computation performed in this paper. Before performing the detailed computation
and going through the very technical details of the present topic, let us first discuss the
physical implications of these sets of non-chaotic OTOCs in which we are interested in this
paper, which are appended below point-wise:

¢  Motivation 1:
The first physical motivation of this work is to explicitly provide the result of quantum
mechanical correlation function in the context of primordial cosmology when the
system under consideration goes to out-of-equilibrium regime in the early time scale of
the evolution history of our universe. We all know this particular regime in quantum
statistical field theory is extremely complicated to probe through usual understandings
of cosmological correlators defined in the same late time slice. On the other hand, in
the spatially flat FLRW curved background explaining such phenomena is even more
harder. Our prime objective is to probe this extremely complicated physics through
some basic and very simple concepts of quantum field theory prescription. This
methodology is applicable to explain particularly the quantum mechanical correlation
functions in the epoch of reheating and during the the stochastic particle production
procedure during inflation which was not explored in this literature earlier. We are
very hopeful that our computation and the derived results can perfectly capture the
phenomena of quantum randomness and in this way one can treat the OTOCs to be
the significant theoretical probe through which one can explain the out-of-equilibrium
features very easily.
¢  Motivation 2:

The second physical motivation of this work is to explicitly provide and understand
the equilibrium behaviour of the quantum mechanical correlation functions in the
context of primordial cosmology which we have a plan to derive in terms of the
previously mentioned OTOCs. When we give an initial response to a quantum system
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in the context of cosmology, it goes to the out-of-equilibrium regime. Now, if we wait
for a long time and consider the late time regime in the evolutionary scale of cosmology,
then it is expected from the basic understanding that the quantum mechanical system
under consideration has to reach the state of thermodynamic equilibrium which can
be understood in terms of the saturation of the desired set of OTOCs at the late time
scale. Our expectation is to understand this phenomena within the framework of
cosmological perturbation theory in the early universe, which will be also helpful to
estimate the thermodynamic temperature of the equilibrium state from the saturation
value of the desired OTOCs in the present context. We are very hopeful to provide
the details of the equilibrium behaviour of the quantum OTOCs from cosmology at
the late time scale which will be helpful to give a physically consistent interpretation
and estimation of the reheating temperature in terms of the equilibrium temperature
of the quantum mechanical system under consideration. Apart from this, one can
further give a physical interpretation and estimation of the equilibrium temperature at
the end of the stochastic particle production procedure during the epoch of inflation.
Therefore, using the late time behaviour of the cosmological desired OTOCs, one can
give the estimation of reheating temperature as well the temperature of the universe at
the end of inflation by following a proper physically consistent theoretical framework,
which will be further helpful to determine the energy scales of that specific epoch
appearing in the evolutionary time scale of our universe.

Motivation 3:

The third and the last physical motivation of this work is to explicitly provide and un-
derstand the intermediate behaviour of the quantum mechanical correlation functions
in the context of primordial cosmology which we have a plan to derive in terms of the
previously mentioned OTOCs. Our expectation is the present structure of OTOCs not
only to provide the physical understanding of the early time out-of-equilibrium and
late time equilibrium phenomena in the context of primordial cosmological perturba-
tion theory, but also to provide the correct and physically justifiable explanation of
the intermediate behaviour of the quantum correlation functions which will able to
explain the phase transition from the out-of-equilibrium regime to the equilibrium
regime. As far as the previous literatures in the present context are concerned, people
have not addressed this issue clearly; that is, the earlier computations implementation
of this phase transition phenomena was extremely complicated. From the present
computation, one of the great expectations is to address the intermediate behaviour
of the cosmological quantum correlation functions through the desired expressions
for OTOCs which can further give physical interpretation during the phase transition
from the out-of-equilibrium regime to the equilibrium regime and the quantum ran-
domness behaviour in the vicinity of the transition region within the framework of
primordial cosmological perturbation theory.

3.1. Computational Strategy for Non-Chaotic Auto-Correlated OTO Functions

The steps of specifically computing the desired non-chaotic OTOCs defined in this

paper are appended below point-wise:

1.

To compute these OTOCs, at first we need to find out the analytical classical solu-
tion of the equation of motion of the massless, partially massless and heavy scalar
fields which can describe the super-horizon, sub-horizon limit and horizon crossing
phenomena in the spatially flat FLRW cosmological background.

After obtaining the classical solution which can describe the physical phenomena
in the asymptotic region, super-horizon and sub-horizon scale in a specific gauge of
cosmological perturbation theory of early universe, we further have to find out the
canonically conjugate momentum of the perturbation field variable. Further, using
both of these classical solutions, our job is to promote them in the quantum regime by
writing them in terms of the creation and annihilation operators. Once this job is done,
then using that quantum extended operators, our job is to compute the square of the
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quantum mechanical commutator brackets appearing in the expressions for the two
desired OTOCs on which we are interested in this paper. It is important to note that
such square of the commutator brackets are of course the fundamental components
which will play a significant role in quantifying the desired OTOCs.

Once we know the full solution in the quantum regime, which can describe super-
horizon and sub-horizon, the asymptotic limiting solutions in the presence of a
preferred choice of quantum mechanical vacuum state, which fix the initial condition
for the quantum random fluctuations in the context of early universe cosmology. Then
using that we have to explicitly compute the expression for the thermal average value
of the square of the commutator bracket of the field and its canonically conjugate
momenta, which can be obtained as a by-product of cosmological perturbation theory
in a preferred choice of gauge. Such combinations physically signify the four-point
quantum correlation function in the out-of-time ordered sense.

Further, we have to derive the expression for another fundamental quantity, which
is the partition function of the quantum mechanical system under consideration for
the cosmological perturbation theoretical setup. This can be done by determining
the quantum mechanical Hamiltonian which actually represents a quantum oscil-
lator with conformal time-dependent frequency. Once this is done, then we need
to compute the expression for the thermal trace of the thermodynamic Boltzmann
factor. Here, it is important to note that, in the context of quantum field theory, the
equivalent representation of the thermal trace operation can be presented in terms of
path integral operation which can be performed in the presence of a wave function of
the universe defined for a preferred choice of quantum mechanical vacuum state.
Before computing the mentioned OTOCs, which are related to the connected part of
the four-point correlation functions, we need derive the expression for the thermal
two-point OTOCs from the perturbation variable appearing in the preferred choice of
gauge in cosmological perturbation theory of early universe (Here, it is important to
note that for the four-point OTOCs we have observed that at very large dissipation
time scale one can factorize them into connected and disconnected parts. Obviously
the connected part carries the physical information, but the disconnected part is
actually written in terms of the product of two two-point functions defined at two
different time scales which are separated in time scale. Now these two-point functions
help us to normalise these two OTOCs which further is very significant to analyse
the amplitude of the connected part of the desired four-point functions in the present
context. In addition, the thermal expectation value of the commutator bracket of two
cosmologically relevant operators in the context of cosmological perturbation theory
can be considered to be the relative difference between the thermal expectation value
of two different two-point functions which are appearing in the normalisation of the
disconnected part of the four-point functions as mentioned earlier.). These two-point
functions further have been used to normalise the four-point desired OTOCs in the
present paper and for this reason can be treated as the fundamental building blocks
in the present computational purpose.

The quantum operators appearing as a by-product of cosmological perturbation
theory are the fundamental objects of this computation and we are going to use
them to define the desired expressions for the OTOCs in this paper. We first use
the coordinate system basis. To make the further simplification, we transform both
of the quantum operators defined in two different time scales into Fourier space
where we write both of them in the momentum basis. We particularly use this simple
trick because in the context of cosmology, momentum space description is simpler
and easily understandable compared to the expressions obtained in the context of
coordinate space basis. The prime physical reason behind this approach is that the
quantum correlation functions in the context of primordial cosmological perturbation
theory preserve the overall mathematical structure under the application of SO(1,4)
conformal transformations (Here SO(1,4) represents the De Sitter isommetry group
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Mukhanov —

which is preserved under conformal transformations.). In the context of quasi De Sitter
space, this symmetry is slightly broken in the momentum basis after doing Fourier
transformation from the coordinate basis and the amount of symmetry breaking is
proportional to the slowly varying time-dependent slow-roll parameters, which we
have explicitly taken into account to get the correct physical interpretation of the final
results of the desired OTOCs in our computations in this paper.

7. Another important ingredient of the present computation of the desired two OTOCs
is deep rooted in the cosmological perturbation theory setup used for early universe
quantum mechanical setup that we are using for the present computation. In this
context, the preferred choice of gauge used for the perturbation setup plays a very
significant role to finally quantifying the mathematical structure of the OTOCs studied
in this paper. For this purpose, unitary gauge, Newtonian gauge, comoving ¢ = 0
gauge choices are very relevant and most commonly used. Out of them, for the
present computational purpose, we use the comoving d¢ = 0 gauge, which makes
the final mathematical structure and the detailed computation of the desired OTOCs
very simple compared to performing the derivation in terms of the field ¢ and its
canonically conjugate momentum Iy, which appear directly from the ungauged
version of the cosmological action in spatially flat FLRW background.

3.2. Classical Mode Functions to Compute Non-Chaotic Auto-Correlated OTO Functions
in Cosmology

After varying the gauged version of the second order action as appearing in the
context of cosmological perturbation theory in the preferred é¢ = 0 gauge and writing
in terms of the redefined perturbation field variable in the momentum space after doing
Fourier transformation, we get the following simplified version of the equation of motion
of the classical field:

=m?% (o)
N . Phit) | e V-1
—Sasaki equation (Classical EOM) e + | k- = fk(t) =0, (146)
=12 (o)

which is commonly known as the Mukhanov-Sasaki equation. It is actually a second order
differential equation in conformal time coordinates and in momentum space k plays just the
role of a constant parameter. If we closely look into the equation of motion then we see that
it is basically representing a parametric oscillator with conformal time-dependent frequency
where the conformal time is playing the role of parameter in this context. Since here the
equation of motion of the Fourier mode of the rescaled scalar perturbation is a second order
homogeneous differential equation in conformal time coordinates, then the final solution
of this equation can be written in terms of the sum of two linearly independent solutions.
For this reason, two arbitrary constants are also appearing in the total solution which can
only be fixed by the initial choice of the quantum vacuum state. To serve this purpose, it is
very common practice in the literature to choose the well-known Euclidean vacuum state,
which is actually a false vacuum state in nature. In common practice, this Euclidean false
vacuum state is known as the Bunch-Davies vacuum. There is an additional possibility
regarding the choice of the vacuum state, which is the most general a-vacua states and
« = 0 can reproduce the solution for the Bunch-Davies vacuum state. In this equation
of motion, we define the mass parameter variable v, which is defined for the massless,
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partially massless and massive heavy scalar field cases in De Sitter space and for reheating
phase can be written as:

5 DS+massless
9 .
Ups 1= v = 1 2, where ¢ > V2 DS+partially massless (147,
] mé ’ h h
i\ gz — o Where my > H DS+heavy

1 + 2(1 — 3wreh)
4 (1 + 3wr€h)2

- 2(1 _ Swreh)
4 (1 + 3wreh)2
2(1 — 3wreh)
(1 + 3wreh)2'

Reheating+massless

Vreh 1=V Reheating+partially massless  (148)

_|_

Reheating+heavy

Il
+

L
4

where the equation of state parameter during reheating epoch is lying within the window,
0 < wyep < % Here, it is important to note that for the reheating case the expression looks
exactly the same for the massless, partially massless and heavy scalar field cases. The
expressions for the equation of state parameters for these three different cases are different,
which implies the physical significance of each cases are different. The overall magnitude
of the equation of state parameter will lie within the above-mentioned window.

To proceed further with this equation of motion of the perturbed field variable for the
scalar fluctuations, we transform it in a convenient mathematical form which can be easily
understood. We use the following canonical field redefinition to serve this purpose:

1
V-t
In this new field redefinition, the Mukhanov-Sasaki equation can be recast as:

?Q(x)  1dQ(x) 2
. !/ : . _ —_ e
Canonical form of Bessel’s equation : 12 + o + (1 x2> Q(x) =0. (150)

The most general solution of this canonical form of Bessel’s equation can be written as
a linear combination of the two linearly independent solutions as given by:

Canonical field redefinition : Q(x) :=

fix(t) with x = —kt. (149)

Solution for Bessel’s equation : Q(x) = [Dy Jy(x) + D, Yy (x)], (151)

where J,(x) and ), (x) are the Bessel function of first and second kind of order v, respec-
tively. Here, D; and D, are the two arbitrary integration constants which are fixed by
the choice of the initial quantum vacuum state. Sometimes in the quantum field theory
literature these time-independent constants are identified to be the Bogoliubov coefficients,
which one can compute explicitly in the present context.

Further, one can write the the Bessel function of first and second kind of order v in
terms of the Hankel function of first and second kind of order v:

Jo(x) = % Y () + HP (x)], (152)
Yu(x) = % [Hﬁl) (x) = Hﬁz)(x)]. (153)

Here, Hy) (—kt) and H]El) (—kt) are the Hankel functions of first and second kind
with order v.
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Finally, in terms of the Hankel functions the most general solution can be expressed
as:

Solution for Bessel’s equation : Q(x) = [C1 Y (x)+Ca H? (x)} , (154)

where we introduce two new arbitrary constants, C; and Cp, which are defined in terms of
the previously mentioned two integration constants D; and D, as:

1 .
C1 = E(Dl —iDy), (C (D1 +iDy). (155)

I\)\'—‘

Consequently, the most general conformal time-dependent solution of the scalar mode
fluctuation equation of motion for any constant mass profile (massless, partially massless
and heavy scalar production during inflation and during reheating) is represented by the
following expression:

Solution for scalar mode function : fi(7) = v —7T {Cl Hgl)(—kr) +C H,Ez)(—kr)} , (156)

where C; and C; are the previously mentioned two arbitrary integration constants which
are fixed by the choice of the initial quantum vacuum state necessarily needed for this
computation.

The corresponding most general canonically conjugate momentum can be further
computed from this derived solution as:

My (1) = 3 fie (1) = 1_T [ (ke (ko) — B (ko) — ke, (kD))

+Co (kTH ), (—kt) — HP (—k7) — keHT), (—kn)) | (157)

Further considering —k7 — 0 and —kT — oo asymptotic limits, one can write the fol-
lowing simplified form of the most general solution for the perturbed field and momentum
variable can be expressed as:

B 2“"( kT)”V

fkir

I'(v)
r(3)

x [C1 (14 ikt) exp(—i{kt+ A, }) — Co (1 —ikT) exp(i{kt+ A, })], (158)
B 2"”( )’ T'(v) (1 +ikT) . .
M (1) = NG 03 [ {1 - ﬁkaTz} exp(—i{kt+ A, })
—C {1_19”(1:2:;[)} exp(i{kr+Aj})], (159)

where we define the two phase factors A;—L and a new function 9, as:

L+ T 1 B 1
A; —2{(v+2)i1}, z9v—<v—2>. (160)

These results are extremely important for the computation of the desired OTOCs in
which we are interested in this paper which we have derived in the later subsections. To
server this purpose, we need to first of all promote both of these classical solutions of the
field and momentum to the quantum level. Since we are following the canonical technique
in the present context for the quantization purpose, we need to express both of these
classical solutions in terms of creation and annihilation operators which we will discuss in
the next subsection of this paper. See the details of the computation in Appendix A.
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3.3. Quantum Mode Function to Compute Non-Chaotic Auto-Correlated OTO Functions in
Primordial Cosmology

Here, in this context, the rescaled perturbation field operator and the corresponding
canonically conjugate momentum operator in the quantum regime can be expressed in
terms of the classical solutions obtained in the previous section as:

Field Operator : Fi(T) = fi(T) @ + A (T) a’y, (161)
Momentum Operator : T (7) = [Ty (7) ay +IT*, (7) a’ . (162)

Here, gy and a',_are the annihilation and creation operators of the quantum vacuum
state, which satisfy the following canonical commutation relations:

Canonical commutators : {ak, atk/} = 2133 (k+K'), [a,a_] =0= {aﬂ,atk,} . (163)

Consequently, the curvature perturbation and the corresponding momentum operator
in the quantum regime can be re-expressed as:

~

* t
{i(t) = ;‘((TT)) - o) & j(f;“(r) K = () e+ (1) (164)

- A - Th(n) () dz(7)
Hex(T) :aT< zk(T) ) - ZIZT) B zk(T) dt

N X 1 dz(t
~ (Mo 117 (0 01) = (80 m+ a0 ') (552 ) | (165)
Here, the last term of the above-mentioned expression can be further evaluated as:
2
1 dz(t) _ 1 da(T) 7ld77-[+ 1 d (]7(2’[)‘ (166)
z(t) dt a(t) dt  Hdt (d(/)(r)) dt
ar

Sub—leading contribution

3.4. Quantum Operators for Non-Chaotic Auto-Correlated OTO Functions

In this subsection, our prime objective is to promote the classical Hamiltonian to the
quantum regime in terms of canonical quantum operators. This quantum mechanical
Hamiltonian operator can be expressed as:

Fourier transformed Hamiltonian—density operator

N 1. 1 P
Quantum Hamiltonian Operator : H(7) := /d3k §H12<(T) + Ewi(f)fﬁ(r) , (167)
—— —_—
Kinetic term Potential term

Additionally, it is important to mention that in this quantum mechanical Hamiltonian
operator the following property of the perturbed field and momentum holds good perfectly
in Fourier space:

1@ = (@ act Fam ) = (@ et @) ) = fae), (168)

A

It(r) = (Hk(r) a + T (1) a*_k)+ - (H_k(r) a_i+ T (T) aﬂ) =TT (7). (169)

Here we use the following useful facts to satisfy the above-mentioned Hermitic-
ity constraints:
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af =0 = (@) =4f, (170)
f®) = fi(0) =fu(t) = (L)'= A (171)
I} (1) = Ti(1) =T (1) = (1%, )" =TI} (172)

As a result, the fundamental parts of the kinetic and potential quantum operators
as appearing in the expression for the quantum mechanical Hamiltonian can be further
simplified as:

Quantum Kinetic Operator :

IR0 = JI(OI(0) = I i+ T4 (0 at o = (ahaet 36°0) ) I@)F, a7
Quantum Potential Operator :
SRR = 36O x(1) = 3030 i) e+ F1() at i P
— k() sk + 36°0)) (o) (a7

As a result, we get the following simplified expression for the quantum mechanical
Hamiltonian operator which is written in terms of the quantum number operator (V) in
Fourier space:

Quantum Hamiltonian Operator: H(1) = / A’k (.//\/\k + ;53(0)) {|Hk('r)|2 + wlz((T)\fk(T)ﬂ , (175)

where the quantum number operator (ﬁk) is defined in terms of the creation and the
annihilation operators of the quantum initial vacuum state as:

Quantum Number Operator : -Vk = al’:ak . (176)

After introducing the normal ordering, one can remove the contribution from the
zero-point energy which will give rise to the divergent contribution in the quantum me-
chanical Hamiltonian operator, which actually gives the divergent contribution. This
further simplifies the the expression for the Hamiltonian, which is given by:

Normal Ordered Hamiltonian Operator : : H(1) := /d3k N {|Hk(T)|2 + wi(T)\fk(T)ﬂ . (177)

This result is very useful for the computation of the two desired OTOCs in which we
are interested in this paper as it will contribute to the thermal Boltzmann factor and the
corresponding thermal partition function which is further computed out of taking the trace
operation performed in terms of the path integral over the wave function of the universe.
The details of this computation will be found in the later sections of this paper.

3.5. Cosmological Two-Point and Four-Point “In-In" Non-Chaotic OTO Amplitudes

In this section, our prime objective is to explicitly derive the expressions for the
two new sets of two-point and four-point desired OTOCs in this paper to study the non-
chaotic time-dependent ransom behaviour of cosmologically relevant quantum correlation
functions.

3.5.1. Non-Chaotic Auto-Correlators in Primordial Cosmology
To compute this explicitly, we need the following information in our hand:

1. Information I:
First of all, one needs to start with the quantum mechanical operators in which we are
interested in the context of cosmology, those are the perturbed time-dependent field



Symmetry 2021, 13, 599

34 of 127

and the associated canonically conjugate momenta written in Fourier transformed
momentum space. This can easily be done using the obtained asymptotically viable
total conformal time-dependent solution of the perturbed field from the classical
Mukhanov-Sasaki equation which we are going to write in the quantum regime as
an operator by including the creation and annihilation operators of the quantum
initial vacuum state. In the framework of cosmological perturbation theory, one can
construct the conformal time-dependent Hamiltonian density operator in Fourier
space which can be made up of two important components, the kinetic operator and
the potential operator, where both of them can be expressed in terms of the previ-
ously mentioned perturbed field operator and its canonically conjugate momentum
operator in the quantum regime of field space. After constructing the time-dependent
Hamiltonian density operator in the Fourier space, our next job is to integrate over
all possible momenta spanned over a physically acceptable range to derive the total
time-dependent Hamiltonian operator frequently used for the present computation.
Additionally, it is important to note that in this paper we will consider the canonical
technique for the quantization purpose which we will follow throughout the paper.
Information II:

In the next step, one needs to explicitly compute the expression for the commutator
and square of the commutator bracket between the two perturbed field variable
quantum operators and the two canonically conjugate momentum variable quantum
operators defined at two different conformal time scales in the classical geometrical
background of spatially flat FLRW space-time specifically in coordinate space repre-
sentation. These are the crucial parts which form the building blocks of the desired
OTOCs in the context of cosmological perturbation theory of the early universe. In
this section of the paper, we explicitly derive the commutator and square of the
commutator or these two operators in terms of two and four parts respectively where
each of the components mimics the role of scattering amplitudes in Fourier space.
In the present context, commutator and the square of the commutator bracket in
the Fourier space involved two momenta and four momenta, respectively, and in
both the cases two different conformal time scales appear which will finally fix the
structure of the desired OTOCs which we want to study in the context of cosmological
perturbation theory. If we look into the structure of these commutator and square
of the commutator quantum mechanical operators very closely, then one can ob-
serve that these two different momenta and four different momenta are appearing in
OTOCs as we are dealing with the product of two and quantum mechanical operators,
respectively, in this computation. Though the OTOC computed from the square of
the commutator bracket looks like 2 — 2 scattering amplitude in the Fourier space,
technically these are actually representing the unequal time, out-of-time-ordered
four-point quantum correlation function in the context of cosmology. In the quantum
field theory version of the trace operation, one needs to consider the same quantum
initial vacuum state, which implies the initial and final state are exactly same, and
identified to be “in” quantum state in the context of cosmology. This further implies
that within the framework of primordial cosmology, we deal with in-in amplitude
rather than using the usual “in-out” amplitude in the S-matrix formalism, which is
actually a Schwinger Dyson series. Instead of calling this quantity which we want to
explicitly determine in this section as “in-in” amplitude, we call these quantities as
“in-in” quantum mechanical correlation functions within the framework of primordial
cosmological perturbation theory.

Information III:

Another important issue is to fix the proper definition of the trace operation within
the framework of quantum field theory written in classical spatially flat FLRW curved
cosmological background. In the context of quantum field theory of curved space-
time, particularly in the context of cosmology, we have to define the quantum wave
function of our universe which will help us to set up the equivalent representation
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of the thermal trace operation in terms of the quantum mechanical path integral
formulation. To construct the wave function of the universe as an initial condition, one
chooses the standard definition of Euclidean false vacuum state, which is commonly
known as the Bunch-Davies vacuum state and it basically represents a thermal
ground state in the context of primordial cosmological perturbation theory. In the
quantum field theory of curved space-time literature, sometimes this is identified to
be the Hartle-Hawking or Cherenkov vacuum state. In this computation, the most
generalized choice is the &,  vacua, which is commonly known as the Motta—Allen
(MA) vacua in the context of quantum field theory of De Sitter space-time, which are
invariant under all the conformal group SO(1,4) isometries and commonly known
as the «, f-vacua which is CPT violating. Here, «, 5 is a real parameter which forms
a real parameter family of continuous numbers and particularly f is appearing in
the phases. This phase factor is actually the culprit for which the quantum state
CPT symmetry is getting violated. Once we switch off the contribution from this
phase factor by fixing p = 0, the one can get back the CPT symmetry preserving
quantum & vacua states. Sometimes the a vacua is characterized as the squeezed
quantum vacuum state. Bunch-Davies vacuum state is a very special case of the
generalized « vacua state which can be obtained by fixing &« = 0 in the definition of
the quantum vacuum state, which perfectly satisfies the Hadamard condition in the
Green’s functions. Using Bogoliubov transformation, one can express the « vacua in
terms of the Bunch Davies state.

Information I'V:

Once we fix the definition of the quantum field theory version of the trace operation
in terms of path integral formalism in the Euclidean formalism, we can then further
compute the expression for the desired two sets of OTOCs on which we are interested
in this paper. Another important component which will fix the definition of the
OTOC is the thermal partition function for the scalar mode fluctuations obtained from
the primordial cosmological perturbation where the same trick has to be applied to
define the trace operation as mentioned earlier. In this context, instead of performing
a complete quantum calculation, we use the semi-classical approximations for the
computations. The primordial perturbations in the spatially flat classical FLRW
background can be written in terms of scalar, vector and tensor modes in Fourier space
using the SVT decomposition from which the quantum fluctuations are generated. For
this reason, we will do a semi-classical (not purely quantum or classical) computation
for the computation of OTOC in the framework of primordial cosmology.
Information V:

Last but not least, we have to fix the normalisation factor of all the desired new OTOCs
that we have introduced in this paper. In this connection, it is important to remind
ourself again that normalisation factors of these desired OTOCsS are actually made
up of a product of two disconnected thermal two-point functions in the dissipation
time scalet = t; ~  ~ 1/T, where T is the equilibrium temperature of the quantum
cosmological system under study in the present context. Whatever results we have
obtained for the un-normalised OTOCSs, we use them and divide them into the men-
tioned disconnected part of the correlator. This helps to treat the overall amplitude of
four-point OTOCs in a dimensionless fashion. Not only that trick in normalisation
but in OTOC also helps us to know about the exact time dependence in the quantum
correlator of which we are interested in. More precisely, this can be done by making
use of the previously mentioned equivalent operation of thermal trace operation in
the presence of « vacua or Bunch-Davies quantum vacuum state in the context of
primordial cosmological perturbation theory. We have explicitly demonstrated the
detailed computation of these normalisation factors in the Appendix of this paper.
Please look into the technical details in the Appendix for more details on this issue.
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3.5.2. Fourier Space Representation of the Commutator Bracket: Application to Two-Point
Non-Chaotic Auto-Correlated OTO Functions

Here, our job is to compute the following commutator brackets, given by the
following expressions:

Commutator; : [f(x, ), f(x, Tz)} =fx,m)f(x,m) - f(x,n)f(x,1), (178)
zl"l(x,m,az) Erz(x,ﬂl,ﬂz)

Commutatory :  [I1(x,71),I1(x, )] = TI(x, 1)I1(x, 72) — I1(x, )T1(x, 1) . (179)

=01(x,01,02) =0,(x,01,02)

Now we use the following preferred convention for the Fourier transformation of the
perturbation field and associated momentum operator, which are given by:

A3k

foom) = [ s Pk fulm), (180)
3 3
T1(x,71) = 9= f(x,71) = / (;7:;3 exp (ik.x) 0r, fu(T1) = / (‘217;3 exp(ik.x) Tl (11), (181)

which we will frequently follow for the rest of the computation to fix the definition of the
desired OTOCs defined in this paper.

Next, we explicitly compute the expressions for these individual quantum mechanical
operators in the context of primordial cosmological perturbation theory, T;(x, 7, 72) Vi =
1,2 and ©;(x, 7y, T2) V i = 1,2, which can be expressed in Fourier transformed space by the
following simplified expressions:

3 3
(x1,n) = fxu)f(xn) = /(‘;71;)13/ (‘271:)13 exp(i(ki + k2).x) fi, (1) i, (2)
_ /(‘12371:)13 / (‘1;71;)13 exp(i(l + ka)x) AY (I, ko 1, 12), (182)

where we have introduced a momentum- and conformal time-dependent quantum mechan-
ical operator in the context of primordial cosmological perturbation theory, A1 (kq, kp; 71, 72),
which is defined as:

A 1 A A 1 1
Ag (ki kpi,12) = fi, (1) fi, (22) = D§ ) (k1 ko 11, T2) Ay, Ak, + Dé ) (ky, ko 71, T2) 'y g,
1 1
+D§ )(klrkZ; T, T2) ﬂklﬂtkz + Di )(kl,kz; T, T2) atklﬂtkzl (183)

where we have introduced momentum- and time-dependent two-point OTO amplitudes,
Dl.(l) (k1,ko; 11, 2) V i =1,2,3,4, which are explicitly defined in Appendix B of this paper.

3 3
L(x1,7) = xn)f(x1) —/é;)la‘/ (‘;71:)13 exp(i(k1 +k2).x) Iy, (1) fie, (T1)
3 3
= /(‘12:;)13/(11271:)13 exp(i(ki +kz).x) A§1)(k1,k2;T1,T2), (184)

where we have introduced a momentum- and conformal time-dependent quantum mechan-

ical operator in the context of primordial cosmological perturbation theory, Agl) (k1, ko; 11, T2),
which are explicitly defined in the Appendix of this paper.

(1 s s 1 1
A; )(kllkz; ,7) = fiu(2)f,(n)= £§ )(klsz; T1, T2) Ak, A1, + £§ )(k1,k2; T, T2) ﬂiklﬂkz

+£§1)(k1,k2; T1,T2) ﬂkl’likz + ﬁil)(kl'kﬂ T, ) ”tklatkf (185)
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where we have introduced momentum- and time-dependent two-point OTO amplitudes,
Efl) (k1,ko; 11, 2) Vi = 1,2,3,4, which are explicitly defined in the Appendix of this paper.

3 3
O1(x 1, 2) = fI(X/Tl)ﬁ(XITZ):/(dZ:;)g/é;)l exp(i(ky + kp).x) T, (1)1, (12)
3 3
- /(‘;lr()g/é:)l exp(i(ky + ko) x) A (kKo 71, 72), (186)

where we have introduced a momentum- and conformal time-dependent quantum mechan-

A(2)

ical operator in the context of primordial cosmological perturbation theory, A;™ (kq, ka; 71, T2),

which are explicitly defined in the Appendix of this paper as:
Aﬁz) (ki ko, 12) = T, (1)1, (12) = D§2) (k, ko; 11, T2) Ay, ax, + D§2)(klrk2) 7, 7) a’y ak,
+D§2)(k1,kz; T, T2) ﬂklatkz + Df) (ki,k2; 711, 12) atklﬂikz, (187)

where we have introduced momentum- and time-dependent two-point OTO amplitudes,
D( )(kl,kz, T, 2) V i =1,2,3,4, which are explicitly defined in the Appendix of this

paper.
3 3
®2(XIT1/T2) = ﬁ(X,Tz)ﬁ(X,Tl) —/(dzrl:)l?’/ (C;:[()l eXp( (k1+k2) )ﬁkl(TZ)ﬁkz(Tl)
3 3
=/ &1513/ é;l exp(i(ki +ka).x) AP (K1, o1, ), (188)

where we have introduced a momentum- and conformal time-dependent quantum me-
chanical operator Ay (ki, ky; 71, T2), which is defined as:

~ (2 ~ ~
Aé)(khkz;ﬂ,Tz) = I, ()i, (11)
2 2
= 55 )(kl,kz; 1, T2) i, i, + £§ )(khkz; 1, T2) ﬂtklﬂkz
+L5) (ky, Ko 11, ) migat e, + £ (ki ki, 1) aty (189)
where we have introduced momentum- and time-dependent two-point OTO amplitudes,
552) (k1,ko; 11, 2) V i =1,2,3,4, which are explicitly defined in Appendix B of this paper.
This further implies that one can explicitly write down the previously mentioned two

commutator brackets along with the thermal Boltzmann factor in terms of the following
simplified expression, which is given by:

e P [ (1), ()]
_ e*ﬁﬁ(ﬁ)[rl(x, 7, ) —Ia(x, 1, )]

T a3k - d3k o X
= e_ﬁH(Tl){/ (27753 / (27r)2 expli(k; + ko). ][ §1)(k1,kz;71,rz) - Agl)(kbkz;Tsz)]}

dk dk - .
= [ e [ G pliti + ) [91) e e, ) — 94l K, ) (190)
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e PH(T) TI(x,70),I1(x, 1)

_ e*ﬁﬁ(ﬁ)[(al (x, 71, 2) — Oz(x, 71, 2]

_BH d®k Ak . A A
=e ﬁH(Tl){/(z7_[)l3 / ﬁ exp[z(k1 + kz).x] {A§2) (kl, kz,’ T, Tz) — Aéz) (kl,kz,' T, Tz)} }
a3k d®k ) - N
-/ T / ey OPliCks 1) [V ki1, 03 B) = V7 (ko b1, 03 B) (191)

where we define the new sets of quantum mechanical operators in the context of primordial

cosmological perturbation theory, me) (k1,ko; 11, 7;B8) 1 Vi=1,2, Vm=1,2as given
by the following expression:

@l(m) (kl,kz,' T, T, ‘B) = E_ﬁH(Tl) Al(m) (kl, 1(2; T, Tz) Vi= 1,2 V m= 1,2 (192)

Here the thermal Boltzmann factor can be expressed in terms of creation and annihila-
tion operator by the following simplified expression, as given by:

e PH(M) — exp (—/3 / A’k <ﬁk + ;53(0)) Ek(71)>, (193)

where we define the conformal time-dependent energy spectrum as a function of Fourier
modes relevant for cosmology, Ex (71 ), by the following expression:

Ex(n) = |[(n)? + wf(m) (D) P, (194)

where the explicit expression for the conformal time-dependent expression for the fre-
quency factor at the time scale T = 19, i.e., wi (77) for the cosmologically relevant Fourier
modes participating in the primordial cosmological perturbation theory, is mentioned in
the earlier half of this paper. For general readers, it is further important to note that these
mode frequencies for all momentum scales play a significant role for the quantification of
the randomness in terms of the quantum OTOCs studied in this paper.

3.5.3. Fourier Space Representation of Square of the Commutator Bracket: Application to
Four-Point Non-Chaotic Auto-Correlated OTO Functions

Now we explicitly compute the following combinations of the square of the commu-
tator bracket out of only the cosmologically perturbed field operators and only with the
help of the canonically conjugate momentum operators related to these cosmologically
perturbed field, which are actually given by the following simplified expression:

[Foom), fx )] = flom)f o) flo 1) f (6 ) — Fx w)f 0o m) flox 1) fx )
= /Cgl) (x,11,12) = Kél) (x,11,12)

—fxr)f(x ) f(xn)f(x 1)+ f(x2)f(x, 1) f(x2)f(x,7), (195)

= ICS) (x,7,m2) = ’Cil) (x71,72)

[TT(x, 1), IT(x, Tz)]z = TI(x, 7)) T1(x, )TI(x, 7 )T1(x, 1) — T1(x, 1) TT(x, 71 )T1(x, 7)) TI(x, )

= /ng) (x,71,12) = /Céz) (x,71,12)

— ﬁ(x, Tl)ﬁ(x, Tz)ﬁ(x, Tz)ﬁ(x, Tl) + ﬁ(x, Tz)ﬁ(x, Tl)ﬁ(x, Tz)ﬁ(x, Tl) (196)

= ’ng) (x71,72) = ’Cf) (x71,72)
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Now we mention the explicit mathematical structure of these individual operators,
ICi(M) (x,1,2) Vi=1,2,3,4, VM = 1,2,3,4, which are expressed in Fourier transformed
space as:

KV (x,1,1) = fx 1) f(x ) f(x 1) f(x, 1)

/d3k1 / Tk /(22()33/{;37%3 eXP[i(kl+k2+k3+k4)-X]7A'1(1)(k1/k2/k3,k4;T1,T2), (197)
K (x,11,1) = n<x )I1(x, 72)11(x, 7)11(x, )

= [ [ e [ B [ explitha + e a0 e ks K ), 198)
’CS)(X Terz) *f(x ) f(x,1)f(x,1)f(x 1)

/ Gl / Py / (‘;Z‘)?’ / (‘;37’[‘;3 expli(ky + ko + ks + kg) X T3 (i, Ko, kg, Ky 71, ), (199)
Ky ><x mz) H(x ©)I1(x, )T1(x, 0)T1(x, )

/ ky / @k / (‘;Z‘; / (‘22‘)4 expli(k + Ky + ks + ky) X 7o (ky, ko, ks, ky; 71, 72), (200)
K5 (x, m) = f<x ) f(xn)f(x n)f(x 1)

- [ [ [ AR [ et o+ kol T Rl k), 201)
K5 (x, mz) n<x )1(x, 2)11(x, 2)T1(x, 1)

- [ [ [ AR [ et o+ o+ k)T bl k), 02)
/d”(x rm) <x ) f(x 1) f(x ) f(x 1)

/d3k1 /d3k2 /(6;37’:)3 /(Lfr]g expli(ky +kp + k3 +ky).x ]T<1)(k1/k2/k3/k4;T1,Tz)/ (203)
K (%11, 72) = T1(x, )T, 7)1 (x, 2)T(x, 71)

/d3k1 /d3k2 /(ZZC)B /(ZZ(; expli(ky +kp + k3 +ky).x ]T<2)(k1/k2/k3/k4;T1,Tz)/ (204)

where the functions ’77,(1) (k1, ko, k3, kg, 71, 2)Vp = 1,2,3,4 and 7A',,(2) (k1, ko, k3, ky; 11, 2)
Vp =1, 2, 3, 4 are explicitly defined in Appendix C.

This implies that one can write down the previously mentioned square of the commu-
tator bracket along with the thermal Boltzmann factor as:

o—BAT) {f(x ), TI(x, Tz)r

3 3 3 3
/dkl / ! /é;‘;’ /éf; expli(ky + ko + ks + k) x]

[V1( )(kl,k2,k3/ ky; 11,25 B) — Aél)(kl,kzl k3, ky; 11, 25 B)

+V4Y (1, o, o, gy 71, 703 B) = V4 (Ko, Ko, ks, ka1, 23 B)(205)

e PO [1(x, 1), TI(x, )]

3 3 3 3
/dk1 / d’ka /(i:;; /(irlg expli(ky + ky + k3 + kq).X]

[V{ )(kl, ko, ks, ks 71, 77 ) — Vi (ki ko, ks, gy 71, 703 )

+173(2) (kq, ko, k3, ky; 11, 2, B) — Aiz) (ki1, ko, k3, ky; 11, T2; /3)}, (206)
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where we define the new sets of quantum operators in the context of primordial cosmologi-

VM (ky, ko, ko, kg T1, T3 B) Vi=1,2,3,4, YM=1,2,as

cal perturbation theory setup, V;
given by the following simplified expression:

91(M) (kl/ kZ/ k3/ k4; T, 7T, ,B) = e_ﬁH(Tl) 7\;(1(11 k2/ k31 k4; T, TZ) Vi= 1,2,3,4 M=1,2 (207)

|1P>QVac = |C1, CZ>

where the thermal Boltzmann factor with energy dispersion is computed earlier.

3.6. Thermal Partition Function in Primordial Cosmology: Quantum Version
3.6.1. Initial Quantum State in Primordial Cosmology

In general, one can consider an arbitrary initial quantum mechanical vacuum state
which is characterized by the two arbitrary constants C; and Cp, which are appearing in
the solution of the Mukhanov—Sasaki equation, which represents the classical solution
of the background perturbation in the spatially flat FLRW cosmological background. In
addition, these arbitrary constants play a very significant role in fixing the definition of the
quantum wave function of the universe which is dependent on specified information of
the initial quantum vacuum state for cosmology. Once this definition is fixed, using this
quantum vacuum state one can further study the correlation function from the quantum
fluctuation in the scalar modes which are contributing in terms of the co-moving scalar
curvature perturbation or in terms of the redefined perturbed field variable. Now, if we say
that Cy 1, is the annihilation operator corresponding to the quantum state as mentioned
earlier, then it satisfies the following criteria in the context of quantum field theory written
for the primordial cosmological perturbation:

Ck,12|C1,C2> =0 Vk, with |‘P>QVac = |C],C2> (208)

In a most generalized prescription, this arbitrary quantum vacuum state can be written
in terms of the ground state, which in cosmology is commonly known as the Bunch-Davies
Euclidean vacuum state by the following expression:

1 iCy + +> 1 iCy ot
= exp( ~may | |¥)sp = exp| —z== ) o | [¥)BD (209)
LU g oy ek = gy e oy ek
Now we will use the following replacement rule:
4’k
. . 210
; / (27)3 210

Using this further, one can express further the arbitrary quantum vacuum state in
terms of the Bunch-Davies Euclidean vacuum state as:

B 1 iCy [ Pk 4 4
|‘F>QV3C = |C],Cz> = ﬁexp _ﬁ/wﬂkﬂk ‘111>BD (211)

where we have actually identified the ground state as Bunch-Davies Euclidean vacuum
state, which is given by:

|0>ground = [¥)BD. (212)

Additionally, it is important to note that the arbitrary quantum vacuum state, \Cl, Co),
satisfies the following constraint condition:
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Pe,c,|C1,Ca)

d3
= / ( )3 pcp120p12‘61,02>

iC3
= H/ 27.[31’ p,lz%ﬂmexl’( 2C ltalt>|1F>BD

p 1 iC
= 2 pCl1Chia——exp| — 2 afal |[¥
/(271:)3 Ptpa2 PJZM P( 2C; ; K | [¥)BD
&’p ic; [k
/(2 )3 PCp,uCp,lzmexp(—zcik /( oy e k> [¥)sD = 0. (213)

Here, it is important to note that the relationship between the annihilation and creation
operator in the a-vacua and the Bunch-Davies vacuum is established by the following
Bogoliubov transformation:

Corz=Ciax—Csa’,, — CLi,=Ciaf —Cra_y, (214)
a = Cq Ck,lZ + C; Cik,lz — aﬂ = CT Clﬁ,lZ + Cy C—k,lz- (215)

Here, (Ckllz,Cl’: 12) and (ay, ai) are the creation and annihilation operators of the
arbitrary generalized vacua and the Bunch-Davies vacuum, respectively.

In the context of quantum field theory of spatially flat FLRW cosmology, one can de-
fine the initial quantum mechanical state corresponding to the class of all excited SO(1, 4)
isommetric Mota—Allen or (&, v)-vacua states, which are characterized by two real param-
eter families, « and . Now one can find that this type of vacua is not CPT symmetry
preserving. Following the previously mentioned general construction, one can write down
the Mota—Allen or («, v)-vacua states in terms of the well-known adiabatic Bunch-Davies
vacuum state by the following expression:

1 i © dPk
[Pa,y) = \/ﬁ XP( 5 exp(—iy) tanha /W ”ﬂ“ﬂ) YD) , (216)

where the integration constants C; and C; for Mota—Allen or («, 7y) vacua can be parametrized as:
C1 = coshwa, Cp =exp(iy) sinha, (217)
which satisfy the following normalisation condition:
IC1> =G> =1 = cosh’ax—sinh>a=1 V a. (218)

Here, one can easily observe that, if we fix # = 0 and v = 0, then one can easily get
back the usual quantum adiabatic Bunch-Davies vacuum state which is given by C; = 1
and C; = 0. On the other hand, if we are interested in the CPT invariant quantum vacuum
state then we choose only v = 0 and get CPT invariant SO(1,4) isommetric « vacua states,
which are given by:

1 i - dPk
%) = [Foo) = NI exp(2 tanh a / P aiaﬁ) |¥8D) , (219)

Now, using the definition of the Mota—Allen vacua or the « vacua or the Euclidean
Bunch-Davies states, one can explicitly compute the expression for the desired OTOCs
defined in this paper. In the following section, we will derive these results explicitly.
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Zap(Bi1) = [ A¥asy (Fasle PRV H,) =

3.6.2. Quantum Partition Function in Terms of Rescaled Perturbation Field Variable in
Primordial Cosmology

In presence of these SO(1,4) isommetric excited CPT violating Mota—Allen or CPT
preserving a-vacua states, the quantum mechanical thermal partition function can be
expressed as:

Tcosha] ©P(-2sinytana) Zgp(f;1), (220)

Zy(B;m) = / d¥s (Fale PIO|Y,) = $ZBD(ﬁF 7), (221)

| coshal

which further implies the following connecting relationship between the thermal quantum
partition functions obtained from Mota—Allen vacua, « vacua and Bunch-Davies vacuum
state, which is given by:

Zuq(B;T1) = exp(—2sinytana) Zy(B; 1) = | cosha| ! exp(—2sin+ytana) Zpp(B; 1) (222)

where Zpp is the quantum partition function computed from the adiabatic Bunch-Davies
vacuum as:

Zp(B; 1) :

/d"I’BD <TBD|9XP(_‘B/d3k ay Ek(Tl)) YD)
exp(—/d3k In <2$inh ﬁEkz(Tl))> (223)

where the contribution from the divergent Delta function can be removed after performing
the normal order operation. This implies further that we get the following simplified result
for the quantum thermal partition function obtained from the Mota—Allen vacua, « vacua
and Euclidean Bunch-Davies vacuum state after normal ordering:

exp<— {ZSin'ytanoc—k/d?’k 1n<2sinh [5Ek2(7—'1)>}) (224)

The detailed technical computation of these results can be found in the Appendix.

Zoy(BiTm) = m

3.6.3. Quantum Partition Function in Terms of the Cosmological Scalar Curvature
Perturbation Field Variable in Primordial Cosmology

In this subsection, our prime objective is to find out the explicit expression for the
quantum mechanical partition function in terms of the scalar co-moving curvature per-
turbation field variable for different choices for the initial vacuum states available in the
context of primordial cosmology. To serve this purpose, the time-dependent dispersion
relation can be expressed in terms of the curvature perturbation variable as:

Ex(t) = |Th(m)*+ wi(m)fic(m)* = 22(1) (Exz () + Bz (1)), (225)

where the additional contribution is characterized by a new momentum- and time-dependent
function, Ay ¢ (71), which is defined as:

— ¢ ¢ 1 dz (T1 )

Buglm) = (1)) + T (e e ) 226)
where we define the conformal time-dependent energy dispersion relation in terms of
the co-moving curvature perturbation variable in the context of primordial cosmological
perturbation variable as:

2
Fig(n): = \Hi<n>]2+(wi<n>+< : dz(f”))gk(mﬁ 27)

z(m) dnu
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Now, the normal ordered thermal partition function function obtained from the Mota—
Allen vacua state can be expressed in terms of the time-dependent dispersion relation for
co-moving curvature perturbation as:

exp (— [2 siny tana + /d3k In (2 sinh p2(n) (Brz (1) + Aig () > ] ) . (228)

a'r(ﬁ 7)==

| cosh | 2

3.7. Trace of Two-Point “In-In" Non-Chaotic Extension of OTO Amplitudes for Primordial
Cosmology

Here, we compute the numerator of one of the 2-point OTOCs for different quantum
vacuum states, which are described by the following expressions:

Tr {e_ﬁﬁ(ﬁ) [f(x,fl) f(x Tz)”

(a,y)
exp(—2sinytana) 2
= / d¥pp H/ eXP [ik;.x| (YD Z kl/ ko; 11, 2;B) | |¥BD)- (229)
| cosh «| =
which further implies the following fact:
Tr { —BH( Tl)[A(x,ﬁ),f(x,Tz)H = exp(—ZSin'ytantx)Tr[ ~pH(n) {f(x, 7), f(x, Tz)”
(@) (@)
_ exp(—2sin<ytana) _BA(w) [ 7 .
= cosbal e [foom) foem]] o @30

Here, we compute the numerator of the other 2-point OTOC for different quantum
vacuum states, which are described by the following expressions:

Te[e A7) [M1(x, 1), T1(x, )]

(a7)
—25si t 1x 2
_ exp(—2sinytan /d‘I’BD H/ exp [ik;.x| (YD Z kl,kz; 71,7 B) | |¥BD)- (231)
| cosh «| )y
which further implies the following fact:
Tr [ —pH(r1) [A(X,Tl)/f(X,Tz)H = exp(—ZSin’)’tana)Tr[e*ﬁﬁl(ﬁ) [f(x,ﬁ),f(x,rz)ﬂ
(a,7) @)
_ exp(—2sinvytana) _pf(n) [ 7 R
N | cosha| Tr [6’ {f (x, ), f(x, rz)] } (5D) (232)

Further, our aim is to compute the individual contributions which in the normal
ordered form are given by the following expression and computed in the Appendix:

/d‘I’BD (YBD| : @gl)(kl/kz; 71, 72;B) : [¥YBD) = /d‘f'BD (Fpp| : e PH(M) Kgl)(kl,kz; 71, 72) : [¥BD)

Vi=1,2. (233)
/d‘I’BD (YBD| : v1(2)(1<1,1<2; 71, 72;B) : [¥YBD) = /d‘I'BD (Fpp| : e PH(T) 352)(1%1(2; 71, 72) : [¥BD)
Vi=1,2. (234)

Further, the trace of the sum of these individual two sets of two-point “in-in” OTO
amplitudes in normal ordered form can be expressed as:

/d‘I’BD (YsD| Z ) (ky, ko 7, 0; B) ¢ [¥ep) = (271)%8° (k1 + ko) Py (K1, ko; 22, T B). (235)

/d‘PBD (YsD| 2 : v1(2)(1%1(2; 7, ; B) ¢ [¥ep) = (271)°8° (k1 + ko) Pa(ky, ko; T2, T B). (236)
i=1
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Here, we introduce Py (ky, ko; T2, 72; B) and Py (k1, ky; T, T2; B) which are the tempera-
ture dependent two-point function defined as:

Py (ki ko; 1o, 22 B) = exP<— /d3k In <Zsinh ﬁEk(Tl)))

2
[Dél)(kl’kz" T, )+ Dél) (ki, ko; 11, 22) — Eél) (ki, ko; 11, 2) — E:(J,l) (k1, ko; T1ITZ)}- (237)
P, (ki ko; 12, T2; B) = exp ( / d°k In (2 sinh BEI<2(71)> )
[D§2) (et deai, 2) + Dg’Z) (k1 ko; 71, 72) — ££2) (ki, ko; 11, 2) — E§2) (ki,ko; 71, Tz)] (238)

3.8. New OTOCS from Regularised Two-Point “In-In" Non-Chaotic Auto-Correlated OTO
Amplitudes: Rescaled Field Version

The cosmological OTOC without normalisation for different quantum initial vacua
can be expressed as:

Y (1, 1) = —Z('Bl;Tl)Tr [g*ﬂﬁ(n) [f(x, Tl),f(x,TZ)H - / %Pl(kl,—kl;ﬁ,rz), (239)
Y] (n, ) = —Z<;;T1)Tr [ [T, 1), T, 2)] | = — / (012371;)13732(k1,—k1;*f1,*r2), (240)
where the two-point OTO amplitude functions are explicitly given by the following expres-
S10NS:

Pi(ky, —ki;10, 1) 1 = {DS) (k1, —ki;T,12) + Dé” (k1, —k1; 7, T2)
—£M (ky, —kp; 1, 1) — £ (I, —kg; 71, Tz)}, (241)

Po(ki, —ki; T, 0) 0 = [Df) (ky, —ki; 71, 2) + D (ky, —ki; 71, T2)
—L{ (k, —ki; 7, ) — £57 (i, —ki; 1, ) - (242)

Here we define:

DY (ki ko, ) = fr () fio(T2), (243)
Dk ki, ) = fig (1)l (), (244)
£ (ki ko m,m) = i () fio (1), (245)
£k ket m) = fig(0) g (1), (246)
DY (ki ki1, 1) = %, (1)1, (2), (247)
DY (ki ko, m) = I (1) (1), (248)
L (k1) = I (0)1Tg (1), (249)
£ (ki ko, m) = T ()T (7). (250)

Now we need to evaluate explicitly by doing the momentum integration over three
volumes. Now, to compute this integral, one can express the volume element as:

Pk _ Ank3dky 0<k; <L (251)

(2m)3 — ==

Here, we have taken care of the fact that the individual contribution appearing in

the two-point OTOC momentum integral is isotropic. In addition, we have introduced a
momentum finite large cut-off to regulate the contribution of this integral.
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Consequently, one can write the following simplified expressions for the two-point
un-normalised OTOC as:

1

Y{(Tl,fz) = —ﬁ&(’fl,’fz) , (252)
1

Y;(le’h) = —RBZ(TMQ) (253)

where the conformal time scale dependent regularised integrals, 51 (71, 72) and B (11, 72),
as appearing in the above expression, are defined as:

Bi(t,n): = (—Tl)%fv(—fz)%fv{z (11, 2)

By(t,m): = (—Tl)%*V(—rz)%*V[z

(n1,72)], (254)
(1)), (255)

where we have introduced the time-dependent four individual amplitudes, Z (({)) (1, @) Vi, j=
1,2,3,4, which are explicitly defined in the Appendix. These amplitudes satisfy the follow-

ing symmetry properties:

(n,0) = (-1)" >z

?)(rl,rz) vV 1=1,2, (256)
(11, m) = (-1)"@ 0z

(
(
g3)(rl,rz) v 1=1,2, (257)

Further using the above mentioned simplified form of the momentum integrated time-
dependent two-point function, the two new desired OTOCs can be written as:

%

NI=

(1)} V()

- 1 1
Y{(TLTZ) = _ﬁgl(Tl/TZ) = o2 [1 +(-1) (ZVH)] (Z&;(Tllfz) - Zggg(Tl,Tz)) (258)
3 3
1 —11)2 Y (—m)27" . 2 2
Y{(Tll TZ) = 7ﬁ82(T11T2) = ( 1) 27_5_2 2) |:1 + (71) (2V+1):| (Zgg,; (TllTZ) - ZEZ? (Tl/TZ)>' (259)
These expressions can be simplified in terms of the slowly varying time-dependent
phase factors as:
1 1
—7)27V(—1m)27Y )
¥/ (1, 1) = &) 2752 22 L exp(—i(2v 4 1)7)] (28 (m ) — 20w, m) ). (260)
s (-m)P " (—m)i . @ @
Y (1, 1) = — [1+exp(—i(2v + 1)7)] (Z(B) (1,0) - Z{3) (Tl,Tz)). (261)
Now, in the large mass limit we need to replace v — —i|v|, for which we get the
following expressions for the two-point functions:
1., 1., [ 1
— )2l ()2t

¥/ (1, ) = &) 2752 2) 1+ ep(=2in) | (24)(mm) - 25 (n,)). (262)

Boltzmann suppression |

3. 3.,
— )2l ()3l

v(mm) = T ERE y epapin) | (280 - 23 mm), (263)

Boltzmann suppression |

where we define:

lim Z{(n,m)=Z((n,m) Vv I=12 i=23 (264)

v——i|v]| ()

We need to explicitly evaluate the expression for these above-mentioned momentum
integrals which will fix the final expression for the two desired two-point OTOCs in the
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context of primordial cosmological perturbation theory. We have presented the detailed
computation of all of these integrals in the Appendix for better understanding purposes of
the two conformal time dependences of each of the contributions.

3.9. New OTOCS from Regularised Two-Point “In-In" Non-Chaotic Auto-Correlated OTO
Amplitudes: Curvature Perturbation Field Version

Here, we need to compute the desired two-point new OTOCs in terms of the scalar
curvature perturbation and the canonically conjugate momentum, which are given by:

Yi(t, ) = _zé(;,n)Tr[e P (£ (x, 1), T1(x, )] ] = z(Tl)lz(Tz)Y{(Tl'TZ)' (265)
Yi(t, ) = _zé(;,q)Tr[e P (£ (x, 1), T1(x, )] ] = Z(Tl)lz(fz)y{(q,n), (266)

where as a choice of the initial quantum vacuum state we have considered Mota—Allen,
«, Bunch-Davies states, which are the three popular choices of the initial vacuum states in
the present computation.

Now substituting the explicit form of the two-point function that we have derived in
the previous section, we get the following expression:

¥ = 5 feike bty [V @ - 2gm) e
V() =y ST~ C GO 1 o] (2 ) - 2 w) o9

These above-mentioned expressions can be expressed in terms of the slowly varying
conformal time-dependent mass parameter which is appearing in the phase factor as:

Yf('rl,rz) - (_277122 (Tg) T(zr);) ! [1+exp(—i(2v+1)m)] (Zg; (11, ™) — Zgg('rl,rz)) (269)
Yg(Tl,Tz) = (_ZT;)Z (TE) T(i_)zz) ’ [1+exp(—i(2v+1)m)] (ZE?);(Tl,Tz) — ZE;?(Tl,Tz)) (270)

Now, in the large mass limit we need to replace v — —i|v|, for which we get the
following expressions for the two-point functions:

(_ )l+i\v\( 2)%+i\v| [ ]

Ye(1, ) = 212 z(11)z()

1+  exp(—2v|n) (zg;(n,m—zg;(q,Tz)). 271)
%,—/

Boltzmann suppression |

—1p) 3+l

ng(ﬁ,rz) = (=) 2Vl

— (2) _ =z
272 2(1)2(1) 1+ exp(2vim) (Z(3)(T1/T2) Z(z)(fl,T2)>. (272)

Boltzmann suppression |

Now, additionally, we have to mention that from the finally obtained answer for the
two-point OTOCs obtained from the two different setups:

1.  The results obtained for two-point OTOCs for different types of initial choice of the
quantum vacuum states are the same. No specific information of the initial condition
in terms of the chosen quantum vacuum will be propagated in the overall factor of the
final result of the two-point OTOCs. The information of the initial quantum vacuum
will be there in the momentum integrated function Z Elz)) Vi=1,2and Z E;)) Vi=1,2

within a finite length cut-off L as it captures the effect of the full asymptotic solution
of the scalar modes and its associated momentum, and both of them are dependent
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on the factors C; and Cp which carry the required information. In this computation,
both the quantum and the classical contributions have been taken care of. If we only
concentrate on the quantum fluctuation part then the most interesting information
is coming from the sub-Hubble or sub-horizon limiting region. By a very careful
observation one can explicitly see that in the sub-Hubble region the final result of
the two-point OTOCs obtained from different types of the initial quantum states
will give approximately the same answer and can solely be described by the well-
known Euclidean Bunch-Davies initial condition. This is quite an interesting fact
appearing in the context of two-point OTOC computation, because if we recap the
similar computation of time ordered or anti time ordered correlators or any equal
time two-point correlators within the framework of cosmological perturbation theory,
then we find that the final result, which we call in cosmologist’s language power
spectrum in the Fourier transformed space, always captures the explicit information
regarding the initial quantum vacuum state even in the super-Hubble region where
the quantum effects dominate over the classical super-Hubble contribution.

In the presence of a very heavy mass particle, which is within the framework of cos-
mology and identified by the limiting situation, m > H, where H is the characteristic
Hubble scale, one needs to take the analytical continuation of the mass parameter
v to the imaginary axis such that, v — —|v|. As a consequence of this we get a
exponential Boltzmann suppression by a factor of exp(—2|v|7), which can be treated
as a correction term in the final expressions for the two-point OTOCs. Now, if the
magnitude of the mass parameter |v| is extremely large then one can simply drop this
exponential Boltzmann factor in the final expression for the two-point OTOCs and
can be written as:

Large |v| ([v| — oo) approximation :

Y{(Tl,’Q) ~ W%WV%)(H,TZ). (273)
Y] (11, 1) ~ Wvg)(ﬁﬁz), (274)
Yf(rl,rz) ~ mvg)(n,ﬁ). (275)
Y5 (1, 10) & (7 |v]) Ve (t,m), (276)

272 z(11)z()

where we define new functions 1 (1, 72, |v|) and H2 (11, T, |v|), which are given by:

(o) = (=)~ (15 Fin(-m) ) (14 (), @)
(o) = () () (14 Sin-m) ) (14 S in(-m)), @)

Here, it is important to note that to define this function we have used the following
expansion:

(—t0) M~ (=) 145 In(=1) + -], VEk=12&j=12(k#])

1 3
‘ ith ==, &= > 27
with §; ok 0y 5 (279)
where we have considered the fact that, [v| > ¢; V j=1,2and |v| — oo to get the
leading and the sub-leading or the next to leading order contribution, which is used

for the further simplification of the obtained result for the two-point OTOC in the
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Ti(n, o, v]) := (—7)

T2(t, 2, v]) := (—11)

large |v| limit. We also have introduced the following symbolic representation for the
sake of simplicity and clarity:

vgiz)(Tllfz) = lim (Z(i)

MESANC)

() - 2 (mm) ¥ i=12 (280)

On the other hand, if the magnitude of the mass parameter is small then one can
expand the exponential Boltzmann factor in the Taylor series and keep up to the linear
order term in v in the expansion. This will give rise to an overall contribution, which is
given by 2(1 — |v|7r) and the corresponding two-point OTOCs can be approximately
written as:

Small |v| ([v| — 0) approximation :

T 7 7

Y] (1, ) = 71“1273 ‘UDA:%)(TLTZ). (281)
T 7 7

Y] (1, 1) = 72“1273 ‘”'Mggm,rz), (282)
T 7 7

Yé(r, ) = AT V) )y (283)

- 272 z(1y)z(m2)

Tr(t, o, |V
ng(’l’l,TQ) = 27122(21(712)Z|(T|2))A£)(T1'T2)' (284)

where we define new functions 71 (7, 2, |v|) and T2(7, 2, |v|), which are given by:
(—2)
(—12)

Here, it is important to note that to define this function we have used the following
expansion:

(1 + vl In(~7)) (1 + v/ In(=1)) (1 — [v] ), (285)
(1+iv|In(—7)) 1 +ilv|In(—1))(1 — |v|7). (286)

NI Nl—=
NI NI—=

(=)~ 2(—)% [1T+ilv[In(=7)+--], Vji=12&k=12 (j#k)

‘with 61 = %, 0y = %, (287)
where we have considered the fact that §; > |[v| V j = 1,2and |v| — 0 to get the
leading and the sub-leading or the next to leading order contribution, which is used
for the further simplification of the obtained result for the two-point OTOC in the
small |v| limit.

We also have introduced the following symbolic representation for the sake of sim-
plicity and clarity:

A (1,m) = lim (2 (0,0) - 25 (mw) ¥ i=12 (288)

[v|—0

One can also consider various important cases, described by the mass parameter
valuesv = 0, v = 3/2 and v = 1/2. Here v = 3/2 represents the massless field
limiting situation and v = 1/2 representing the conformally coupled case, where we
have my = v/2 H. On the other hand, v = 0 represents the situation where we have
my = 3H/2. Here, one can treat both v = 0 and v = 1/2 in the partially massless
field category.

We have explicitly shown that the two-point OTOCs defined in this work are com-
pletely independent of the choice of the coordinate system and at the end only depend
on the time scale on which the cosmologically relevant operators in perturbation
theory are separated in time scale. To define properly, we define these operators in
terms of a specific space coordinate point but at different time scales and found that
the final answer of the two-point OTOCs are only dependent on time scale.
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5. From the present computation we found that the final expression for the two-point
OTOCs are completely independent on temperature even though we start with a
thermal canonical statistical ensemble in the trace formula of the two-point OTOCs. It
implies that we will get ultimately the description in terms of statistical ensembles
following the present description within the framework of cosmological perturbation
theory, which is obviously a quite interesting observation to point out in the present
context of computation.

6. Now if we fix the conformal time coordinate of the two operators, 771 = Tand 1, = 7,
that means if both the cosmologically relevant operators are defined at the same
time coordinate (time separation vanishes) then two-point OTOCs show divergence.
On the other hand, if we compare the obtained result with the expression for any
two-point equal time cosmological correlators of the perturbation field variables then
the amplitude of such correlators, which we commonly identified to be the power
spectrum within the framework of cosmology, are found to be finite. Therefore, this
observation implies that just by converting OTOC to ETOC one cannot get a correct
and finite answer. This is because of the fact that OTOC deals with completely out-
of-equilibrium phenomena and ETOC deals with completely equal phenomena. It is
expected that after taking a very large late time limit, it is possible to achieve equilib-
rium in any one of the time coordinates involved in the cosmological operators, but
to get a complete equilibrium description in ETOC one needs to follow a completely
different approach starting from the definition.

7. After doing simple computation, one can explicitly show that, in the present context,
the one-point and three-point functions are explicitly zero and can be written as:

s = g Te[e 1 fm)] =0, (289)
(110 ) = (;} T)Tr[e*ﬁmﬂ i(x7)] = 0. (290)
<f(X, Tl)f(x/ Tz)f(x, T3)>,B = Z(;, T) Tr {eiﬁﬁ(ﬁf) f(x/ T)Jf(x/ TZ)f(x/ T3)] =0, (291)
(T(x, 7)TI(x, )TT(x, 1)) = Z(;;T)Tr[e_ﬁﬁm ﬁ(x,ﬁ)ﬁ(x,fz)ﬁ(x,rg)} =0. (292)

Here, we have used the well-known Kubo Martin Schwinger condition, which ba-
sically deals with the time translational symmetry at finite temperature and using
this fact one can explicitly show that the above two combinations of the three point
function for the cosmological perturbation theory explicitly vanishes in the present
context. Not only these combinations, but also the other possible cross correlated
three-point function will become similarly zero. If we do the computation for the
primordial cosmological scalar perturbations explicitly in zero temperature then one
can explicitly find non-zero but small answers for all the possible three-point cor-
relators using the concept of OTOC. Using the Kubo-Martin-Schwinger condition,
one can further show that for any odd N-point function at finite temperature the
corresponding contribution vanishes due to the time translational symmetry. For
these mentioned reasons OTOCs are not defined in terms of any odd N-point function
within the framework of out-of-equilibrium quantum field theory. All even N-point
OTOCs are normalised with appropriate factors which actually appear from the
expansion in the large time dissipation time scale t ~ B = T~!, which is basically
proportional to the equilibrium temperature of the quantum system under considera-
tion at very late time limit. On the other hand, since one cannot decompose the odd
N-point thermal correlators in symmetric combinations and each correlator is trivially
zero there is no normalisation possible to express these correlators. Therefore, the
only physical information is appearing from all even N-point correlators. For N = 2
we get the two-point OTOCs which we do not need to normalise because in this
computation these are treated as the smallest building block for the computation. Any
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other even N > 2-point correlators can be normalised in terms of the combinations
of the N = 2 point disconnected part of the OTOCs which are basically appearing
in the large time dissipation time scale as previously we have mentioned. In our
previous paper [53], we have provided the detailed computation of a specific type of
two-point and four-point OTOC out of which one is able to extract various unknown
physical information within the framework of cosmological perturbation theory de-
scribed in the out-of-equilibrium regime of quantum field theory. In this paper we
actually go beyond this understanding of the OTOC and can provide two new sets
of two-point and four-point OTOCs which we believe can give other information
regarding the quantum system under study within the framework of cosmological
perturbation theory in the out of equilibrium regime of the quantum field theory.
In the next subsections, we are going to provide the detailed computations of the
“in-in” OTO amplitudes and the related four-point OTOCs from the primordial scalar
perturbations.

3.10. Trace of Four-Point “In-In" Non-Chaotic Auto-Correlated OTO Amplitude for
Primordial Cosmology

Now, we will explicitly compute the numerator of the first type of four-point OTOC
constructed out of cosmological perturbation field variable for different quantum vacuum
states, which is given by:

Tr [e_ﬁﬁ(ﬁ {f(x T1) f(X,Tz)}2:|

(@)
_ exp(—2sinytana) / = / &k; 4
= lcosha] d¥sp ]Il PIoE exp [lk].x]

4
<TBD|[ZVi(l)(kl/kzrk3/k4;T1/TZ}.B) [¥BD).  (293)
i=1

On the other hand, we will explicitly compute the numerator of the second type of
four-point OTOC constructed out of cosmological perturbation field momenta variable for
different quantum vacuum states, which is given by:

Te[e PR (11 1), T1(x, ) ] .
@y

_ exp(—2sinytana) /dTBD H/

| cosh «

5 exp [ik; x|

<‘PBD|[Z91'(2)(klsz;k3/k4;T1/Tz}.B) [¥eD). (294
i=1

Further, our aim is to compute the individual contributions which in the normal
ordered form are given by the following expression and are explicitly computed in the
Appendix of this paper:

/ d¥sp (Yepl : V1V (ki ko, ks, ks 71, 72: B) - [¥oD)

= /d‘PBD (¥gp| : e AT ﬁ(l)(kbkz, k3, kg; 71, 2) 1 [¥BD), (295)
/d‘YBD (Yep|:V (kl,kz,kal ky; 11,2, 8) - |¥BD)

_ / d¥pp (Yoo : e P T (1, ko, ks, ky; 1, ) ¢ [¥ep) Vi=1,2,3,4 (296)

Here, it is important to note that the dispersion relation in general has to be different
for different choices of the initial quantum vacuum state.
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3.11. New OTOCs from Regularised Four-Point “In-In" Non-Chaotic Auto-Correlated OTO
Amplitudes: Rescaled Field Version

3.11.1. Without Normalisation

The desired cosmological OTOCs without normalisation can be expressed as:

() =~ | o) fixm)] |

_ / (’71;‘)13 / (‘;2‘)23 (P (1, ¥0, —ko, K11, 0) + £, (K1, Yo, 1, —Ki 1, 2)
+5é1) (k1, ko, =k, —kyi; 71, T2) + 57(1) (k1, ko, —kq, —ko; 71, T2)
+51((1)) (k1,kp, —ki, —ko; 11, 2) + 58) (k1, ko, —ko, —ki; 71, 72)
+51(;) (k1, ko, =k, —ko; 71, 22) + 51(;) (k1, ko, —ko, —ki; 71, T2)
e (, —a,do, —kai T, 1) + 4y (i, — K b, —koi T, ) + 4 (la, —ka Ko, —koy T m) b, (297)

— A.[-l A ~ 2
Z(,B,'Tl)Tr[e BH( )[H(X,Tl),H(x,Tz)] }

3k d3k
- _/ (27_[)13 / (27_[2 {giz)(kl/kZI _kZ/ _k];Tl/T2>+g£2)(k]/k2/ _k1/ _k2;Tl/T2)

—_ W

+E (K, kg, —ko, —k; 11, T0) + £ (ki ko, — ki, —kp; 71, T2)
+51(§) (ki ko, —kq, —ko; 11, 22) + 51(? (k1 ko, —ko, —k1; 71, T2)

+51(§) (k1,kp, —ki, —kp; 11, 2) + 51(5) (kq, ko, —ko, —k1; 71, 1)
+EP (K1, —ky, ko, —ko; 11, ) + €2 (ky, —kq, ko, —ko; 11, ) + €12 Ky, —kq, ko, —ko; Tl,rz)}, (298)

where we have introduced new four-point OTO amplitude functions, 5,511), &P v

m m =
4,6,7,10,11,13, which are defined as:

P (ko ks ki, 1) = MP gV NP -0l vi=1,2, (299)

All these functions signify the amplitude of the desired two types of OTOCs which
are expressed in terms of the contributions from the four-point functions. For further sim-
plification, we have to consider symmetry properties of the above-mentioned amplitudes
under the exchange of the momenta appearing in the third and fourth position, i.e., if we
replace —k, — —kj and —k; — —k», which are given by the following expressions:

gil) (kl/ kZ/ _k2/ _kl; T, TZ) = gil) (kl/ k2/ _klr _k2; T, TZ)VZ = 1/ 2/ (300)
e (ky, 10, ko, —ki; 1, 10) = EY) (ka, ko, —kq, —kp; 1, T)VI = 1,2. (301)

Using these exchange symmetry properties, the desired OTOCs one can further sim-
plify the results as:

+EU (K, ko, —Xo, —ki; 11, 1) + E (K, ko, —kq, —kp; 1, T2)
+E (1, — Ky, —ko; 1, 1) + £ (Ky, kg, —ko, — ki3 11, T2)
+57(l) (k1, =k, ko, —kp; 71, T0) + 51(6) (ki, —kq, kp, —ko; 11, T0) + 51(? (k1, —ki, ko, —ko; 11, Tz)}
Vi=1,2. (302)
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In this computation, the volume elements of the momentum integrals are given by the
following expression:

2 ,
1 T = 6]‘[k2 dk; sin6; d6; de; ,
where0<k <o, 0<bi<m, 0<¢;<2n Vi=1,2. (303)

Here we need to put cut-off 0 < k; < L V i = 1,2 to regulate the only magnitude of
the momentum-dependent radial integral and consequently we can write the following
regulated expressions for the desired OTOCs, as given by:

cf(1,m) = *41? '/OL K dky '/(;L K3 dk;
{2(&) k)0, ~lo, ki1, 1) + £ (1, Ko, —kt, —koi 1, ) )
—|—56(l) (ki, ko, —ko, —ki; 71, 2) + 57(1) (ki, ko, —k1, —ko; 71, T2)
+€1((IJ) (k1, ko, —k1, —ko; 71, ) + 51(? (ki ko, —ka, —k1; 71, )
+57(l) (ki, —k1, ko, —ko; 11, 22) + 51((? (k1, —ki, ko, —ko; 71, ) + gl(i) (a, —l ko, —loi T, ) }'
Vi=1,2. (304)

Consequently, the OTOC can be expressed in terms of the four-point time-dependent
amplitudes as:

7
c(n,m) = 4i Z Dr, 1) V=12 (305)

(l)<

See the Appendix for details, where we have computed these functions I] T, )
VI =1, 2. Once we determine all of them, then the structure of the desired OTOCs, i.e., the
time-dependent behaviour in the OTOC, will be fixed. Here it is important to note that the
weight factors for each individual contribution are given by the following expression:

ol = w0 =2, w]@:l Vj=34,--,9 Vl=1.2 (306)

Further, using these above-mentioned results of the integrals, the un-normalised
OTOCs can be expressed as:

12w 1-20 4
(_1)2@ ( 7217)14(_(1)41/ >1 ZX Y(,m). (307)

cl(n,m) = {1 F (-1 +

NIN NN

—2v —2v 4
(1)2V:| (77'-1)3 2 (7T2)3 2 ZX Tl/TZ (308)

Cf(n,m) = [1+( n* + 2 (1)1

Here the functions X; W (11, )Vi =1,2,3,4, VI = 1,2 are defined in the Appendix.

3.11.2. With Normalisation

Further, the normalisation overall factor of OTOC is given by the following

expression:
f B 1 _ t
M) = e s ey B Am) o
f B 1 _ t
Ny (1, ) = = . (310)

<ﬁ(T1)ﬁ(T1)>ﬁ<ﬁ(Tz)

=
—
S
~—
=
J
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1
—~
S
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where the time-dependent functions Fi(7;) and F,(7;) for all i = 1,2 are defined in the
Appendix explicitly. Please look into the Appendix for the detailed computation of the
normalisation factor of both of the OTOCs.

Finally, the normalised OTOCs in the present context can be computed as:

f
Cf ) - AC1(T1/:[) A
1) = e s Fe ()
B 7 l 21/ 2)1721/ 4 (1),1
—[”( DY } 4v 7 nm(n)lzle ) G
f _ Cg(Tl,Tz
C2 (M) = TR i ) (U (m) ()

3-2v 3—-2v
| R g LA ) 612

'S
<
+
NI

= [1 +(-1)

which is obviously a new result in the context of primordial cosmology and we are very
hopeful that this result will explore various unknown physical phenomena that happened
in early universe. The detailed explanation of this obtained result will be discussed in the
later half of this section.

Now we will discuss about two limiting results, which are commonly known as the
large mass and small mass limit of the field perturbation. Here, we will explicitly study
the analytical behaviour of the two types of the derived OTOCs in the present context of
discussion. This is only because of the fact that by seeing the derived expression for the
complicated structure of the OTOCs one cannot comment on the features of them without
numerically plotting the behaviour. The derived limiting results in this subsection will help
us to understand the underlying physical features of these two types of OTOCs without
explicitly performing numerical computations using the derived full results in this section.

First of all, we discuss the large mass limiting situation, which can be easily obtained
by performing an explicit analytical continuation in the mass parameter v to —i|v|. One
can argue here that for this computation v to i|v| is not at all allowed as this will give rise
to the over/excessive particle production in the four-point OTOC spectra computed in
the two explicit cases that we are studying in this paper. Now, after doing the mentioned
allowed analytical continuation in the mass parameter, we get the following results for the
OTOCs that we can obtain in the large mass limiting case:

. . 126|121y 4
cf(n,m) = [1+(—1)—41|V +Z(—1)-2wl} (cm) () Y XV (1, 1), (313)
2(=1)~ WD F (1) Fy (1) i=1

3+21M( )3+21|V\ 4 X(z),l(rl o) (314)
i i

C{(Tl,Tz) = {1 4 (_1)*4i|1/\ + Z(_l)zwq (— Tl)(

2(-1) |V‘+1)f2(T1)f2(Tz) i=1

where F1(11), F1(12), F2(11) and F,(12) are the normalisation factors for the two OTOCs
for the large mass limiting situation which is obtained by taking analytical continuation in

the mass parameter v to —i|v|. In addition, the functions Xi(l)’1 (71, 72) and Xi(2)’1 (11, T2) can

be similarly obtained by doing the same analytical continuation in the large mass limiting
situation. The explicit expressions are very cumbersome to write, therefore we have only
given the expressions for these functions for the general mass parameter v. Using these
expressions, by taking the above results one can explicitly compute the behaviour of these
functions in the large mass limiting situation.

Furthermore, one can simplify the above-mentioned two results of the OTOCs by
using the following expansion:
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(—t) M~ (—) M 145 In(=) + -], VEk=12&j=12(k#])
, ) 1 3
with 6 = 5 by = > (315)

where we have considered the fact that [v| > ¢; V j =1,2and |v| — oo to get the leading
and the sub-leading or the next to leading order contribution, which is used for the further
simplification of the obtained results for the four-point OTOCs in the large |v| limit. Using
this result, we get the following simplified results for the two types of the desired OTOCs
studied in this paper:

¢l (m,m) ~ {1 + (-~ Z(—l)zwl} (1 + 1ln(—T1)>2 <1 + ;m(_m)z

( )2i\v|( )21\1/\ }1>,1(
2(—1)~(@ivi+1) fl(Tl)fl

2) i
cl(n,n) ~ {1+ (—1)~4 4 ;(_1)—21'14} <1+ 3 n(— ) ( 3., )2

= \2ilv| () 2ilv| 4
SR G Vi o) ZX2>’1 (11, 2). (317)
2(—1) WD Fy (1) Fa(a) i=

X

T, T), (316)

1
=1

Next, we discuss the small mass limiting result for the two derived desired OTOCs
in this paper. Here, we have use the following expansion for the case when the mass
parameter is sufficiently small:

(-1 k)5+llv\~2( 7))’ [1+iy|In(-7)+--], Vj=12&k=12 (j#k)
1 3

‘Wi == == 318
with & =5, & =7, (318)
where we have considered the fact that §; > [v| V j=1,2and |v| — 0 to get the leading
and the sub-leading or the next to leading order contribution, which is used for the further
simplification of the obtained result for the two-point OTOC in the small |v| limit. In this
limiting case, these two desired OTOCs can be further simplified as:

—

f(mm) = 1+ (=14 4 21 2| (1 vl (=)0 + o] In(—)?

BCn)Cm) g x0T (g, ) (319)
(—1)~ WY Fy (0) Fi () =1

—

ef(mm) ~ L4 (=) 4 4 212 (@l ()2 v (- )?

Sonw) SR LT
oy = ) (320)
(f1)7(4i|u\+1)]:2(rl)]_—Z(TZ) l; ( 1 2)

Here, ]?(; ), .ﬁ(?z), J{(H) and ]?(E) are the normalisation factors for the two
OTOC:s for the small mass limiting situation, which is obtained by taking analytical con-

M1

tinuation in the mass parameter v to —i|v|. In addition, the functions X;

Xi(z)’l (11, T2) can be similarly obtained by doing the same expansion in the small mass
limiting situation. The explicit expressions are very cumbersome to write, therefore we

have only given the expressions for these functions for the general mass parameter v.

(Tl, Tz) and
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C%(Tl, Tz) = —

C(m, 1) = —

N (1, 1) =

Zogc,v (,3/ T )

Z5 (B, T1)

Using these expressions, by taking the above expansions one can explicitly compute the
behaviour of these functions in the small mass limiting situation.

3.12. New OTOCS from Regularised Four-Point “In-In" Non-Chaotic Auto-Correlated OTO
Amplitudes: Curvature Perturbation Field Version

3.12.1. Without Normalisation

Here, we need to perform the computation for the un-normalised OTOC in terms of
the scalar curvature perturbation and the canonically conjugate momentum associated
with it, which we have found is given by the following simplified expression:

3 5 s 1
T [e PRV [ (x, 1), E(x, 7)) = WC{ (11, 2), (321)

Tr [e*/SH(TO [f[(x, Tl),f[(x, Tz)]z} = !

1 f
(@) 22 (Tl)Zz(Tz) C2 (Tl, Tz).

(322)

3.12.2. With Normalisation

The normalised OTOC, in terms of the scalar curvature perturbation and the canoni-
cally conjugate momentum associated with it, is basically the computation of the following
normalised OTOC in the present context:

4 B Clg(Tl,Tz) Vs z
G0 = gty M A, G0
CS(t, )
5 (1, %2) = (e TG (0 (e — 2 (@) G(mm), (329

where the normalisation factor to normalise OTOC is given by:

1 _ 7-[422(1’1)22(1’2) _ 2 2 b
T Gt~ Al Flm) - (e @A), (325)
1 2 (1)2% (1)

Nzg(Tl/ TZ) =

Cf(n,rz) = le(leTZ) = [1 +(-D)* +

CZC(TLTZ) = C{(Tl,rz) = [1 +(-1)¥ +

- = 2(1) (1) N (11, ). (326)

(g (t)TTz (1)) p (T ()T (1)) g F2(m1) F2(T2)

Consequently, the normalised OTOC computed from the curvature perturbation
variable is given by the following expression:

7 9y ( 1)1—21/( )1 —2v 4 )1

A }2( D17 (0) 7 (1) ; (@) (27)
AR I e

A }2( DY 15 (1) Fa(w) ; (o) (328)

Here, all the unknown time-dependent functions Xi(l)’l(rl, ) Vi=12734and

X i(2),1 (1, ) Vi = 1,2,3,4 originating from the two types of OTOC correlations are
explicitly computed in the Appendix. One can explicitly show that by taking the large mass
and small mass limiting approximations, as performed in the previous subsection, we get
the same results in the present context for the normalised OTOCs presented in terms of the

curvature perturbation field variable and its canonically conjugate momentum variable.

4. Numerical Analysis I: Interpretation of Two-Point Non-Chaotic Auto-Correlated
OTO Functions

In this section, our prime objective is to numerically study to give an interpretation of
the obtained results for the two-point auto-correlated field and momentum OTO functions
within the context of primordial cosmological perturbation theory studied analytically in
the previous section of this paper.
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The detailed interpretation of the two-point auto-correlated field and momentum

OTO functions are appended below point-wise:

In Figures 6 and 7, conformal time dependent behaviour of the two-point auto-
correlated field and momentum OTO functions with respect to the two time scales is
explicitly shown. From these plots, it is clearly observed that with respect to both the
time scales the two-point auto-correlated field and momentum OTO functions show
random fluctuating behaviour.

For both the cases, it is observed that we get the significant distinguishable features in
the time-dependent two-point auto-correlated field and momentum OTO functions for
partially massless or heavy scalar fields. In Figure 8, if we change the quantum initial
conditions by changing the vacuum state by introducing the non-standard Mota—
Allen vacua, then a clear distinctive feature can be observed by changing the vacuum
parameters « and 7y, respectively. The behaviour of the two-point auto-correlated
field and momentum OTO functions is explicitly depicted in Figures 9 and 10. From
these plots, one can clearly see that for the results obtained using Bunch-Davies
vacuum, « vacua and Mota—Allen vacua state initial conditions, the two-point auto-
correlated field and momentum OTO functions significantly decay very fast in a
non-standard fashion with respect to the magnitude of the mass parameter |v| for
partially massless and heavy scalar fields in primordial cosmology. We have explicitly
shown the behaviour of the two-point auto-correlated field and momentum OTO
functions for « = 1/2,y = 1/2, where it is clearly observed that the correlation decays
very rapidly with the increase in the magnitude of the mass parameter |v/|.

In addition, we have observed from the plots that the random fluctuations with respect
to the conformal time scale show decaying time-dependent behaviour at the very late
time scale. First of all, all of them show a saturating behaviour and then it increases at
a particular value in the time scale and then these plots show decaying features. This
large peak value of the two-point auto-correlated spectra is obtained at the scale when
the two time scales of the theory becomes comparable. Physically, this is a very crucial
fact as it shows at this particular time scale we are actually getting zero information
from the two-point auto-correlations. Only the preferred information can be extracted
from the very early time scale as well as at the very late time scale after the peak.

= 1000, ¥ = —100 and o« = 1/2, v = 1/2 (M A vacua)

—800 — 600 —400 —200

T'imme scale (A7)

=]

Figure 6. Behaviour of the two-point auto-correlated field OTO function with respect to the time scale T for Mota—Allen

vacua for different mass parameters.
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Figure 7. Behaviour of the two-point auto-correlated momentum OTO function with respect to the time scale T for

Mota—Allen vacua.
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Figure 8. Behaviour of the two-point auto-correlated field OTO function with respect to the vacuum parameter 7y for

Mota—Allen vacua for different mass parameters.
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Figure 9. Behaviour of the two-point auto-correlated field OTO function with respect to the mass parameter |v| for

Mota—Allen, « vacua and Bunch-Davies vacuum for different mass parameters.
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Figure 10. Behaviour of the two-point auto-correlated momentum OTO function with respect to the mass parameter |v| for

Mota—Allen, & vacua and Bunch-Davies vacuum.

5. Numerical Analysis II: Interpretation of Four-Point Non-Chaotic Auto-Correlated
OTO Functions

Now comparing the results of the four-point auto-correlated field and momentum

OTO functions, we get the following outcomes which are mentioned point-wise:

1.

Before normalising the four-point auto-correlated field and momentum OTO func-
tions, the results computed from rescaled field and momentum and the curvature
perturbation field variable and its conjugate momenta, the sides are not at all the
same and are connected via a time-dependent Mukhanov—Sasaki variable dependent
conformal factor (z(71)z(12)) 2 in the final results.

After normalising the four-point auto-correlated field and momentum OTO functions,
the results computed from rescaled field and momentum and the curvature pertur-
bation field variable and its conjugate momenta, the sides are not at all the same. In
this case, particularly for the computational purpose, it is the best one as we really do
not care about the origin of the quantum operators in the cosmological perturbation
theory.

Next, we give the interpretation of the obtained results for the normalised four-

point auto-correlated field and momentum OTO functions computed in the present setup
point-wise:

In our computed four-point auto-correlated field and momentum OTO functions,
two time scales are involved. During the study of the behaviour of the four-point
auto-correlated field and momentum OTO functions, we have actually fixed one time
scale and have studied the time-dependent dynamical behaviour with respect to the
other time scale. We have found the behaviour with respect toboth 77 = Tand 7, = 7,
using Bunch-Davies, & and the generalised Mota—Allen vacua as the initial choice of
quantum vacuum state. See Figures 11-22 for more information about the detailed
conformal time-dependent feature of the normalised four-point auto-correlated field
and momentum OTO functions. In the conformal time scale, all of these plots vary
from —co (Big Bang) to 0 (present day universe), and show significant distinctive
features in the time scale.

If we fix the time scale, 7, = 7, and study the behaviour of the four-point auto-
correlated field and momentum OTO functions with respect to the scale 7y = T, then
we find that as we approach from the very early universe to the late time scale the
normalised correlators show random non-standard non-chaotic behaviour.
Additionally, we have found that we can get the desired features from the obtained
results which can be visible only when the mass parameter, v, can be analytically
continued to —iv. Therefore, massless De Sitter possibility (v = 3/2) is not allowed.
Consequently, we have the following options:
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1. Partially massless De Sitter case is one of the possibilities where we can estimate
the following parameter from the present understanding:

—iv =4/ Z —¢2 where ¢ > V2, (329)
which implies the following bound on the mass parameter:

v> L (330)

N~

This is consistent with the plots obtained for the following values of the
mass parameter:

9i
= . 1
5 (331)

2. Massive De Sitter case is one of the possibilities where we can estimate the
following parameter:

9
T (332)

Since we have studied the case for v > i/2, we get the following bound on the

mass of the heavy field:
5
m > \/; H. (333)

3.  Reheating case is the last possibility, where we can estimate:

W

Lav<? for 0<wy < (334)

N
N
W =

After fixing both the time scales at far past, the behaviour of the four-point auto-
correlated field and momentum OTO functions, with respect to the mass parameter, is
depicted in the Figures 22 and 23 for Bunch-Davies, « and Mota—Allen vacua as the
quantum mechanical vacuum states.

After fixing both the time scales at far past and fixing v = i/2, the behaviour of
four-point auto-correlated field and momentum OTO functions with respect to the
vacuum parameters « and 7y is depicted in Figures 24-27.

All the momentum-dependent integrals are divergent at oo, for which we have intro-
duced a UV regulator at L = 1000 (large value). This makes the final results of four-point
auto-correlated field and momentum OTO functions numerically convergent.
Further, we define a relative change in normalised four-point auto-correlated field
and momentum OTO functions where the relativeness is defined with respect to the
definition of quantum mechanical vacuum state, given by:

CP(Tir’xr'Y) - CP(TZ'I“ = 0,’)’ = 0)
) Motta——All Bunch——Davi
14 ) — otta—— en vacua unch——pDavies vacuum \v/ - 1 T 2
RY) () s _tench 5 i=1(1),2(1
Bunch——Davies vacuum
& V p = 1(Field auto correlator), 2(Momentum auto correlator). (335)

In Figures 28-38, we have explicitly shown the behaviour of the relative change
in normalised four-point auto-correlated field and momentum OTO functions with
respect to the two time scales. Here is the relative change we have studied for
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a«a=1/2,y =12, =1/2,y = 1land a = 1/2,y = 3/2 with respect toa = 0
for all previously allowed values of the mass parameters for partially massless and
heavy scalar fields. From this relative change, one can also study the large or small
deviation from the Bunch-Davies result compared to the other results obtained from
all non-standard quantum vacuum states.

¢ Inaddition, we have to mention here that the computed four-point auto-correlated
field and momentum OTO functions are independent of any specific choice of the
coordinate system. Finally, we get a momentum integrated cut-off regulated result
for the four-point auto-correlated field and momentum OTO functions which only
depend on the two dynamical conformal time scales on which we have defined the
rescaled perturbation variable and its canonically conjugate momenta. This is quite a
good outcome. In the generalised prescriptions, when one introduces the quantum
operators in a specific time and coordinate system, it always appears that in the final
result it captures the effect of inhomogeneity in the space-time coordinate. In the
context of spatially flat FLRW cosmology, we have found that the final result of the
four-point auto-correlated field and momentum OTO functions captures the effect of
inhomogeneity. This is because in cosmology we are actually interested in the time
evolution of the quantum operators which are separated in time scale, which is one of
the crucial constraints in the definition of any general four-point auto-correlated field
and momentum OTO function. Such four-point auto-correlated field and momentum
OTO functions do not capture the inhomogeneity.

®  The final result of the four-point auto-correlated field and momentum OTO func-
tions are not explicitly dependent on the factor § = 1/T which is appearing in the
expression for the thermal partition function. This further implies that the final re-
sults are also independent of the thermal partition function computed for primordial

cosmology.

For |v| =1/2 , L = 1000, and m = —100
2500 ' ' ' .
N a=0,v =0 (BD vacuum) ]
2000/ N a=1/2 v =0 (o vacua) B
. \ = 1/2, v =1/2 (M A vacua) ]
~— 1500 -
= :
) ]
< 1o000f —
= i
< ]
500 —:
o _

o

—:ISO —és —2‘0 —‘I|5 —'IID —I5
Time scale (1)

Figure 11. Behaviour of the four-point auto-correlated field OTO function with respect to the time scale T for Mota—Allen
and « vacua and for Bunch-Davies vacuum for the mass parameter |v| = 1/2.
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Figure 12. Behaviour of the four-point auto-correlated field OTO function with respect to the time scale T for Mota—Allen
and « vacua and for Bunch-Davies vacuum for the mass parameter |v| = 3/2.
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Figure 13. Behaviour of the four-point auto-correlated field OTO function with respect to the time scale T for Mota—Allen
and « vacua and for Bunch-Davies vacuum for the mass parameter |v| = 7/2.
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Figure 14. Behaviour of the four-point auto-correlated field OTO function with respect to the time scale T for Mota—Allen
and « vacua and for Bunch-Davies vacuum for the mass parameter |v| = 1/2.
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Figure 15. Behaviour of the four-point auto-correlated field OTO function with respect to the time scale T for Mota—Allen
and « vacua and for Bunch-Davies vacuum for the mass parameter |v| = 5/2.
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Figure 16. Behaviour of the four-point auto-correlated field OTO function with respect to the time scale T for Mota—Allen
and « vacua and for Bunch-Davies vacuum for the mass parameter |v| = 7/2.
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For |v| =9/2 L = 1000, and v+ = —100
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Figure 17. Behaviour of the four-point auto-correlated field OTO function with respect to the time scale T for Mota—-Allen
and « vacua and for Bunch-Davies vacuum for the mass parameter |v| = 9/2.
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Figure 18. Behaviour of the four-point auto-correlated momentum OTO function with respect to the time scale T for
Mota—Allen, « vacua and Bunch-Davies vacuum with mass parameter |v| = 1/2.
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Figure 19. Behaviour of the four-point auto-correlated momentum OTO function with respect to the time scale T for
Mota—Allen, « vacua and Bunch-Davies vacuum with mass parameter |v| = 3/2.
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Figure 20. Behaviour of the four-point auto-correlated momentum OTO function with respect to the time scale T for
Mota—Allen, & vacua and Bunch-Davies vacuum with mass parameter |v| = 1/2.
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Figure 21. Behaviour of the four-point auto-correlated momentum OTO function with respect to the time scale T for
Mota—Allen, « vacua and Bunch-Davies vacuum with mass parameter |v| = 3/2.
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Figure 22. Behaviour of the four-point auto-correlated momentum OTO function with respect to the mass parameter |v| for
Mota—Allen, & vacua and Bunch-Davies vacuum.
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Figure 23. Behaviour of the four-point auto-correlated field OTO function with respect to the mass parameter |v

Mota—Allen and « vacua and Bunch-Davies vacuum.
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Figure 24. Behaviour of the four-point auto-correlated field OTO function with respect to the vacuum parameter « for a

vacua with mass parameter |v| = 1/2.
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Figure 25. Behaviour of the four-point auto-correlated field OTO function with respect to the vacuum parameter -y for

Mota—Allen vacua with mass parameter |v| = 1/2.
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Figure 26. Behaviour of the four-point auto-correlated momentum OTO function with respect to the vacuum parameter a
for a vacua.
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Figure 27. Behaviour of the four-point auto-correlated momentum OTO function with respect to the vacuum parameter
for Mota—Allen vacua.
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Figure 28. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time
scale T for a vacua for the mass parameter |v| = 1/2.
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Figure 29. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time

scale T for a vacua for the mass parameter |v| = 3/2.
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Figure 30. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time

scale T for a vacua for the mass parameter |v| = 5/2.
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Figure 31. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time

scale T for « vacua for the mass parameter |v| = 1/2.
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Figure 32. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time
scale T for « vacua for the mass parameter |v| = 3/2.

For |v| —7/2 . L — 1000, and T — —100

—_

=

[ - : : : v =

=5 z- L e E

1= T =

cr — ! =

= |=> 10 =

=3 §

=l E
% 0_100;— 7;
= E e o = 1/2 E
L F 7
= o010 v — 1 - -
) E 1
g o001 | o= 3/2 E 3
- F =
=1 =
@ ol b
=1 10 = —
% —1.0 —o.8 —o.6 —0.a —o.2 0.0
= T irme scale (71)

Figure 33. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time
scale T for « vacua for the mass parameter |v| = 7/2.
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Figure 34. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time
scale T for Mota—Allen vacua with mass parameter |v| = 1/2.
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Figure 35. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time
scale T for Mota—Allen vacua with mass parameter |v| = 3/2.
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Figure 36. Behaviour of the relative change in the four-point auto-correlated field OTO function with respect to the time
scale T for Mota—Allen vacua with mass parameter |v| = 7/2.
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Figure 37. Behaviour of the relative change in the four-point auto-correlated filed OTO function with respect to the time
scale T for Mota—Allen vacua with mass parameter |v| = 1/2.
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Figure 38. Behaviour of the relative change in the four-point auto-correlated filed OTO function with respect to the time
scale T for Mota—Allen vacua with mass parameter |v| = 3/2.

6. Classical Limit of Non-Chaotic Auto-Correlated OTO Amplitudes and OTOC in
Primordial Cosmology

6.1. Computational Strategy for Non-Chaotic Auto-Correlated OTO Functions in the Classical
Limit

In this section, our prime objective is to study the classical limit of the four-point auto-
correlation functions that we have explicitly derived from the quantum descriptions. In the
following subsections, we will derive the classical limiting results which will be consistent
with the super-horizon late time limiting behaviour of the cosmological auto-correlated
functions.

In this subsection, we will illustrate our computational strategy to study the classical
limit of the cosmological four-point OTOC derived in this paper:

1.  First of all, we have to take the quantum to classical map. For this purpose, we
consider the classical mode function and its canonically conjugate momentum which
we have derived in an earlier section of this paper.

2. Next, in the classical limit, we use the Poisson brackets of the classical mode function
and its canonically conjugate momentum variables in cosmological perturbation theory.

3. Inthe classical limit, the definition of quantum trace will be replaced by phase-space

dfi(7)dl (7)

volume measure,
Dfi(t) DIy (7)
27

4.  In addition, during this computation, we have to include an additional thermal
Boltzmann factor which is serving the purpose of thermal weight factor taking the
phase-space average over the classical micro-canonical statistical ensemble.

5. Next, we compute the expression for the classical thermal partition function for
cosmological perturbations which is consistent with the quantum result computed
from completely different formalism. To compute the classical partition function one
need to compute the expression by following the principles of classical statistical
mechanics very carefully. We will show that the final expressions for the classical limit
of auto-correlated OTOs are independent of the partition function for the cosmological
scenario in which we are interested in.

6. Last but not least, we compute the expression for the normalisation factor for the
classical limiting version of the auto-correlated OTO functions by following the above-
mentioned general formalism.

, which mimics the role of path integral measure,

,in the classical limit.
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6.2. Classical Limit of Cosmological Two-Point “In-In" Non-Chaotic OTO Amplitudes

To compute the classical limit, we start with the Poisson bracket of these cosmologically
relevant canonically conjugate operators, which are given by the following expressions:

3 3
Foxm) fxmlm = [ s [ s ewlilla +ia)x)

[{fia (1), iy () }pp + {fio (1), fi (22) ), (B36)

3
M) Nl = [ [ (‘;:)23 expli(ks + ka).x)
[{Tha (1), T (%) }p + {1l (70), T (72) g - (337)

In the Fourier transformed space, the individual Poisson brackets are given by the
following expressions:

{fi (M), fio (@) }pg = (2m)°8 (k1 + ko) Ry (11, 2), (338)
{flo() fis (@) }pg = (27)°6 (ko + k1) Ri(71, 1), (339)
(T (1), Ty () b = (271)°6 (k1 + 1) Ra(11, ), (340)
{Thie (1), g () }py = (270 (kz + k1) Re(m, ), (341)
which further implies the following symmetric result:
{fiu(M) fio(@)}pg = {fie(T) i () }pg = (271)°6 (k1 + ka) Ry (11, 2), (342)
{Iy, (1), Th, () }pg = {Tliy (71), i, (2) } g = (2”)353(1(1 +k2) Ra(11, 2), (343)

which is appearing due to the fact that the three dimensional Dirac Delta function is
symmetric under the exchange of two different momenta.

Now we define the two-point random classical correlation functions Ry (7, 72) and
R, (71, 12) by the following expressions:

Ri(1,2): = Wi(tn—1n) (344)
Ry(t,m2): = Wa(u—m), (345)

where W1 (7, — 12) and W (14 — 1) are the two window functions which are defined as:

Wi(t—1) = \/(UNoise(Tl)UNoise(Tz)>/ (346)

Wi(n—n) = \/ (Mpggise (T1) Ty (72))- (347)

where the two-point noise and its associate canonically conjugate momentum correlation
functions at the classical level are given by the following expressions:

<77Noise(Tl)77Noise(T2 = \/Gl((le)rnel Tl - TZ = \,/G1(<1e)rnel(T2 - Tl) = \/Gl(:e)rnel("r1 - T2|), (348)

2 2
<H77N01se (Tl)H’?Nolse (TZ \/errnel Tl - TZ \,/Gl((e)rnel(T2 - Tl) = \/Gl((e)rnel(|71 - TZ|)' (349)
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(11066 ), 1106 2) Yo = (20)° [ (555

XT1

I(x,7y) =

[ G

where GV (11 — ©2) and G» (71 — 12) are known as the noise kernel which are both

kernel kernel

time translational symmetric Green’s functions. As a consequence, we get the following
symmetry properties in the classical correlation functions:

1
Ri(t,2) = Ri(npm)= \/Gf(e)mel(’Tl — 1),
Ry(t, ) = Ra(m,m) \/ermel (I — ).

6.3. Classical Limit of Cosmological Four-Point “In-In

” Non-Chaotic OTO Amplitudes

(350)

(351)

Further, in the classical limit, we compute the following two types of the square of
the Poisson brackets instead of computing the commutator brackets, which is the key

ingredient in the quantum calculation, given by:

{fx ), f(x2) Yo = {f(x 1), f(x 2) bpp{f (x 1), f(x, ©2) }pps

{T1(x, 70 ), T1(x, TZ)}%,B = {II(x, 1), I1(x, 72) }pp {T1(x, 71), I1(x, 2) } pp-

(352)
(353)

To compute the above-mentioned expression, we need to use the following Fourier

transformations:

5 exp(ik.x) fi(n),

3

3
f(x T) = /(1217:;3 exp(ik.x) 8T1fk(7.'1) = /(57_[1;3

exp(ik.x) TTy (1),

(354)

(355)

which will be extremely useful for the computation of the classical limiting results of the
previously mentioned two specific types of four-point OTOCs in terms of the square of the

Poisson brackets.

Using these inputs, we get the following simplified results in the classical limit:

Pl [ Pl [ Pl [ Pk
{f(X,Tl),f(X TZ)}PB (271') /(277)13/(27()23/(27'[)33/(2777)4

[ (ki + Ka) 6 (ks + ka) + 6 (Ky + ka)6™ (ka + k)
+6 (ky + kg)8° (k3 + ko) + 0% (ko + k3)0° (kg + ky)
+0% (ko + k1)0% (kg + k3) + 0% (kp + kg )53 ( )
+0% (ks + k1)0% (kg + ko) + 8% (k3 + k)82 (kg + ky)
+0% (ks + kq)0% (kg + ko) + 0% (kg + kq)0%( )
+8%(ky + k2)0% (k3 + kq) + 0 )53 ( )

[¢8)
~—~ o~

@Bk / d°k, / %k / %k,
(2m)3 ) (2m)3 ) (2m)3
8% (k1 + K2)8% (ks + Kg) + 6 Ky + Ka) 8 (Ko + Ka)
+82(kq +kg)8 (ks + k) + 53(1(2 +k3)0% (kg + k;
+0% (ko +k1)0% (kg + k3) + 0% (kp + ky)8°
+6% (ks + k1)0° (kg + ko ks +k)o°
+63 (k3 + k4) 8% (kq + ko kg + kp)6°
( )67 ( )

+ 48
+ 48
+83 (ks + k)63 (k3 + kq) + 82

~— — ~— ~—
,—\,—\/_\A

exp( (k1 +ky + k3 + k4) )

g

Kerrlel(|T1 - TZD'

exp( (k1 +ky + k3 + k4) )

ks + ks 5 ko + kg }G( ) (lm — »|).

Kernel

(356)

(357)
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where we have used the following crucial facts:
[ (@), fig (@)}, = @778 (s + 1) G (1 — 1),
[T (), T ()} = @m)P8 (i +; 1WGZ, (1 —l).
where i #jVi,j,=1,23,4. (358)

It is important to point that the individual contributions appearing in the previously

mentioned 12 contributions can be evaluated as:

{ e fig @)}, Lo () e (2) Yy = (27)°0% (i +16))0% (1 + Kin) Gt (171 = T21),

{q(m), Mg ()} {1 (1), T, (72 }PB (271)°6° (K; + K})8 (K1 + Kin) Gfeupmer (171 — T21).

kernels G( )

Kernel

where i#j#l#mVijlm=12734. (359)

In this computation, we introduce two conformal time-dependent coloured noise

(] — »|) and el (7 — |), which are defined as:

Kernel Kernel
1
Giarmer (|71 = 2l) = Wi(T — ), (360)
2
Giamal (|71~ 2]) = Wi (T — 7). (361)
On the other hand, if we consider the Gaussian white noise, we have the following
properties:
1.  For white noise, two-point classical auto-correlation functions are time translation
invariant, which is kind of expected from this analysis.
2. Random white noise also has the following properties:
(mwn (1)) =0, (362)
1
(1w (7)1 (72)) = Gicdener (171 = 1) = W (11 = 2])) = B 6(| 1 — ), (363)
(pwn () - nwn(tn)) =0 VN=357,-, (364)
1
(rwn (1) - W () = Coggrnen (T ) 8T o+ 1y) YN =468, (365)
and
My (1)) =0, (366)
Ty (1) g (22)) = Gigarmen (17— 721) = WA(|11 — 721)) = B2 8(|71 — ), (367)
My (7)< oo My (V) =0 VN =357, (368)
2
Ty (1) - - Ty (Tn)) = CO (T, TN) 6(T 4+ +1v) YN=468---.  (369)
where 7wn (7) and Iy, are the conformal time-dependent white noise field variable
and its canonically conjugate momentum variable. In addition, By, B, (# B) and
Cl((le)rn (T TN, Cl((ze)rn o1(T1, -, T) are the amplitudes of the spectra of any N =
2and N =4,6,8, - - - even-point classical auto-correlation functions. Here, all even-
point amplitudes are non-zero and all odd-point amplitudes become zero for Gaussian
white noise contributions, which are again sourced from random fluctuations.
From the above-mentioned results, we get the following features:
1.  Here time-dependent noise kernels describe the randomness of quantum mechanical
fluctuations at the classical limit.
2. If we compare the obtained result in the classical limit with the quantum version of

the four-point auto-correlated results then it is clearly observed that for both the cases
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we get the same twelve contributions in the classical limit. In the quantum case, we
have different individual contributions for these mentioned twelve terms in the auto
correlations.

3. Additionally, in both classical and quantum results, momentum conservation is
established via momentum-dependent three dimensional Dirac Delta function contri-
butions.

6.4. Cosmological Partition Function: Classical Version
6.4.1. Classical Partition Function in Terms of Rescaled Field Variable

In this section, our objective is to compute the partition function in the classical
regime. In terms of the rescaled perturbation field variable and its canonically conjugate
momentum, we define the following classical partition function:

ZClassical(,B;Tl): - //DJ;ZH exp(—ﬁH)

]:[exp<—ﬁ B in(1 — exp(—pw(r)) |

- l;lexp<—ln<251nh [Hsl‘z(n)))
eXp(— / Pk ln(Zsinh ﬁEkz(Tl)» (370)

Now, if we compare the above result with the quantum result obtained in the previous
section, then we get the following interpretation:

Z(lassical(B;T1) = : Zpp(B;11) = |cosha| : Zy(B; 1) := | cosha| exp(2sinytana) : Zy(B;T1) : - (371)

Classical result

¢ . .
ZClassical (IB’ Tl) :

Quantum result

The good part is that, from the above expression, we found that the expressions for the
classical partition function and normal ordered partition function for cosmology computed
using quantum techniques are exactly the same. This is somewhat expected from the basic
understanding of the present setup, which we are considering in the present context of
discussion, and also helps us a lot to correctly take the classical limit of the result computed
using quantum field theory techniques. In short, the above interpretation shows that the
classical result of the partition function that we have separately computed is perfectly
consistent with the quantum result.

6.4.2. Classical Partition Function in Terms of Curvature Perturbation Field Variable

In this section, our objective is to compute the partition function in the classical
regime. In terms of the curvature perturbation field variable and its canonically conjugate
momentum, we define the following classical partition function:

[/ 75 ewsm)

2 Eé'-
lgexp (—ﬁ [2(71)21((1’1) + ;ln(l - EXP(—.BZZ(ﬁ)El{(Tl))] )

4
exp < / A’k In (2 sinh W) ) . (372)

If we compare the above result with the quantum result obtained in the previous
section, then we get the following interpretation:

Zglassical(ﬁ;ﬁ) =: Z%D(ﬁ;Tl) := | cosha| : Zg(‘B;Tl) := | cosha| exp(2sinytana) : Zg,v(ﬁ;n) T

Classical result

7& ZClassical (.B/ Tl) . (373)

Quantum result
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6.5. Classical Limit of Cosmological Two-Point Non-Chaotic OTOC: Rescaled Field Version

Next, we will explicitly compute the previously mentioned two types of two-point
OTOC using the above-mentioned results. In the classical limit, the prescribed two-point
functions are given by the following expressions:

f
Yl,Classical (Tl ’ TZ)

[ [ PR exp(=p H) (v ), £x ) o

ZClassmal ﬁ Tl

A3k
- 2Wim-m) [ ot (374)
1 DfDII
Betwion () =z s | [ Z o(op ) 110000, 115 b
A3k
— 2Wi(1 - D) /ﬁ (375)

This result is divergent because of the presence of the term volume, in general. To get
the finite contribution in the classical limit, we regulate the momentum integrals by using
the cut-off scale L, for which the momentum range is given by, 0 < k; < L. By applying
this regulator, we get the following regulated results:

a3k | L3
J Gy =2 )= (376)

After substituting the above-regulated volume factor, we get:

L3

Y{,Classical(ﬁ’ TZ) = @Wl(ﬁ - Tz) 37-[2 \/GKernel(|T1 - T2|) (377)
L3

Y{,Classical(ﬁ’ T2) = wwz(ﬁ - Tz) 371-2 \/GKernel(|T1 - TZD (378)

Here, the regularised volume factor, L3/372, is the two-point time-independent
amplitude of the cosmological two-point OTOCs in the classical limiting approximation.
From the above-mentioned result, one can consider a situation where we have 11 = =1
in the classical limiting situation. In that case, we get further simplified results for two-point
functions which are given by the following expressions:

3 3
f _ L _ L 1)
Yl,Classical(T’ T) = 3772 Wi (0) = 372 GKernel (0), (379)
3 3
YZ,Classical(T’ T) T 372 WZ(O) - ﬁ GKernel(O) . (380)

This result only exists when the window functions, W1 (0) and W;(0), and the corre-

sponding Green’s functions, Gg e (0) and Gg me1(0), are finite in the classical limiting
approximation to describe the coloured non-Gaussian noise and white Gaussian noise,
respectively.

To demonstrate the explicit role of a non-Gaussian coloured noise and Gaussian
white noise in the present context of discussion, one can further consider the following

mathematical structures of the corresponding Green’s functions/window functions:
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A
=1 exp (—% |11 — Tz’) , Coloured Noise
Wit — 1) = ! (381)
White Noise
A
72 exp (—% |71 — T2|> , Coloured Noise
2
W (1 — ) = 5 I (382)
lim | [——2— exp| — % White Noise
Cz*)O |C2 | \/E C2

where Aj, Ay, By, By and C;, C; represent the conformal time-independent amplitudes
of the coloured and white random classical noise, respectively, in the present context. In
addition, 7 and 7, represent the interaction strength of the dissipation in the context of
coloured noise in the classical regime.

From the general mathematical structure of the white noise, it is evident that G%i el (0)

— o0 and Gg(gm e1(0) — oo are giving a diverging contribution for the 7y = 7, = T case.
Therefore, appearance of the possibility of the equal time limit is completely discarded as it
gives overall diverging contribution in the classical limit of the two-point functions in the

present context. On the other hand, in the equal time limit we have:

GLl (0) = % = W2(0), (383)
A
Giodnet (0) = 722 = W3(0) (384)

for the coloured noise case. This implies for coloured noise that an equal time limit exists
and one can write down the following simplified expression for the classical limit of the

two-point function as:
f
Yl Class1cal 37‘[2 \/7 (385)

Y{Classual ~ l (386)

Similarly, for the equal time limit case with white noise profile, we have:

. B,
W.(0) =1 , 387
1(0) C1HI>10|C1|\/E (387)
. B>
W5(0) =1 388
2(0) C;TO|C2|\/E (388)

for the coloured noise case. This implies for coloured noise that an equal time limit exists
and one can write down the following simplified expression for the classical limit of the
two-point function as:

f
Yl Classmal(T T 37.[2 Cl HO (389)
Y lassical (T 7) (390)

3712 czao |C2
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For the unequal time case, both the results exist and we get:

L [A =
= exp (— M) , Coloured Noise

f 32 T 2

Yl,Classical(Tl' Tz) = 13 B, o — Tz\z (391)
75 lim exp| ———— White Noise
32 ¢;—0 \[ |Cy |/t C?

A exp<_’Yz\Tl*T2\>
f . 372\l 72 2 !
YZ/Classical(Tl’ T2) - 13 B (

i 2
372 ¢y |Calv/TT

Coloured Noise
I —T22> (392)

5 White Noise
G

Since, in general, both of the two-point correlations are generated from different
sources, i.e., rescaled field variable and its canonically conjugate momenta, it is expected

to have, Y{ Classical (T 12) 7# Y{ (11, 2). This is simply because of the fact that

,Classical

A1 # Ay, By #By, C1 #Cy, 11 # 7.

6.6. Classical Limit of Cosmological Two-Point Non-Chaotic OTOC: Curvature Perturbation
Field Version

Here, we need to perform a similar type of computation for the classical version of
the two-point OTOCs that we have derived in the previous subsection, but here we have
to derive the results in terms of the scalar curvature perturbation and the canonically
conjugate momentum associated with it, instead of using the rescaled field variable and its
conjugate momenta. Here, we have found the following simplified expressions:

¢ _ 1 f
Yl,Classical (Tlf TZ) - Z(Tl )Z(Tz) Yl,Classical (Tl’ TZ) '

A —
L3 \/7 exp <_ M) , Coloured Noise
1
X

SR 393)
2 _ 2 (
3rz()z(12) lim [Pl exp( = White Noise
-0 \| |C1|V/TT cz
Y5 (T T)—¥Yf (11, 2)
2,Classical 1,t2) = Z(Tl)Z(Tz) 2,Classical 1,t2) -
13 A exp(—m> , Coloured Noise
M 2
=X , (394)
3rz(n)z(m) lim [Pl exp( 1= White Noise
-0 \| |C1|V/TT cz

Since, in general, both of the two-point correlations are generated from different
sources, i.e., rescaled field variable and its canonically conjugate momenta, it is expected to
have:

Yg,Classical(Tl’ TZ) 75 Y2§,Classical<ﬁ’ Tz) = Y{,CIassical (Tl’ ’l’z) 7& Y{,Classical@—l’ Tz). (395)

6.7. Classical Limit of Cosmological Four-Point Non-Chaotic OTOC: Rescaled Field Version
6.7.1. Without Normalisation

In this subsection, our prime objective is to explicitly compute the classical limiting
result of two un-normalised cosmological four-point OTOCs in terms of the Poisson
brackets, which are given by the following simplified expressions:
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Cf ctssiat(T )+ = Lo [ [P P exp(-p H) (), fx ) Vi

ZClassical (,3, T )

i L e

ZClassical (,3, (5 ) :

= Z(lassical (ﬁ,’ﬂ1 )

3 3 3 )
X(Zn)é/ ([12;)13/ (dz;)ZB/ (6;71:)33/ ([12711()4 explill 1o +ks +ky)-x)

{53(1(1 +k2)8% (ks + ky) + 8° (ki + k3)0° (ko + k4)
+6% (k1 + kq)0% (k3 + ko) + 0% (ko + k3 )8 (kg + k1)
+6 (ko + k1)8% (kg + k) + 8° (ko + kg )0 (kg + k3)
463 (k3 + k1)6% (ky + ky) (k3 4 k)% (kq + ky)
+6% (k3 + kq)0% (k1 + ko) (kg + k)0 ( )
+0% (ks + k)% (ks + k) ( )0™( )

+6°

+6°

+6°
1

G%(gmel(h—l - nl), (396)

and

DfDII
Cg,Classical(Tl’ Tz) L= ZClass1ca1 ‘B Tl // f exp( ﬁ H) {H(X Tl) (X/ T2>}%’B

_ Df
B ZClassical(,B;Tl) // 27 exp(_‘B H)

= Z(lassical (ﬁ;ﬂl )

3 3 3 3
<en° | (i:)ls/ (i;; / é;)ga/ ({é:f exp(i(ln +ka + ks +kq).x)

[53(1(1 +k2)0% (k3 + kyg) + 67 (ki + k3 )0 (ko + ky)

) )
+83 (kg 4 kg)0% (ks + ko) + 82 (kp 4 k3) 6% (ky + k)
+0% (ko + k1)0% (kg + k3) 4 8% (ky + kg )82 (kg + k3)
+6%(k3 + k1)0% (kg 4+ kp) + 0° (k3 + k2) 8% (kg + ky)
+0° (ks + k)&% (k1 + ko (ks + k)0 ( )
( )6°( ( )07 ( )

)

~— — ~— ~—

+0
+68
+6%(ks + k)% (ks + ky) + 6
c®@

Kernel

(I — ), (397)

where, in the classical limiting version, the thermal partition function is given by the
following expression:

ZClassical(,B; Tl) = exp (_ / 4’k In (2 sinh 'BEkz(Tl) ) ) ’ (398)

where the individual details and derivation of this equation are given in the previous
subsection.
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Now, after doing a simple computation in the present context, we get the following
simplified results for the un-normalised version of the regulated classical limit of OTOC,
which are given by the following expressions:

1 Pk [ dk,

C{Classical(rl”rz) =12 Gg(grnel(h—l B Tz‘)/ (27-()3 / (271-)3 / (399)
2 Pk, [ Pk,

Cg,Classical(Tl’Tz) =12 Gg(grnel(hl - TZD/ (27-()3 / (27T)3 . (400)

These results are actually divergent, appearing from the all space volume integral on
the momenta. The rest of the classical result, which is completely momentum independent,
is not divergent at all.To get the finite sensible contribution out of the above-mentioned
volume integrals, we regulate the momentum integrals by using the cut-off scale L, for
which the momentum ranges are given by 0 < k; < L and 0 < k» < L for both the cases.
Further applying this trick, we get the following volume regulated results, which are given
by:

Pk [ Pk 1 Lo, L L®
ot [ o h= [ Rk [ Bdk= g 401
/ (2m)3 / 2n)? ~ 4t /kl:o T Jmo 2772 7 3674 (401)
Further substituting the above-mentioned regulated factors, we get the following
simplified results for both classical limiting versions of the correlators:

f _ L 200

Cl,Classical(Tl’ Tz) - 3774 GKernel(lT1 - T2|) 4 ( 0 )
L° o

Cé(,Classical(Tl’ Tz) = 3774 G%(e)ernel(ITl - Tz)‘ 4 (4‘03)

From the above-mentioned results, one can next consider a pathological situation
when we have 71 = 7p = 7 in the classical limit. In that case, we get further simplified
answers, which are given by:

6
f _ L s
Cl,Classical(T’ T) - ﬁ GKernel (0) ’ (404)
6
f _ Lo
CZ,Classical(T’ T) - 37.[4 GKernel (O) ’ (405)

It is important to note that here, in the above context, these results only exist when
Gggm o1(0) and Gg(z gm «1(0) both are finite in the classical limit separately for the coloured
non-Gaussian noise as well for the white Gaussian noise, respectively.

To precisely demonstrate the explicit role of a non-Gaussian coloured noise and
Gaussian white noise, one can further consider the following conformal time-dependent

two-point classical correlation functions:

Ay .
1 — exp(—71/m — w|), Coloured Noise
Gllnat(lti —l) = 7 PCMIm ) (406)
B d(t —m) White Noise
Ar .
2 — exp(—72|m1 —m|), Coloured Noise
Gﬁ(e)rnel("rl —Tl) = 72 p(=reln —=l) (407)
By dé(t — ™) White Noise

where A, Ay and By, B; represent the overall conformal time-independent contributions
that appear in the context of the coloured non-Gaussian and white Gaussian random
classical noise, respectively. In addition, it is important to mention that 7 and -, are
the strength of the dissipation in the context of coloured non-Gaussian noise for the two
consecutive cases, respectively.
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From the general structure of the white Gaussian noise, one can write Gg mer(0) =

By 6(0) — oo and G%mel(O) = By 6(0) — oo giving a diverging contribution for the
T1 = T» case. Therefore, appearance of the possibility of the equal time limit is completely
discarded as it gives an overall diverging contribution in the classical limit of the four-point

cosmological OTOC. On the other hand, in the equal time limit, we have G§<1e)me1 (0) =

Aq/v1 and Gg gm el(O) = Aj/; for the non-Gaussian coloured noise case. This implies
for coloured noise equal time limit exists and one can write down the following simplified

expression for the classical limit of the four-point cosmological OTOC as:

6
f _ AL
Cl,Classical(T’ T) - 3711 47 (408)
6
f _ AL
CZ,Classical(T’ T) - 3727.[4 ' (409)
For the unequal time case, both the results exist and we get:
1L exp(—m |1 — wl) Coloured Noise
f o 3y, 74 it —12{),
Cl,Classical (1, 2) = B’I][jer ) ) (410)
3 ot — ™) White Noise
2L exp(—72|1 — wl) Coloured Noise
f _ 3y 74 1t -1y,
C2,C1assical (1, 2) = BZZLE[ . (411)
B4 it — 1) White Noise

6.7.2. With Normalisation

The normalisation factors of the classical limit of the two types of the desired OTOCs
for the rescaled field variable and its canonically conjugate momenta can be computed as:

367 36mt
N{CIassicd(Tl TZ) = = (412)
: ’ oW? 1) /
L Wl (O) L6GKernel(0)
4 4
f 3671 367
NZ,Classical<T1’ TZ) - Léwg (O) (413)

- L6G§(22ernel (0) .

Now, considering the examples of non-Gaussian coloured noise and Gaussian white noise,
we get the following answer for the normalisation factor:

f 3671 7" Coloured Noise
Nl Classical (11, 2) = LAy 7 (414)
! 0 White Noise
3677t .
,  Coloured Noise
N Classical (710 72) = { T°A; (415)
g 0 White Noise

Then, the classical limiting version of the normalised four-point OTOCs can be ex-
pressed in terms of the contribution of the phase-space averaged Poisson bracket squared
as:

(1)

f _rrf f _ Gy 1<|71_T2|)
Cl,Classical (Tl’ T2) - Nl,Classical (Tl’ Tz)Cl,Classical (Tl’ Tz) =12 ( = ’ (416)

Gg(lgrnel (O)
()

f o £ [ Gkernel/T1 — 2|)
CZ,Classical (Tl’ Tz) - NZ,Classical (Tl’ TZ)CZ,Classical (Tl’ Tz) =12 ( S . (417)

Gg(zzrnel (0)
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This is a very useful result as it translates everything in terms of the time trans-
lation invariant noise field and its canonically conjugate momenta Green'’s functions,

1 2 .
G%{Zmel(m — 1|) and GEQ): el ([T — T2|), respectively.

Now, further considering the examples of non-Gaussian coloured noise and Gaussian

white noise, we get the following simplified results for the classical limit of the normalised

four-point OTOCs, which are given by:

f _ [ 12 exp(—71|ln —m|), Coloured Noise
1,Classical (1, 12) = 0 White Noise (418)
f _ [ 12 exp(—72|/ti —1|), Coloured Noise

CZ,Classical (Tl’ Tz) - 0 White Noise * (419)

6.8. Classical Limit of Cosmological Four-Point Non-Chaotic OTOC: Curvature Perturbation
Field Version

6.8.1. Without Normalisation

Here, we need to perform the computation for the classical version of the un-normalised
two types of the OTOCs in terms of the scalar curvature perturbation field variable and the
canonically conjugate momentum associated with it, in which we have found that the two
separate cases are given by the following simplified expressions:

1 . DgDHz e ,

C%Classwal(Tl/TZ) = // e P (T1){g(x,T1),§(x,T2)}

7 1 g :
ZClassical(:B/ Tl) : 21

1
= 72 (7_—1 )22 (Tz) Cl,Cl.alssical (

1 - D{DII; _ 2
)// o ¢ ﬁH(Tl){HC(X'Tl)'Hg(XfTZ)}PB

T, T2), (420)

Cé : (T1 Tz) =
2,Classical 4
ZClassical (IB’ T
1
= 2 (Tl )22 (Tz) CZ,Classical (Tl’ Tz) . (421)

6.8.2. With Normalisation

The classical version of the normalised four-point two types of desired OTOCs in
terms of the scalar curvature perturbation field variable and its canonically conjugate
momentum, which are basically the computation of the following normalised OTOCs, can
be written as:

Cg . (Tl Tz)
4 _ 1,Cl NS Y4 Z
Cl,Classical (Tl’ TZ) - <C(Tl )g(T;;;I;zC(Tl )g(Tl )>/5 - Nl,Classical (Tl’ Tz) Cl,Classical (Tl’ TZ) 4 (422)
Cg Classical (T1/ T2)
Ccsicar(71:72) = <H§(T1)H§I(T;l ;31;2Hg(T1)H§(T1)>ﬁ = Ntarin (7172 G tasin (/7). 42
where the normalisation factors to normalise the classical OTOCs are given by:
4 — 1 _ 2 2 f
Mietasica (%) = 7z iz gy - (0 (2 N ctasica (172 o
¢ — 1 _ 2 2 f
Maetwsica (1172 = 7 e ey~ - (0 (2 octussicn()h 629
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Consequently, the classical limit of the normalised four-point desired OTOCs com-
puted from the curvature perturbation field variable and its canonically conjugate momen-
tum field variable are given by the following expressions:

(1)
4 _of _ Giemel(IT1 — 72|)
Cl,Classical(Tl’Tz) - Cl,Classical(Tl’TZ) - 12( em(el) ! (426)
GKernel (0)
Girme (|71 = T2])
Czé,Classical(Tl’Tz) = C{,Classical(Tl’Tz) = 12( Kern(ell) : (427)
GKernel (O>

Now, considering the examples of non-Gaussian coloured noise and Gaussian white
noise, we get the following answers as the classical limits of the normalised four-point two
types of desired OTOCs are given by:

z _ Af _ [ 12 exp(—71li —w|), Coloured Noise

Cl,Classical (Tl’ TZ) - Cl,Classical (Tl’ TZ) - 0 White Noise * (428)
e i _ [ 12 exp(—72|/t1 —m|), Coloured Noise

CZ,Classical (Tl’ TZ) - CZ,Classical(Tl’ Tz) - 0 White Noise * (429)

7. Summary and Outlook

To summarize, in this work we have addressed the following issues to study the
random non-chaotic features of cosmological OTOCs:

¢  First of all, in this paper we have provided a computation using which it is now
possible to derive the expressions for the two specific types of OTOCs made up
of cosmological scalar perturbation field variables and its associated canonically
conjugate momentum variable auto-correlations to study the feature of randomness
without having chaotic behaviour in a primordial cosmology setup. It is expected
that our presented computation and findings for the two new types of cosmological
OTOCs in this paper will surely be helpful to understand the quantum field theoretic
features of random non-chaotic cosmological events in detail. Apart from using the
presented methodology in the present context of discussion, we believe that these
results will also be used in other contexts of cosmological phenomena to study similar
types of random non-chaotic events appearing in the timeline of the universe.

¢ The computation is presented by making use of the well-known Euclidean vacuum,
i.e., Bunch-Davies vacuum, CPT invariant & vacua and CPT violating Motta—Allen
vacua as a choice of initial quantum mechanical vacuum state. In each case we get
very distinctive features in the auto-correlated two types of OTO functions studied in
this paper. We have studied this issue analytically as well as numerically in detail in
this paper, which completely physically justify our prescription proposed.

¢ In general, the construction of OTOCs demands to have two quantum mechanical
operators defined at two different time scales, which are the same operators for
auto-correlations and different operators for cross-correlations. In this paper, we
follow the exact same strategy to define auto-correlated two different types of OTO
functions within the framework of primordial cosmological perturbation theory for
scalar mode fluctuations in the quantum regime. To construct these crucial auto-
correlated OTO functions, we use the scalar mode field variable and its associated
canonically conjugate momenta, which according to the mathematical construction
are defined in two different conformal time scales. To study the behaviour of the
two types of the auto-correlated OTO functions, we freeze one of the conformal time
scales between the two and study the dynamical feature with respect to the other
conformal time. By doing this analysis, we have found that the dynamical features
with respect to both the time scales for the two different types of auto-correlated OTO
functions are significantly different and all of them describe distinctive randomness
at out-of-equilibrium without having any specific chaoticity. For both the cases, we
have explicitly studied the long time behaviour of these two types of auto-correlated
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OTO functions. We found that the obtained behaviour from the numerical plots are
perfectly consistent with the expectation from the present setup within the framework
of primordial cosmology. The most interesting part of this finding is that, using
the present methodology, it is now possible to probe various cosmological aspects
at out-of-equilibrium using quantum field theory calculations in terms of quantum
mechanical correlation functions. In addition, we are very hopeful regarding the fact
that these results can be verifiable in near-future cosmological observational probes.

By doing this analysis, we have found that at a very early epoch of our universe
during random cosmological events, quantum fluctuations generated from the scalar
perturbations go to the out-of-equilibrium phase. Then, the auto-correlators decay in
a non-standard fashion with respect to the conformal time scale up to the very late
time scale of the universe. After that, the system reaches equilibrium and one can
perform all the possible computations in the quantum regime. This computation can
be applicable to describe the particle production phenomena during the reheating
epoch.

In addition, we have found that the derived cosmological OTOCs at finite temperature
are dependent on two time scales and are independent of any preferred choice of the
coordinate system. The derived expressions for the cosmological OTOCs are homo-
geneous in nature with respect to the space coordinate, or its Fourier transformed
momentum coordinate. We also have found that the final results obtained for the
two different types of cosmological OTOCs are independent of the partition function,
which we have computed for primordial cosmological perturbations for scalar fluctu-
ation. It is important to note that the obtained features in these auto-correlations are
exact mimics of the features obtained for OTOCs computed from an inverted harmonic
oscillator having a conformal time-independent frequency. Here, one can exactly map
the stochastic particle production problem in cosmology in terms of findings from
the inverted harmonic oscillator with time-dependent frequency because both setups
describe the same underlying physics.

In addition, we have found that the presented analysis is valid for partially massless
(m ~ H) or massive (m >> H) spin-0 scalar particle production in the primordial
universe.

Further, we have studied the classical limiting behaviours of the two-point and four-
point two types of auto-correlated OTO functions in terms of the phase-space averaged
Poisson brackets and the square of the Poisson brackets to check the consistency with
the late time behaviour in the super-horizon region of cosmological perturbations,
which supports classical behaviour.

Finally, in this paper we have shown that the normalised auto-correlated OTO func-
tions are completely independent of the choice of cosmological perturbation field
variable and the associated canonically conjugate momentum in a specific gauge.

The future prospects of this work are as follows:

We are very hopeful that our obtained results for the two different types of auto-
correlators can be probed by future observations with significant statistical accuracy
and can be treated as a benchmark for which one can study the out-of-equilibrium fea-
tures in primordial cosmological perturbation theory. To know about the implications
of our derived results, one can further extend the present methodology for various
cosmological events as well where random quantum fluctuations play a significant
role in the timeline of our universe. To date, this is not a very well studied fact and for
this reason it will be interesting to study these mentioned aspects in detail.

The presented methodology can also be extended to derive the auto-corrected OTO
functions in the context of bouncing cosmology. It is expected to get different random
features in the context of the bouncing paradigm. It is not clear to date how exactly
and in which respect it will be different due to having a lack of understanding about
the present formalism in a broader perspective. For this reason, it will be very
interesting to study out-of-equilibrium features in the quantum regime from the



Symmetry 2021, 13, 599

84 of 127

bouncing cosmology framework and compare the results obtained from the presented
analysis in this paper.

¢ The explicit role of quantum entanglement in the present framework is also not yet
studied. To date, the explicit role of the quantum entanglement phenomena [149-176]
has been studied within the framework of cosmological perturbation theory finding
the quantum correlation function in the equilibrium regime; but, it is not studied in
the out-of-equilibrium regime in the presence of quantum entanglement. Therefore, it
will be interesting to investigate such possibilities in detail. Most importantly, the role
of cosmological Bell’s inequality violation [177-182] can also be tested to know about
the long range effect in the cosmological correlation functions.

e Itisalso very important to verify the connecting relationship between the quantum
circuit complexity [183-195] and OTO correlators [53,196] within the framework of
the primordial cosmology setup. To date, work has been done on both sides separately
in the cosmological framework; but, no effort has been made to connect this two
theoretical ideas.
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Appendix A. Asymptotic Features of the Scalar Mode Functions in Cosmological
Perturbation Theory

The Mukhanov-Sasaki equation for the scalar modes can be expressed as:
, 1

2 v — =
Lhd0) %T) + K- —* [ =0 (A1)

The most general solution of the above-mentioned equation of motion is given by the
following expression:

fil®) = v=rt|er BV (=kv) + €2 HP (~kr), (A2)

where C; and C; are two arbitrary integration constants which are fixed by the choice of the

(1)

initial quantum vacuum state. Here, Hﬁl) (—kt) and H, ' (—kT) are the Hankel functions
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of first and second kind with order v. Now we take the asymptotic limits kT — 0 and
kt — —oo for which we get the following simplified results for the Hankel functions:

legnoo H \/7 AV exp(—ikT) exp ( (1/ + ;) ) (A3)

legnoo H( \/7\/7 exp(ikT) exp ( (1/ + ;) ) , (A4)

Jim A (~ke) = ;r(v)(";) , (A5)
Jim (k) = —;r(v)<—k2'f) . (A6)

Here, kt — 0 and kTt — —o0 asymptotic limiting results are used to describe the
super-horizon (kT < —1) and sub-horizon (kT > —1) limiting results.

Now, in the super-horizon limit (kT <« —1) and sub-horizon limit (kT > —1), the
asymptotic form of the rescaled field variable and the corresponding canonically conjugate
momentum computed for the arbitrary quantum initial vacuum can be expressed as:

Super — horizon limiting results (kt < —1) := Classical behaviour

2 kT\ 27V
khglofk( T) = \/;71_[1"(1/) <—2T> (C1 =), (A7)
2 i 1 kr\ ~(v+2)
lim T (1) = 2L (-3 (-5) T@-e, (A8)
Sub — horizon limiting results (kt > —1) := Quantum behaviour
krlimoofk( T) = ,/ik{cl exp(i{kT+7;<v+;>}>
—C exp( {kT+ 5 ( + ;) })}, (A9)
leLnjw I (7) = 1\/%[01 exp(—i{kr + g (1/ + ;) })
+Cy exp( {kr—i— > ( v+ ;) })] (A10)

Combining the behaviour in both the super-horizon and sub-horizon limiting regions,
we get the following combined asymptotic most general solution for the rescaled field
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variable and momenta computed for the arbitrary quantum initial vacuum which can be
expressed as:

31 1
T :21/72,*
0 =24

o vk ({ (1))
o amep(le 2] an

3 1 3_,| T
M (1) = 23— (—k)2 ™" rég;

() S ) (e 5o
A {(1) ) enlfrs 5+ o

These general asymptotic expressions are extremely important to compute the expres-
sions for the OTOCs in the later subsections. To server this purpose, we need to promote
both of these classical solutions to the quantum level.

(— kr)%*v

Appendix B. Quantum Two-Point OTO Amplitudes for Cosmology
Appendix B.1. Definition of OTO Amplitude A1 (K1, Kp; 11, T2)

In this subsection, we define a very important momentum and conformal time-
dependent two-point OTO amplitude, which is given by the following expression:

Ak, k;1,12) = fi, (1) fi, () = Di(ke, ko; 1, T2) ax, ax, + Da(ky, ko 1, ) uiklakz

+D3(ky, kp; 71, T2) i a” y, + Da(ky, ko; 1, 1) 'ty aty (A13)

where we have introduced momentum- and time-dependent four individual two-point
OTO amplitudes, D;(ki, ky; 71, 72) V i =1,2,3,4, which are explicitly defined as:

Di(k1, k11, ) fi (1) fiy (T2), (A14)
Dok, ko, 2) = fry, (1) fi, (2), (A15)
D3 (ki, ko; 71, 12) fio (1) fL1, (2), (Al6)
Dy(ki ko1, 12) = fry (1) fry, (T2)- (A17)

These contributions are really helpful to compute the two-point OTO amplitudes
and the corresponding momentum integrated OTOC, which we have discussed earlier in
this paper.

Appendix B.2. Definition of OTO Amplitude Ay(Ky, Kp; 11, T2)

In this subsection, we define a very important momentum- and conformal time-
dependent two-point OTO amplitude, which is given by the following expression:
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A (ki, k1, 12) = Tl (1)1, (12) = L1(k1, ko; 71, T2) a1k, + L2 (K1, ko T1, ) aiklakz
+L3(ke, ko T, ) g at g, + La(ky, ko1, ) 'y aty (A18)

where we have introduced momentum- and time-dependent four individual two-point
OTO amplitudes, £;(ki, ky; 71, 2) V i = 1,2,3,4, which are explicitly defined as:

L1(k1, k11, ) My, (72) 1T, (1), (A19)
Lok, ko, 2) = Iy (), (70), (A20)
Ls(ky, ko;m, ) = I ()15, (1), (A21)
Li(ky, ko;m, ) = I ()15, (7). (A22)

These contributions are really helpful to compute the two-point OTO amplitudes
and the corresponding momentum integrated OTOC, which we have discussed earlier in
this paper.

Appendix C. Quantum Four-Point OTO Amplitudes for Cosmology
Appendix C.1. Definition of OTO Amplitude 7A’1(1) (kq,ko, k3, ky; 71, ) and
ﬁ(z) (ki1, ko, k3, ky; 11, T2)

The function 7A'1(1) (k1, ko, k3, kyg; 7, 2) is defined as:

7\1(1) (klr kZ/ k3r k4; T, TZ)
= [M(l) (kl, kz, k3, k4; T, Tz) Ky Ak, A3 Ok,

+

1.
k11k2lk3/k4/T1/T2 a klakzak3ak4 +M( )<k1,k2,k3,k4,71,72) akl —kzak3ak4

ki ko, ks, Ky 71, ) Ty 1y aig i, + MY (ki ko, ks, Ky 1, T2) g Ty i,

) oot
k1, ko, k3, ky; 71, 2) a ﬂk2a7k3‘1k4‘|‘M( )(kl/kzlks/kz;, T, T2) A, A, A1, Ok,

| -+

: t +
akzaksa_k4 + My (ki ko, k3, ky; 11, 1) 1, A7y, Az A7y,

T 1
k k2/k3/k4/T1/ 1) a k]a kzak3a7k4

(1)

)
)a'
7)

ki, ko, k3, ky; 1, 2) @ k1a7k2a1k3uk4 + Mé )(kl,kz,k3, ky; 11, @) aklakzak3a7k4
)
)

ki, ko, k3, kg; 11, ) ax ak2a7k3a,k + My, (ki, ko, k3, ky; 11, 12) at "k ak2a7k3a7k4
)

+ M
M“ (
&
&
+/\/lm (k1, ko, k3, kg; 11, 12) @ (1)
ol
"’M13 (
el

K, ko, ks, kg 1, ) agal g0ty oty + MUY (ki ko ks ks 1, 1) oty ot kza_ksa_kJ, (A23)

where we define new sets of functions, /\/l](.l) (k1, ko, k3, kg1, ) Vji=1,---,16,as:
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Ml)(kbszksrkzl/ﬁﬂz) fi, (1) fie, (22) fiey (1) fiy (T2), (A24)
MY (g, ko, s, ki 7, T2) = F o, (7)) fio (72) fia (T0) fiy (12), (A25)
MY (K K ks Ky 1, 2) = fi (1) f 1y (22) fiy (1) g (2), (A26)
MY (e ko o, ks 1, %2) = Faq (1) 11 (2) i () fig (72), (A27)
MY (1, ko, 3, kg 11, 1) = fio (T) i, (2) fL 4, (1) fiy (2), (A28)
MV (11,10, ¥, ke 11, 1) = o () fig () 24, (T1) fry (72) (A29)
M (K K ks Ky 1, 2) = i (1) f 1y (72) 1, (1) fiy (2), (A30)
M (a1, Tea Ko, i 11, T2) = i (71) iy (72) 1y (1) fy (2) (A31)
My (kK ks iy 1, 2) = fi (1) fi (72)fie (1) 21, (2), (A32)
MU (e Ko, K, ki 71, 2) = F4 (1) fie (2) g (7)1, (72) (A33)
MY (a1, Ko, Ko ki 11, T2) = fie (1) F 4 (1) fis (1) f, (72), (A34)
MY (ky, 1, ks, kg 11, 1) = fi (T fo (02) fis (1) f2x, (T2) (A35)
Mg)(khszkarkmfﬂz) fi (T) fio, () fok, (1) f4, (T2), (A36)
MY (14, &, 13, kg1, 1) = o () fio (2) fo4, (1) f2k, (T2) (A37)
M) (1,10, K3, Ka; 11, T2) = fig (1) f2, () fok, (1) 2, (2), (A38)
M (k1 Ko K, ks 71, T2) = i (1) iy (12) kg (71) 14, (72) (A39)

The function 7A'1(2) (kq, ko, k3, ky; 71, ) is defined as:
7A-1(2) (k1, ko, k3, ky; 11, T2)
= {M(z)(kbkz, k3, ky; T1, T2) A, A1, A1, O,
2) ki, ko, k3, ky; 7, 2) D ey Ty My Ak + M( )(k1,k2,k3, ky; 71, ) akla’:kzaksak4

2 t 2 . +
Mi) ki, ko, k3, ky; 11, 12) @ 1<10Lk2011<3011<4 +M5(; )(kl,k2,k3,k4,T1,Tz) 011<1b11<2ﬂ4<3ﬂl<4

+

+./\/léz) ki, ko, k3, kg 11, 12) at i Tk, —k3ak4+M§)(k1/k2/k3/k4/TllT2) ay, a —kz _k3ak4

| —P

. . + t
k /k2/ k3/ k4/ T, T2 kq akzakg)afk + M( )(k1/k2/ k3/k4/ Tl/TZ) aklaszak3a7k4

ki, ko, k3, ky; 1, ) @ty aty o aat

t t
k k2,k3,k4,Tl, ) dk akza—k3a—k4 +M§4)(k1,k2,k3,k4,71,7.'2) —k akza—k3a—k4

ki, ko, ks, kg 11, 1) ay aty atyaty o+ M§6) (k1 ko, k3, kg; 11, 12) @'y ooty at } (A40)

(
(
(
(
(
(
13 (
15 (

)
)
)
ki, ko, k3, ky; 11, 12) at kla kza_ksak1 —O—M( )(kl,kz,k3,k4; T, ) aklakzak3aik4
)4
)
)
)

where we define new sets of functions, M](Z) (k1, ko, k3, kg;1, 12) Vj = ,16, as:
M) (ky, ¥, ks, kg; 1, T2) = Ty, (1) T, ()T, (1) T ( 2), (A41)
M) (K, ko, s, kg 1, 12) = Ty (1) i ()T (1) (72), (Ad2)
Méz) (k1, ko, k3, ky; 11, 72) = Iy (7)112 () Ty, (7)1, (2), (A43)

o~ o~
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M (ke ko, s, Ky 1, 12) = Ty (1)1 g ()Tl ()T (), (A44)
MP (K, kg, k3, ke; 71, T2) = (Tl)sz(Tz)HikS(Tl)Hk4(T2)/ (A45)
M (KT 5 by 1, 72) = T3 (0) Tl (22) T4 (7)1 (72) - (A%6)
M7(kq, ko, k3, kg, 11, 12) = Hk1(Tl)Hik2<T2)H*_k3(71>Hk4(72>/ (A47)
Ms(sz) (k1, ko, k3, ka; 11, 12) = I1Z, (m)TTZ ) (22) 112 ()T, (T2) (A48)
M (i, ko, ks, ks 11, 72) = Ty (1) i (22) T, (1), (12), (A49)
M (Ko, Kes Ky T, T2) = Ty (1) Tl (2) iy (7T (72) - (AS0)
M (11, K, k3, kg 11, 10) = Ty, (7 DIy, ()T, (7)1 (12), (A51)
M) (ki ko ks, ks 11, 72) = I ()11 ()i (0)1T% () (A52)
M%) (k1, ko, k3, ka; 11, 12) = Ty, (1) Ty, (22) TTE (7)) 112y (T2), (A53)
M) (ki ko ks, ks 11, T2) = I (1), (0) T (0)IT7 () (A54)
M%) (ky, ko, k3, ky; 71, 72) = e, (10)ITE () T1E, ()12 (12),  (ASD)
M (ki Ko, K, Ky 11, 72) = Ty ()TT g (m)IT" (7)1 (1) (A56)
Appendix C.2. Definition of OTO Amplitude 7A‘2(1) (kq,ko, k3, ky; 71, ) and
ﬁ(z)(khkz,ka,k@ﬁﬂz)
The function 7A'2(1) (kq, ko, k3, ky; 71, ) is defined as:
70 (ki ko, ks, ka; 11, )
= {Jl(l)(kbkzl k3, ky; 71, T2) A, Ay Qi i, + 72(1)(R1,k2, ks, kg; T, ) @'y i, Ay O
+«73(1 (k1 ko, k3, ky; T, o) gy @'y, iy e, + ‘74( ) (ky, ko, ks, ky; 1, T2) 'y aty aga,
+J5(1 (k1, ko, k3, ky; 11, T2) Ay, a1, a _k3ﬂk4 +36 (k1,k2, k3, ky; 71, T2) 6l+_k1611<2aik3611<4
+ 73 (ki ko, ks, ka; 11, T2) ity _ksak4+.78 (11, ko, ks ks T, 1) gty ot o
+J9(1 (kq, ko, k3, kg; 71, &0) ax akzak3a,k4 +J10 (kl,kz,k3,k4,T1,T2) a*k akzak3aik4
11(1( ko, k3, ky; 71, T2) ﬂklﬂszﬂk3ﬂ7k4+&71(z (k1 ko, ks, ky; 7, ) @'y a' g anga’
+j131 (i, Ko, ks, ks 70, ) g 1yt 1 g, + Ty (kl,kz,k3,k4,rl,rz) oty gt ety
+~715 (kl,kz,k3,k4,T1,T2) aklaszakaLz,k +._716 (kl,kz,kg,k4,T1,T2) a+k a k2a7k3a7k4} (A57)
where we define new sets of functions, J. (l)(kl,kz, k3, kg, m)Vji=1,---,16,as:
(k1,k2/k3,k4/T1,T2) fiq (2) fi, (T1) fies (1) fie, (2), (A58)
Jz(l (k1, ko, k3, kg; 11, 22) = f74 (02) fiy (T1) fis (T1) fry (2), (A59)
TV (ki Ko, ks, ks 11, ) = fic L (72) fL, (1) fig (1) fiey (T2), (A60)
T3V (kK K ka7, 72) = fri () i () fio (0 fig (), (AG1)
T3V (a1, ko, ks, ks 1, T2) = iy (72)fio (1) f1 (1) iy (2), (A62)
‘76(1 (k1, ko, k3, ky; 11, 22) = f24 (02) fiey (1) fok, (T0) fiy (2) (A63)
T (k1 ko, ks, ks 1, ) = S (@) f2x, (1) 24, (T1) fry (2), (A64)
Ta (1, ko, s, Ky 1, 12) = £ (12) g (1) 11y (1) fiy (22) (A65)
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jg(l (k1/k2/ k3/ k4/ 7,
k kz,kg,k4,T1, T

fia (2) fio (1) fis (1) f 14, (T2), (A66)
fi16 () fig () fiy (1) fL, (2) (A67)
fio (@) fa, (1) fies (T) fo, (2), (A68)
Fi6 () f o, (T) fi (1) fo4, (72) (A69)
fiq () fioy (1) f L4, (1) f 24, (T2), (A70)
fo () fiy (1) f4, (1) £, (2) (A71)
fio (22) f2, (1) fLa, (1) fL4, (2), (A72)
i (@) o, (1) fo, () fox, (T2) (A73)

ki, ko, k3, ky; 711, T2

) =

0 ) =
j11 " )
le (K1, ko, k3, kg 71, )
j13 (K1, ko, k3, kg T, )
j14 ( )=
i 7)) =

il ) =

k kz, k3, k4, T, T
k k2/ k3/ k4/ T, T2
klr kZ/ k?)r k4/ T,
The function ’7'2(2) (kq, ko, k3, ky; 71, ) is defined as:

7}(2) (k1, ko, k3, ky; 11, T2)

2 2
= {71( ) (ky, o, k3, Ky Ti, T2) A1, M, Ay Ak, + .72( )(k1/k2, k3, ky; 11, T0) ﬂtklﬂkzak3ak4

+Jg(2)(k1,k2, k3, Ky; 1, ) @i g i, + 54 ) (ky, ¥, ks, kg; 1, T2) 'y aty aa,
+55(2 (kq, ko, k3, kg; 71, 0) ay akza,kSak4+J6 (kl,kz,k3,k4;T1,T2) ”tkﬂkzatkﬁm
+ 737 (ki ko, ks, ke; 11, T2) gyt _ksak4+j8 (1, o, K, kg 11, 2) at g oty
+737 (K1, ko, K3, Ka; T1, T2) i iy Ty _k4+j (1, ko, k3, ka1, 2) @ 'y g mga’y,
1(12)(k ko, k3, ky; 11, ) akluszalqa,k —i—Ju (kl,k2,k3,k4,T1,T2)a K at kzak3a7k4
1(32 (kq, ko, k3, ky; 71, 12) ay ak2a7k3a,k4+k714 (kl,kz,k3,k4;T1,T2) at k1”k2”7k3“7k4
—|—j152)(k1,k2,k3,k4,11,rz) aqat ot at, + T8 (ki ko, ks, ki, )t kla,kza,lga,kJ (A74)
where we defme new sets of functions, J( (ky, ko, k3, kg7, ) Vji=1,---,16,as:
? (K1, ko, ks, ka; T, T2) = iy (72) T, (71) i (1), (72), (A75)
j2 (kl,k2,k3,k4;’f1, T) = I (7)1, (1) iy (7)) T, (2), (A76)
T3 (1, K, ks, kg 1, T2) = Thie ()T (1)1 () T (), (A77)
jél(z)(kl,kz,kg,,kzl,‘fl, ) = Iy ()L, (1), (1) T, (2), (A78)
T (1, ko, s, Ky 1, ) = T, (2) Tl ()T 4 (1)l (), (A79)
T (K, ko, K, ka1, 1) =TTy (1) g ()T (1) D (22)  (A80)
~77(2)(k1,k2,k3,k4; 71, T2) = I, (72) 112, (7)ITE (1) T, (72), (A81)

jéz)(klszfkssz;;ﬁ, T

jg(l)(kl/kZI ks, ky; 11, 2

Jl((,z) (k1, k2, k3, ky; 11, @2

.71<12)(k1,k2/k3,k4;1'1, L)

JH (k1 ko, ks, ki T, T

313 (ki ko, ks, ks 1, T
(

kl/ k2/ k3/ k4/ T,

I (m)ITE,
[y, (1), (T
Htkl (TZ)sz Tl)Hk3(T1)H—k4(TZ) (A84)

Tl)Htk3 (Tl)Hk4 (Tz) (A82)

(
)

M, (1)1, (T2), (A83)

(
I, ()12, (1) (7)1, (T2), (A85)
I ()T (7)1 (7)1 (T2) - (A86)
(@), () f24, (T)ITEy (T2), (A87)
C (), ()T (7)TTEy (T2)  (A8S)

) =
)
)
)
)
)
)
)
)
)
)
)
) =TTj
) =11"
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J1(52)(k1,kz,k3,k4;71,12) = I, (2) T, (1) Ty, (7)1 (T2),
51(62)(1(1,1(2, k3, kg1, 12) = 15 ()2, (7)) 112y (1) TT2y (T2)

Appendix C.3. Definition of OTO Amplitude 7A§(1) (k1, ko, k3, ke; 7, 72) and
7A'3(2) (kq, ko, k3, kg; 11, 72)
The function ’7\5(1) (k1, ko, k3, kyg; 71, ) is defined as:
7A'3(1)(1<1,k2, k3, ky; 71, T2)
= [N(l)(kLkz, k3, kyg; 71, T2) A, A1, A1, 0, +N(1)(k11k2, k3, ky; T, 1) a' g, Ay 0,
—H\/( (k1, ko, k3, ky; Ty, T2) g, a _kzﬂk3ﬂk4 + N (kl,kz, ks, kg1, ) aiklaikzakBaM
)(k ko, k3, ky; 11, 1) ay akza_k ay, + N (k1,k2, k3, k411, T2) tikl akzaik3ﬂk4
N(l (ky, ko, k3, ky; 1, ) ak1a7k2a7k3ak4 —|—N >(k1,k2, k3, ky; 11, 12) al k]aJr kzatk3”k4
(k ko, k3, ky; 71, 1) a1 akzak3a K, +N10 (k1, ko, k3, ky; 71, T2) at k1“k2”k3”7k4
+N11 (k1, k2, k3, kyg; 11, T2) Ay, a _kzak3 _k4 +N12 (k1 ko, ks, ka; 11, 12) 2’y atkzalq Tk
+/\/13 (k1, ko, k3, ky; 71, o) A, ax,a _k3 _k4 +/\/14 (k1, ko, k3, ky; 71, 2) ! M8 tk3a_k4
) )

kl/k2/k3/k4/TllT2 akla—kz —k3 —k +-/\/.]6 (k1/k2/k3/k4/Tl/T2) a kla—k2a—k3a_k4:|

(A89)
(A90)

(A91)

where we define new sets of functions, /\/j(l) (k1, ko, k3, kg1, ) Vji=1,---,16, as:

N(l) (k1, ko, k3, kg; 11, 22) = fi, (1) fie, (2) fies (22) fiey (1),
W (k1 o, K, ks 1, 0) = fie, (0) K, (T1) fis (22) fie, (T1),
W (k1 1o, ks, ks 1, 1) = fio () f2x, (2) fi (2) fiey (1),
N (k1 Ko, ks ke 11, T2) = [ () fo (02) fis (2) fiy (T1),
NI (11,30, s, ks 1, T fi (1) fiy (2) f2 4, (2) fiey (T1),
(

) =
N(,(l kl/k2/k3/k4/Tl/T2) fikl(Tl)fk2<T2)fik3(TZ)fk4(Tl)
N7 (ke ko, k3, ka; 11, T2) = fie, (T1) foa, (72) f20, (2) fiy (T,

i () fr () fog (22) fiy (T1)
fi (1) fiy () i (72) f2, (1),
i (1) fio (22) fis () f24, (T1)

kl/ kZ/ k3/ k4r T, T

ki, ko, k3, kg; 11,

M
9( ( k2/k3/k4/Tlr (%]
M (

) =
) =
1)
N (kKo K, ki 11, 72) = fig (1) F 1 (72) fi (72) 4, (T1),
1(21 (k1, ko, k3, ka; 11, ) = f24, (1) fou, () fiy (T2) 4, (T1)
; (k1, ko, k3, ka; 11, 22) = fi, (1) fiey (22) fo4, (72) f2, (T1),
N (k1 ko, ks, ke T, 1) = 30 (T1) fie (T2) Fr 1, (72) i, (1)
N (ki Ko, K, ki T1,T2) = fig (1) iy (72) 4y (2) F14, (1),
Nig (1, ko, K, kay T, 12) = f4 (1) i (72) i, (22) 1o, (T1)

The function 7A'3(2) (k1, ko, k3, kyg; 7, 12) is defined as:

(A92)
(A93)
(A94)
(A95)
(A96)

(A97)
(A98)

(A99)
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732 (i, ko, K, ki 71, T2)
- [N(z)a(l’kz’ ks, Kgj T1, T2) g, iy iy iy + Ny (i, ko, K, Ky T1, ) a6 iy i iy
3 (et Ko, K K 7, ) iy 0 ey i+ N (T, e, e, ey 71, 2) 7 07 i
+N(2 (ki ko, ks, ks 71, T2) iy iy g ﬂk4+/\/' (k1/k21k3/k4;T1/T2)aik]ﬂkzﬂik3ak4
7 (1 e e Ky 1, ) kz”7k3“k4 + N (ki ko ks ks 11, 1)ty at kzﬂtk3ﬂk4
32 (k1 Yo, K, ket T, ) i Mgt + NG (K ko, ks, ks 1, 1)ty mgagaty
+N11)(k ko, k3, ky; 1, 12) ay,a —kzllk3 _k —i—/\/12 (kl,kz,k3,k4,1—1/f2)a kla—kzaksa—k4
N2 (g, Ko, s, ks 1, 1) ukza7k3a,k4+Nl4 (K, ko, ks, kg 1, 12) g aipatyaty
N2 (K o, s, kg T, ) gty a T, + N2 (1, kg, ks, ki 11, 1) “tklatkzﬂikﬂih], (AL08)

where we define new sets of functions, j\/'].(z) (kq1,kp, k3, kg; 71, ) Vi=1---,16,as:

N(” (K1, ko, k3, kg; 1, 2) = Ty, (1), ()T, (T2) e, (73), (A109)
(kl,kz,k3,k4,rl,rz) Iy, (12) *_kz(rl)l_[k3(rz)l_[k4('r1), (A110)
(k ko, k3, ky; 71, 1) = T, (1) ITE kZ(Tz)Hkl(Tz)Hk4(T1) (A111)

4 (k ko, k3, ky; 11, 12) = 115 ()T (T2) T, (72) T, (T1), (A112)

N (K1, Ko, K, kg T, T2) = i (1) T (0)IT 4 (22) T, (1), (A113)

NP (K1, K, K, Ky T, T2) = T (1) i ()T (0)TT (1) (A114)

NP (1, Ko, K, kg T, T2) = Ty ()T 1o () (), (1), (A115)

NP (K1, Ko, K, g T, T2) = T (1) Ty (0)IT (2)TT, (11)  (A116)

N (1,2, ks, ks 11, 12) = Ty (1) i (22) T, (22) T, (71), (A117)

N (kKo K, kg 1, 72) = 1Ty (70) g (22) i ()11 (71) (A118)

N (1, ko, K, ks 71, T2) = T (7)117 4, (1) The ()T, (1), (A119)

NP (k1 ko, ks, kg 1, 0) = Iy (oI () ()12 (1) (A120)

N (K1, K, K, ke 11, T2) = i (1)1 (0)IT 4 (2)IT5y (1), (AI21)

NP (K1, Ko, s, ke 11, T2) = T (1) Ty ()T (0)ITY (11) (A122)

N2 (1, Ko, ks, Koy T, 2) = Tl (7)1 4, (0) 1T 3 ()T (1), (A123)

N2 (K1, o, ka1, ) = Ty (0)IT 4 (0)TT 4 ()IT7 4 (T1)  (A124)

Appendix C.4. Definition of OTO Amplitude ﬁ(l) (k1, ko, k3, ke; 1, 72) and
7\:1(2) (kll k2/ k3/ k4/ T, TZ)
The function ’7:1(1) (k1, ko, k3, kyg; 71, ) is defined as:
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—~(1

TV (k1 ko, ks g 71, 72)

—Q(l)kkkk‘ Q(l)kkkk' t

= | Q' (k1, ko, k3, ka; 71, 2) 1, Ay iy e, + Q5 (Ka, ko, K, ka; 71, T2) Al g i, i, A,

gt

+Q3 (k1/k2/k3/k4/T1/T2 akl —kzak3ak4+Q4 (kl,kZ,k3,k4,Tl,T2) _kla—kzak3ak4
! . t

+Q5 (k ko, k3, ky; 71, ) Ay akzafk ak4+Q6 (kl,kz,k3,k4,”[1,1’2)11 K P15 gy
k kz,k3,k4,T1, T ”k1”7k2a7k3’1k4+98 (k1/k2/k3/k4/Tl/T2)a kla k2a7k3ak4

+Qg

)

)

)

kq, ko, k3, ky; T1, T2) g, Ay, A1, A k4+Q10 (ki, ko, k3, ky; 11, 2) at klakzczk?’nLk4

)

+Q13 ki, ko, k3, ke; Ty, T2) A akza_k3u_k4+Q14 (k1, ko, k3, ky; 1, 0) a® klakza_ksa_k4
)

ol
(
Ve, ko ks, ki, 1 i ia Q1z (k1 ko, ks, ky; 7, 1) a7y aT g ana’
(
(

+ Q15 kl/ k2/ k3/ k4/ T, T2 akl _kZ _k3 _k + Ql6 (kll k2/ k3/ k4/ T, TZ) iklatkzatk3atk4:| ’ (A125)

where we defme new sets of functions, Q (kl, ko, k3, kg, ) Vji=1,---,16, as:

oW (It ko, ks, ks 1, T2) = fk1(Tz)sz(Tl)fk3(T2)fk4(Tl)/ (A126)
OV (i, ko, ks, ka1, T2) = £ 30 (T2) oty (1) fi (72) fi (T1), (A127)
O (ki ko, k3, ka; 11, 22) = fic () fi, (T) fy () fi, (T1), (A128)
O (ki ko, k3, ky; 1, 2) = fix () fx, () fis (2) frey (1), (A129)
Ol (ki Ko, K, ki 71, T2) = fiey (72) fiy (T1) f 1, (72) fis (1), (A130)
O (i, Yo, ks i 7, T2) = £ (12) fiey (1) 1y (T2) fiy (1) (A131)
oW (ky, 1o, ks, ks 1, 12) = fi () o1, (1) f24, (2) iy (1), (A132)
Qél)(k ko, k3, ka1, @) = f1y () fox, (1) 4, (22) fiy (T1) (A133)
OV (k1 Ko, kg, ks 1, 72) = fiq (T2) fiy (1) s (72) 4, (T1), (A134)
Q%)(k ko, k3, ky; 11, 12) = f14 () fi, (T1) fis (12) f14, (T2) (A135)
o\ (ky, 1o, ks ks 1, 1) = fi () o1, (71) iy (72) f2, (1), (A136)
O (K ko ks ks 1, ) = Fr (0) f 4 (1) fi () fri (1) (A137)
o) (ky, 1o, Ky, ky; 1, 1) = fie (22) fi, () f2 4, (72) f2 4, (T1), (A138)
Ol (ki ko, ks, ke 71, T2) = f4 (72) fiy (1)1 () f1ay (1) (A139)
Q1 (k1 ko, ks, ety T, 72) = fi () f 1 (1) 11 ()i (1), (AL40)
QY (ki ko, ko ka7, 1) = f30 () f 10, (1) Fr 1, (22) 1o, (1) (A141)

The function 7;(2) (k1, ko, k3, kyg; 71, ) is defined as:
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A4(2) (k1, ko, k3, ky; 71, 2)

- {Q@(kl’kz’ k3, Ky; T1, T) i, iy By B, + ng) (k1, ko, k3, ky; 11, 72) atklakzﬂkgﬂm

+Q3 (k1, k2, k3, kyg; 11, T2) Ay, a —k2“k3“k4 + Q4 (kq, ko, k3, kg; 71, 1) tklatkzakgak;

+Q5 )(k ko, k3, ky; 71, ) Ay akzafk ay, + Qé (kl,kz, ks, ky; 71, 1'2) at " akzatkg,akzl
ki, ko, k3, kg; 711, 12 111<]11,k2afk311k4 + Q8 (k1, ko, k3, ky; 71, T2) at kla k2”7k3’1k4

+Qg

)

)

7)

kq, ko, k3, ky; T1, T2) g, Ay, A1, A k4+Q10 (ki, ko, k3, ky; 11, 2) at klakzakaafk4

)

+Q13 ki, ko, k3, ke; Ty, T2) A akza_k3u_k4+Q14 (k1, ko, k3, ky; 1, 0) a® klakza_ksa_k4
)

l
(
D1,k ks, ki1, i ia Qu (k1 ko, ks, ky; 7, 1) a7y aT g ana’
(
(

+Q15 ki, ko, k3, ky; 11, ) aya’y 0ty oty +Q16 (k1, ko, k3, ky; 11, 22) Jiklatkzatksath, (A142)

where we define new sets of functions, Q ) (kl, ko, k3, kg, ) Vji=1,---,16, as:

Q<2><k1,kz, ks K 1, ) = T () iy () T ()T (1), (A143)
(k1,k2,k3,k4,T1,Tz) I ()T, (1) T (2) Ty, (1), (A144)
Q3 (k1, k2, k3, ky; 11, 2) = Iy, (12) _kZ(Tl)Hkl(Tz)Hk4(Tl), (A145)
QA(LZ (k1, ko, k3, kg; 11, 22) = 15 ()11, (7)1, ()1, (1), (A146)
0% (K, Ko, ks, ki 11, T2) = I (1) i, (70)IT% 4, (22) T, (1), (A147)
Qéz (k1, ko, k3, ka; 11, 22) = 12 (1) I, (7)) 112, (72) Ty, (1) (A148)
O (K, X, ks, ka1, T2) = I ()T ()T ()T, (T1),  (A149)
ng (kq, ko, k3, ky; 11, o) = T2 () T2, (1) T2 (22)Ii (T1)  (A150)
O (ki X, ks, ki 11, T2) = T, (1) i, (70) Ty (22) 1T (1), (A151)
Q%)(k ko, k3, kg1, 2) = Iy (72) T, (71) Ty (72) T2y, (1) (A152)
0 (ky, kg, ks, i T, 72) = i (22)TT" y, (1) (22) Ty (1), (A150)
Q) (ki ko, ks, ka1, 1) = I ()T (7)) Thg ()IT2 (1) (A154)
0 (k, ko, ks, ka; 11, 1) = I, ()i, (7)IT%, (2)IT5 (T1),  (A155)
Q% (i, ko, ks, ka1, 1) = 1Ty ()i ()11, (2)IT5 4 (1) (A156)
?(k ko, k3, ky; 11, &) = i ()12 (7)1 ()11 (T1),  (A157)
O (K1, ko K, kyy 71, 1) =TT ()11, (1)1 3 ()T, (1) (A158)

Appendix D. Computation of Classical Limit of Four-Point “In-In” OTO Amplitudes
for Cosmology

In this section, our prime objective is to explicitly compute the classical limiting
version of the four-point “in-in” OTO amplitudes appearing in the expression or OTOC. To
serve this purpose, in the classical limit we explicitly compute the following square of the
Poisson bracket, given by:

{fxm) fem)lis = {fxn) fx)lpp{f(xn), f(x0)}lpp,  (A159)
{fom) Tx ) s = {T1(x7),T1(x, ) }pp{II(x,7),TI(x, 72) }pp. (A160)

Now we use the following convention for the Fourier transformation, which is given by:
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3
flx,1q) = /(;7:()3 exp(ik.x) fi(m), (Al61)
. A3k _ A3k .
II(x,71) =0 f(x, 1) = /W exp(ik.x) 0¢ fi (1) = /W exp(ik.x) Iy (1), (A162)

{f(x, 1), f(x, 1) }op = /

which will be very useful for the computation of the classical limiting result of the four-
point OTOC in terms of the square of the Poisson bracket. Consequently, we get the
following simplified results:

4K,
(2m)?

Pl
(2m)?

43ks
(2m)3

A3k,
(2m)3

| o | s/

exp(i(ky + ko + k3 + ky).x)

[{flq(Tl fio(12) }PB{fk3 ), fi, (2 }PB+{fk1 ), fis (T2) }PB{sz(Tl  fi, (2) }PB

H i (1) fig (@) fpp {fi (1), fio () b + {fia (7). fis (72) b { fis (T1), iy (2)
+{fie (1), fie (©2) g { fies (T1): fi (22) g + { fia (7). fiey (22) S g { i (7). fi (2)
o (), fie (22) 3 pp {fies (7)o (2) } g+ {fics (7)o (2) } s { i (T0), i (72)
+{ fis (1), fiey (72) } pp L fir (1), fio (2) Y g + {fica (1), iy (2) Y A fio (T1)) Sy (T2) } g
+{fk4(Tl) sz(TZ)}PB{fks(Tl) fkl Tz)}PB + {fk4(T1 fk3(T2)}PB{sz(T1) fk1(T2)}PB]‘ (Al63)
3 3 3 3
{IT(x, 1), 11(x, ©2) } pp = / i k1 d k2 / a k3 ‘;71;; exp(i(ky + ko + k3 + ky).x)
{1, (), sz(TZ)}pB{Hk3(Tl) Hk4(T2)}pB+ {, (11), Ty (12)  pg { Ty (1), i, (12) }
{1, (71), i, (72) } pg { Thiey (71), iy (T2) } g + {1y (70), Tl (2) J i { Tk (70), T, (72) }
+{IMig, (11), i, (72) } g { iy (1), iy (72) } g + {1y (1), T (72) } g { Ty (1), iy (72) }
+{Hk3 (Tl)’Hkl (Tz)}PB{Hk4(Tl) 2(T2>}PB + {Hka (Tl)’nkz (Tz)}PB{Hkl (T1>’Hk4 (Tz)}PB
+{Thi (1), T, (72) } pg { T (1), iy (T2) } g + { T (71), Tl (22) J pp { Ty (71), T (72) }
{1, (1), i (72) } pg { Ty (1), Tl (72) } g + {1 (70), Tli (22) J g { Ty (70), Tl (22) |- (A164)
Now, here our job is to explicitly compute each of the Poisson brackets, which are
appearing in the above-mentioned twelve terms. The explicit computation gives the
following result:
ofi.(t1) 9fi(t1)  Bfi, (1) 9fi;(T2)
(@) fig(@)}, = (afk () 3, (1) Tl (1) afkp(72)>

e, fic . fic
= )PP (K + k)P (K + k) Uy (11, 72) ( a:i?: ((T;Z)) - a:ﬁt’ ((3)
I fi (1) 9 fi (1)

= (21)°8 (ki +Xkj)Us (11, &) (

)

AT, (1) ATy ()

= (2n)°8 (ki + kj)Us (11, 2) V1(T1, T2)
= (2n)°0 (ki +kj) Ri(11, ). Vi #j with i,j=1,2,3,4. (A165)
Here, we define the overall time-dependent amplitude as:

Ri(11, 2) = Ui(m, 2) Vi(T1, 12), (A166)
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where we have used the following crucial facts:

{I(m), g (w)}

.
<a£;((?2)>> = (21)°0*(k; + kp)U1 (11, 2), (A167)
( Iifig(n)  dfie(n)

A Il (1) ATl ()

> = Vi(1, ). (A168)

Similarly, one can compute:

aflki(n) aij(Tl> _ aHki(Tl) ankj(TZ)
dfx, (2) M, (12) Ol (T2) Of,(T2)

= (2718 (ki + k)8 (k;j + k) Uz (11, 72) (21:2?((2)) - aalzz(l:((;l)>>

Il (1) O Il (1)

A fi () 3kifk,(T2)>

= (21)°8 (k; + kj)Uz(11,72) Va(T1, T2)

= (2n)°8 (k; +kj) Ro(m, 1) Vi #j with i,j=1,2,3,4. (A169)

= (271’8 (ki + k) Ua (1, 1) (

Here, we define the overall time-dependent amplitude as:

Ry (11, 2) = Us(11, 1) Vo (11, 2), (A170)

where we have used the following crucial facts:

ol (1)
olly, (1)
Il (1) 1l ()
I fi;(2) O fi(T2)

) = (21)°8° (ki + k) Ua (11, 1), (A171)

) = Va(11, 72). (A172)

Here, from these computed Poisson brackets, we can extract the following sets of

crucial information, which will further help us to understand more about the classical limit
of the four-point OTO amplitudes in the present computation:

1.

The time-dependent part is very complicated as it contains the information regarding
the classical version of random stochastic quantum fluctuations in the primordial
universe. In the present context, it is hypothesised by random functions Ry (7, 72)
and Ry (71, 72) which incorporate the two conformal time scales in the results.

In addition, it is important to note that R1(7;, 72) and Ry (11, 72) are homogeneous
and isotropic functions, which captures the dynamical effect of the spatially flat FLRW
background. For this reason, the random functions, Ry(7, 72) and Ry (7, 12), are
completely i and j momentum index independent. This is actually the outcome of
the stochastic randomness in the present context. Due to this fact, these random
functions, R1 (71, 72) and Ry (13, T2), are non-zero in the present computation. This is a
non-trivial result and, as in the usual classical field theory, these two correlators give
vanishing contribution without having any random fluctuations in the theory.
Moreover, it is interesting to point out here that one can explicitly separately write
down the contribution of the inhomogeneity and time dynamics in Fourier space after
computing the classical Poisson brackets.

Finally, the appearance of the three dimensional Dirac Delta function confirms the
momentum conservation in the Fourier space in the classical two-point OTO micro-
canonical amplitudes.
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Further, we compute the square of the Poisson brackets, which after performing the
Fourier transformation can be expressed as:

{ fie (1), fig (T2 } (o (T) fion (@) pp = (2700563 (ki + K7)8% (k; + k) U3 (11, 12) Vi (11, 2)
= (2m)%0°(k; + k)8 (k; + ki) Ri (11, 2). (A173)
{Hki(rl),Hk].(Tz } (T (1), T, () Yo = (270)88% (K, + )83 (k; + ko) U3 (11, 12) V3 (11, 12)
= (2m)%0°(k; + k)0 (k; + ku) R3 (11, ).

Vi j#1#m with i,j,k1=1,2,34 (A174)

Consequently, we get the following simplified results:

d%k A%k d%k d%k
Ulom) S lis = @0 [ 555 [ s [ s | s olitls ot ks +1a)x)

8 (ki + k)% (k; + k) Ri(11, ). (A175)
i,jlm=1,i#j#l#m

Contribution from 12 terms

4

3 3 3 3
(11007, 110, ) Vo = (27)° [ 0 [ 522 [ 20 [ 220 explilhs + ko + e+ Ka)x)

4
8 (ki + k1) 8% (k; + k) R3 (11, ). (A176)
i,jlm=1,i#j#l#m

Contribution from 12 terms

Here, the explicit computation gives following product identity of the Dirac Delta
function:

4
3 (ki + k)0 (k; + k) = [53(k1 + k)83 (ks + ky) + 83 (ky + k3)0° (ko + k)
i,jlm=1,i#j#l#£m

+0%(ky + kyg)0% (ks + ko) + 6% (ko + k3) 6 ( )
+0° (ka + k1)6° (kg + k) + 6% (ko + ka )& (K + ks)
+0° (I +11)8° (kg + 1p) + 8% (k3 + k2)&° (kg + ky)
+6% (k3 + k4)0 (k1 + ko) + 8 (kg + k1 )67 ( )
+8% (kg + k2)0° (kg + k) + 6 (kg + k3)8° (ko + k1)} : (A177)

Now, we give the following proposal to quantify the random function R?(1j, 1),
which is given by the following expressions:

R%(Tlr TZ) = <77Noise<71)77Noise(TZ)> ’ (A178)
Contribution from random noise field correlation
R%(Tl’ Tz) = <IT']Noise (Tl)HUNoise (T2)> 4 (A179)

Contribution from random momentum correlation

where #/noise(Ti) Vi = 1,2 and Tl ... (7)) Vi = 1,2 represent the conformal time-
dependent random noise field and momentum functions.

In addition, it is important to note that the two consecutive noise kernels are time
translation invariant, for which we have written:

(1Noise(T1)Noise(T2)) = Ggmel(flﬂz) = G%lmel (I —1l), (A180)

<H77N01se( )HﬂNolse (T2)> = Gg(Z()grnel (Tl/ Tz) = G%(grnelarl - T2|)' (A181)



Symmetry 2021, 13, 599 98 of 127

Additionally, the conformal time-dependent noise satisfies the following constraint

conditions:
(MNoise(Ti)) =0, Noise = Gaussian, Non — Gaussian, (A182)
<77N0ise(Tl)nNoise(TZ>77Noise(T3)> =0, Noise = Gaussian, (A183)
<77Noise (Tl)UNoise(TZ) ------- 7]Noise(TN)> fl(\l()nse(rl’ T2y eees TN) #0VN2>2,
Noise = Non — Gaussian. (A184)
and
(Mynoise (Ti)) = 0, Noise = Gaussian, Non — Gaussian, (A185)
(TMyneise (T1) T yn0ise (T2) INoise (T3)) = 0, Noise = Gaussian, (A186)
(Wnosee (T e (T2)-oee Taine (T8)) = £t (1, T, oy T) # 0 ¥ N > 2,
Noise = Non — Gaussian. (A187)

After substituting this result into the previously computed expression for the ampli-
tude, we get the following simplified expressions:

{f(x ), f(x, m)}%g

4
(2n) 61‘[/ Cexp(ilpx) Y B +k)P 0k +kn)GEL (1T — 1), (A188)
i,jlm=1,i#j#l#m
{I1(x, ), I(x, Tz)}PB
4
(2n) 61‘[/ Coxplikgx) Y B+ k) + k)G (1t — ). (A189)

i,jl,m=1,i#j#l#m

Appendix E. Computation of the Trace of the Two-Point Amplitude in OTOC

Now, we will explicitly compute the numerator of the OTOC for quantum Mota—Allen
vacua, which is given by the following expressions:

Tr{e*ﬁﬁ(fl [f(x ), f(x,Tz)H(aﬁ)

B exp(—Zsin’ytana)/ / d®kq / d®k;
= = Jcosha] oo | 533 | s OPlilka +ka) A

(¥sp||V (kllkerlsz,ﬁ) Vgl)(kl,kz;Tl,Tz;ﬁ)] ¥BD). (A190)

|—|

and
Tr H(m) [y x, 1), T1(x, T
e P L1, 7), T1( gﬂw
_exp(—2sinytana) / a3k, / Ak,
N | cosh a| (2m)3

(Ysp| v (kl/kz/Tl/T2/ﬁ) ng)(kl,kz;ﬁ,fz;ﬁ)} ¥Bp). (A191)

exp[ (k1 + k2).x]

—

Further, our aim is to compute the individual contributions which are given by:
/dTBD <TBD|V§1)(k1,k2} 71, 72; B)|¥8D) = /d‘PBD (¥pple PHT) Agl)(klrkz; 71, 72)|¥8D), (A192)

/d‘PBD <TBD|v§1)(k1rk2} 71, 2; B)[¥BD) = /d‘PBD (¥pple A Aél)(klszi 71, 2)|[¥BD)- (A193)

and
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/dTBD <\FBD|v§2)(k1rk2} 7,2 B)[¥BD) = /dTBD (¥pple P /3§2) (k1,ko; 11, 2)[¥BD), (A194)
/dTBD <1FBD|v§2)(k1/k2) 71,72, B)|¥BD) = /d"PBD <TBD|€7ﬁH(Tl) A§2)(k1,kz; 71, 72)|¥8D)- (A195)

Let us evaluate one by one each of the contributions, which are given introducing
normal ordering by:

/d‘PBD (¥gp) : e P I, %, : YD) =0, (A196)
/d‘YBD (¥gp| : e~ PA() a,a’y, : YD)

= (27{)3exp( / 4’k In (2 sinh ‘BERZ(Tl)>>53(k1 +ky), (A197)
/d‘YBD (¥pp] : e PH() a’\ ax, : [¥D)

= (271)3exp(— /dsk In (2 sinh 'BEkz(Tl)>>53(k1 +ky), (A198)
/d‘PBD (Fgp| : e PH(T) 'y a'y : [¥ep) = 0. (A199)

Consequently, the individual contributions can be computed in the normal ordered
form as:

/ d¥gp (Fep VY (ki ko 11, ;) [¥p)
= (271)3 exp ( / Bk In (2 sinh ﬁEkz(Tl)> ) 3 (k; + ko) [DS) (ky, ko5 71, 2) + DY (K, ko 71, Tz)} . (A200)
/ d¥ep (Yep|VS (ki ks 11, 723 B) [¥BD)
= (271)3 exp (— /d3k In (2 sinh ﬁEkz(Tl)> ) B (k; + ko) [cgl) (ki k11, 12) + L3V (K, ko3 14, rz)}, (A201)
/ d¥ep (Pp|V? (ki, ko 11, 23 B) [¥eD)
= (27)exp (— /d3k In (z sinh ﬁEkz(Tl)> ) 3 (k1 + ko) [DQ (ky, ko; 1, 72) + D) (ky, ka; T3, Tz)}, (A202)
/dTBD <‘FBD|v£2) (k1,ko2; 71, 72, B)|¥BD)

= (21)>exp <_ /d3k In (2 sinh 'BEkz(Tl)> ) 8 (Il + ko) {ﬁgz) (ki ko, 11, 12) + 55,2) (k1, ko; 11, Tz)} , (A203)
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Appendix F. Computation of the Trace of the Four-Point Amplitude in OTOC

Now, we will explicitly compute the numerator of the OTOC for quantum & vacua,
which is given by the following expressions:

Tr [eﬁﬁ(ﬁ [f(x ), f(x, Tz)}z] "

_ exp(—2sin ytana) /d‘I” Pk, / ks / ks / APPky
|cosha] 8D J 2m)3 ) @2n)3 ) @n3 ) (2r)?
expli(ky + ko + k3 +k4) x|
(¥BD| rl(l)(khkz, k3, ka; 71, 105 B) — Vz( )(k1,k2, k3, k4; 11, 725 B)

+9§1)(k1,k2/ k3, ky; 11,05 B) — Ail)(khsz k3, ky; T1,Tz;ﬁ)} ¥Bp).  (A204)

Tr[e*ﬁlfl(n) [fl(x,rl),ﬁ(x,Tz)]z}( )
x

_exp(—2sinytana) /d‘F /d3k1 / *k, / d%ks / d%ky
B [cosha| BD 2n)? ) @2n)3 ) 2n)3

expli(ki + ko + k3 + ky).x]
(YD { (klrkZ/ k3, ky; 1,705 B) — Vz( >(k1,k2, k3, ky; 71, 725 B)

+V (1, ko, ko, i 71,723 B) — Vi (Ko Ko Ko ks 1,3 B) | [¥ep). - (A209)

Further, our aim is to compute the individual contributions for I = 1,2 which are
given by:

/ d¥p (Fup |V (ki ko, ks, ka; 1, 2 B) [ ¥

= /d‘YBD (Faple P T (1), ko, ks, ka; 11, 12) [F0), (A206)
/ d¥sp (Yep |y (ki ko, ks, ka; 71, 2 B) [ ¥BD)

_ / d¥gp (Yeple P T (ky, ko, ks, ki 71, ) [¥BD), (A207)
/ d¥ep <TBDDA)€EI)(1<1/R2/ k3, ky; 11, 72; )| YD)

- / d¥sp (¥pple P T (ky, ko, ks, kg 1, ) [¥5D), (A208)
/d‘I’BD (‘{’BD\ﬁil)(khkz, k3, kg; 71, 72, B)[¥BD)

= /dTBD (¥pple P ﬁ(l)(khkz/ k3, k4; 71, 72)[¥BD)- (A209)

Let us evaluate one by one each of the contributions, by introducing normal ordering
for I = 1,2, which are given by:
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/d"PBD (Yep : V
= (2m)® exp(—/d3k ln(Zsinh 'BEkz(Tl))>

|:M(l)(k1/k2r k3, k4; 11, T2) {

(klrkZ/ k3r k4/ TerZr ) : |‘IIBD>

+M (l> (kll k2/ k3/ k4/ T, T2

/\/l( ) ki, ko, k3, ky; T,
l)
Mio
(I

)
( )
(k1, ko, k3, ky; 11, 12)
1)(k1,k2,k3,k4,’f1, )
o )

kl/ k2/ k3/ k4/ T, T2

o,

/dTBD (Ysp| : 921)(1%1(2/ ks, ky; 11, 2; B) ¢ [¥BD)
= (2n)6exp(— /d3k In (2 sinh ﬁEkz(Tl)»

+7.!

ki, ky, k3, kg; 71, &

) ki, ko, ks, kg 11, 2) 462 (ky + k)% (ks + kg

83 (k1 + k2)o% (k3 + ky

( )
( )
)(k ko, k3, ke, 11, T2)
(k1, ko, k3, ka; 11, 2)
15 ( )

)67 ( )
)67 ( )+
83 (kq + k)% (ks + ky) +
)87 ( )+
)67 ( )

) kl/ k2/ k3/ k4/ T, T2

— = = A A

/ d¥sp (¥pp| : PV (i, ko, ks, ks 71, 7 B) © [¥)
= (2m)° exp(— / 4’k ln(Z sinh ‘BE]‘Z(Tl)>>

83 (k1 + k)8 (ks + ky) +

83 (ky + k2)o% (ks + kg) + 82 (ky + k3)8° (ko + kg

5 ki + ko 5 ks +kyg) +

j
83 (kg +ky)0% (ko + k3)
)
)
83 (kq +ky)0% (ko + k3)

)

( )67 ( ) +0%( )
( )87 ( ) +0%( )
8 (k1 +k2)8% (ks + kg) + 8% (kg + k3)0% (ko + kg
( )87 ( ) +0%( )
( )87 ( ) +0%( )

83 (ky +k3)0% (ko + kg) + 82 (kq + kyg)8° (kp + k3

[J;’><k1,kz, ks k71, 72) {03 (Ki + K)o (la + ka) + 8% (K + ka)o® (ka + ) |
8% (kg + k2)8° (ks + ky) + 0% (kg + ky)&° )

)

)

83 (kg +k3)8% (kg + ky) + 82 (kg + kyq)8°

3 (k1 +kq)6 (ko + k3) + 67 (k + k3)8° (ko + k)

e e el e e

} (A210)

(
+ 0% (kg + k3)0°

(
(
+ 0% (kq + k3)8° (kp + ky
+ 8% (kg + k)& (
(

(A211)

[N(” (K, Ko, ks, K 7, 72) {03 (Kt + K)o (Ko -+ Ka) + % (Ko + Ka) & (Ko + ka)

ki, ko, k3, ky; 11, 2

—

kl/ kZ/ k3/ k4/ T, T

2 )
D )
+Nl% (ki1, ko, ks, ki; 71, T2)
+N11 (kq, ko, k3, ky; 11, 72)

( )

( )57 (
( )87 (
3 (ky + k)% (ks + ky) +
( )87 (
( )87 (

AN (I, o, T, kg 11, 1) 6% (1 + K3) 8 (ko + k) + 6% (kg + 1g) 83 (kp + K

{
{
{
{

83 (kq +k2)o% (ks + ky) 4 8° (kg + k3)8° (ky + ky

)}

8 (kg + k)0 (k3 + k) + 0% (kg + kg )% (ko + ks)
)

)

83 (k1 + k2)6% (k3 + ky) + &° )
)

)87 (

)67 (
83 (kg +k3)0% (ko + ky
ki + ky)o% (ko + k3
)67 (

(
o(
(
(

N~ N N N

} (A212)
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/d‘I'BD (Ysp| : ]75)(1(1/1(2/ k3, ky; 71, 02; B) - [¥BD)

= (27()6exp<— /d3k ln(Z sinh 'BEkz(Tl)>>

[Qz(;l)(kbkz, k3, ki 11, ) { (ki + ka)6® (ko + k) +6° (kg +k3)8° (ko + k4)}
(l)(

Q«;

ko, ki, ka; 11, 1) {62 (kg + ko )d% (ks + kg k; + kq)8% (ko + k3

8(
OV (ky, ko, k3, ky; 11, T +6%(

83 (kg + k)63 (k3 + ky kq +k3)6% (ko + kg

j
j
j
)

)
™)
—i—Qw) ki, ko, k3, ky; 11, 22)
)
(l) )

(
+ Qll (kll k2/ k3/ k4/ T, T2
3 (ki

/—Aﬂr—/H/—’H/—’H/—Aﬂ

( )67 ( )+ )67 ( )
( )67 ( )+ )87 ( )
83 (kq + k)% (k3 + ky) + 6% (kg + k3)0% (ko + ky)
83 (kq +ka)0% (ks + kyg) + 6% (kg + ky)0% (ko + k3)
&% )67 ( )+ )67 ( )

ko, ks, Ky T, T K1 +k3)8% (ko + kq) + 63 (kg + k)63 (ka + k3 H (A213)

After detailed computation, it is possible to obtain the following OTO amplitudes
which will finally contribute to the expressions for the two desired auto-correlated OTOCs
which are computed in this paper. To understand the structure of these functions more
clearly, one can further write them in terms of the redefined field and its canonically
conjugate momenta, for the two specific types of OTOCs as:

e (ke ko, —ka, —ki; 11, 12) = Fro (1) F 1 (72) ot (1) ot (2) = 1, (22) F sy (70) f ot (70) fot (2)

i () fa () foi (B2) foi (1) — o () fo4, (1) oty () foiy (), (A214)
D (ki ko, —k1, — ko1, T0) = Fiq () fa () foaq (T) foi, () — oo () fo, (1) oty (1) fip (T2)
i () fa () foiq () foiy (T1) = fh () fo4, (1) ot () fip (1), (A215)
&) (ko —ka, —ki; T, 72) = F4, (1) fip (72) il (1) f -1 (72) = F4 () fio (1) iy (1) oy (2
+ 21 (1) fio () fiy () fiy (T1) = fL4, (T2) fiy (1) fiy (22) fo1 (1), (A216)
e (ki ko, ki, —ko; T, 1) = fig (1) fx, (22) fie, () fo, (@) = fiy (R2) foa, (T1) fi, (1) fo1y (T2)
+fie (7)) f24, (22) fie, () fop (T1) = Sy (22) fo4, () fi, (22) foxp (T0), (A217)
£l (ko =k, —kai 7, 72) = Fie, (1) fio () fa, (1) iy (72) = f1 (22 fio (1) f 1 (1) fity (2)
+ 2, (1) fio (72) fo1, (2) fiy (71) = f24, (T2) fiy (1) fiy (22) f2, (1), (A218)
eV (ki ko, ko, —ki; 11, T2) = fiq (1) 21, (22) fo1, (71) fiey (2) = Sy (2) f24, (T1) fip (T1) fi, (T2)
+fi (7)) foa, () f =2 () fie, (T1) = fiy, () fo4, (7)) fiy (R2) figy (T0), (A219)
£43) ko, =k, —kai 71, 72) = fie (1) fio () iy (1) fity (T2) = fiy () iy (1) fily () iy (2)
+fiq (1) fiy (22) fic, (22) fie, (T1) = fiy (2) fiy (T1) fi, (72) fiy (1), (A220)
€13 (k, ko, —ka, —ki; 71, 12) = fie (1) fio (22) iy (T) i, (72) = iy (72) fio (70) fily (70) £, (22)
+fiq (1) fiy (22) fig, (22) fie, (71) = fiy (2) fiy (T1) fi, (T2) fi, (1), (A221)
&) (ka, =k, ko, ka3 T, 72) = fie (1) i (7)1 (1) f 0 (72) = fi (2 iy (7)1, (7)o (72)
+fi (1) fig, () 11, (22) -1, (T1) = fiy (@) fie, (1) fL4y (2) f-i, (T1), (A222)

£y (ki, —k, ko, —kai 11, 1) = i, (T1) iy (22) fieg (1) iy (72) = Fha, (72) foty (70) fio (T0) iy (2)

+ 2 (M) foi (2) iy () fiy (71) — fhi, (02) oy (T1) fiy (2) fi, (T1), (A223)
e (kr, —Xt, ko, —kai 11, 2) = fie (10) fiy () fio (70) fity (72) = fi (@) iy (1) fiq (T0) fity (2)

+fi (1) fie, (22) fiy () fie, (1) — fiy (@) i, (T1) fiy (T2) fiy (T1), (A224)
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and

522) (k1, ko, —ko, —kq; 11, T2)
=I5 (m)E ) ()T, (1) (T2) — T2 (@)1 ()T g, ()T, (T2)

HIIZ e (7)ITEy, (22) T, (T2)TT gy () — T2y ()12 (7)) Ty ()T (Ta), (A225)
5(2) (ky, ko, =k, —k2; 71, T2)
= I1% (m)ITE ()T (7)1, (72) — T2y ()T (T)TT g, (7)1 i, (T2)

HITE (1), ()T g ()T g, (7)) — Ty () T2y ()T gy (T2) 1T, (Ta), (A226)
56(2) (k1, ko, — ko, —ky; 71, 72)
= I (1), () TT, (1) TT o, (T2) — T2 ()T, () T, (1) Ty, (72)

HII2 (1), (22) T, (22) T (1) — TT2 (T2) T, ()T, () Tk (7). (A227)
£ (K, ko, —ki1, —ka; 71, T2) = Tl (7)1, (22) 1T ()T, (T2) — Tl ()T, (7)1 (7)1 iy (72)

i, (7)1, ()T (22) Tk, (1) = T () T2 ()T, (22) T gy (7). (A228)
51(3)(1(1'1(2/_klr_k2/'T1/TZ) T2, (1), (22) 1Tk, (7)1, (T2) =TTy (22) T, (7)) TT g, (7)1, (T2)

+IT (ﬁ)sz(Tz)H K (), (1) — T2y (7)) T, (7)) T (72)T12 (), (A229)
E17 (1, ko, —ka, —ka; T, 72) = T (1)1 (22) 1L g (1) (72) = i (22) 113 (1) T (20T (2)

+Hk1(Tl)Hik2(TZ)H ko ()T, (71) — T ()12 (7)) Tk, (21T, (7)), (A230)
€55 (kn, ka, —k1, ko T, 72) = i (1) i ()T, (1)1, (72) — Tl (72) M ()T, (7)1 (2)

+Iy, (71)TT, (2) T A Z)Hl*(z(rl) Iy, (7o), (7)) T 1(T2)H1*(2(T1), (A231)
&3 (1, ko, —ka, —ki; 71, 72) = iy (71) T, (22) T, (71T, (72) — Tl (22) Ty (7) T, (7)1, (72)

+Ti, (71) i, (72) T, ()T, (71) — T, (T2) T, (1) T, (22) T (7). (A232)
P ki, ki, ko, —ko; 11, 1) = Ty, (1), (2)IT g (1)TT gy (12) — T, (2)TT5, (70)TT7 4, (70) 111y (72)

+I, (1), ()11 ()11, (71) — i (7)1 (7)1 ()T g, (1), (A233)
£ (k1 ki, ko, —kp 71, ) = I1° 1 (7T i (22) T, (1) T, (T2) =TTy (7)1 g, ()T, ()T, (2)

HITE (1) T (22) T, (T2) 1T, (1) — T2y () TT g, (7)) T, (22) T, (), (A234)
51(5)(k1/—k1,k2/—k2;T1, ) = I, (1), (2) i, (7

)

N, (©2) — i, ()1, (7)1, (7)1, (72)
e

T
+Ti, (7)), (72) T, (72) T, (71) — i, ()T, (70) T, (22) T, (1), (A235)

Appendix G. Time-Dependent Two-Point Amplitude in OTOC

We define the following momentum integrated time-dependent amplitudes, which
are given by:

By(T,7): = /:_0 K2 dky Py (ki, —ky; T, 7)

= (—T)%_V(—T)%_V [Z((g(’q,rz) + ZE;;(Tl,Tz) - Zg;(ﬁ,’fz) - ZEig(’ﬁ,Tz)}, (A236)
By(T,7): = /le:O K2 dki Po(ki, —ki; T, 7)

= (—T)%_V(—T)%_V [Z((fg(rl,rz) + ZE;;(TLTQ) - Zg; (11, @) — Zg?('rl,rz)}, (A237)

where we have introduced the time-dependent four individual amplitudes, Z El.l)) (T,t)Vi=

1,2,3,4and Z Elz)) (T,T)Vi=1,2,3,4, which are given by the following expressions:
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(1) L ]
z0)(1,7) = / Bk fig (T)fi, (1), (A238)

Jr=0
70T T)Z/L K2 dky f*o (T)f 1, (T) (A239)
(2) ’ k=0 1 1 -k —kq 4
70T, 1) = /L K2 dky fie, (0) i (T) (A240)
(3) ’ . k=0 1 1 Jkq kg ’
70(T, ) = /L K2 dky Frr (T)f ok (T) (A241)
(4) 7 . k=0 1 1 —kq -k ’
7T, 1) == /L K2 dky T (T)TTE (7) (A242)
m(To)= f Kdk g (DI (7),
z(1,7) = / YRk T, (T (1) (A243)
(2) 4 k=0 1 1 =k -k 4
7T, 1) = /L K2 dky T, (0)TTL (T) (A244)
@0 = f o Kdk g (01 (T),
L

Z3(T,7) = /k R T (0T (T), (A245)

Y{(T,7) =

Y/ (T,7) = *Z%TQBz(TrT) = (-T2 (-0) 3 [1+ (-1)~ @] (23T, 1) - 2 (T, 7)).

which we are going to explicitly evaluate in this Appendix.
Now, before going on to evaluate the individual contributions from the symmetry
properties of the momentum-dependent amplitudes, we have derived the following results:

28(17) - (—1)—(2”“)283(1’,@, (A246)
Zéif(T/T) = (—1)—(2”“)283(:1“,7), (A247)
ng(TIT) = (—1)_(2”“)285(7’17), (A248)
ng(TIT) = (—1)*(2”“)28(7“%), (A249)

using which the simplified form of the momentum integrated time-dependent amplitudes
can be written as:

BuT,7): = (=T (=m) i [14 (=)~ @) (24)(T,7) - 23 (T, 7)), (A250)
BT, 1) = (=T)3"(=1)3 [1+(=1)" D] (7 (T, 7) - 745 (T, 7)) (A251)
Consequently, the desired two-point OTOCs can be computed in the present context

as:

fﬁrsl(r T) = (~T)2 (=12 14 (-1) "] (2 (T, 1) - 2(})(T, 7)), (A252)

®3) M

& (A253)

The expression for (Z 8 (T,t)—Z2 8; (T, T)) is given by the following;:
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A2 2
(20 - 2frm) = S
—T?(—iL(T — 7))®T (4 — 2v, —iL(T — 7)) — T?(iL(T — 7))*T(3 — 2v,iL(T — 1))
—T2(L(T — 7)) T (4 — 2v,iL(T — 7)) — T2(—iL(T — 7))*T(3 — 2v, —iL(T — 1))
—72(—iL(T — 7))*T(4 — 2v, —iL(T — 7)) — T(iL(T — 7))*T(3 — 2v,iL(T — 7))
—72(iL(T — 7))*T (4 — 2v,iL(T — 7)) + T(—=T)T(5 — 2v) (—iL(T — 7))*
+T(3 — 2v)(T — 1)? ((—z’L(T — 1)) + (iL(T — r))ZV)

HT(4 — 20)(T — 7)? ((—iL(T — )% + (iL(T — T))2V) — TTT(5 — 20) (iL(T — 7))%

L= <—T2(—iL(T —1))?I(3 —2v, —iL(T — 7))

+27T(—iL(T — 7))*T(3 — 2v, —iL(T — 7)) + 2tT(—iL(T — 7))*T(4 — 2v, —iL(T — 7))
+1T(—iL(T — 7))*T(5 — 2v, —iL(T — 7)) + 2tT(iL(T — 7))*T(3 — 2v,iL(T — 7))

+27T(iL(T — 7))*T(4 — 2v,iL(T — 7)) + TT(iL(T — 7))*'T(5 — 2v,iL(T — r))) : (A254)

Similarly, the expression for (Z 8; (T,7) — Zg)) (T, T)) can be found. Due to its length,

we are not proving the details of the result. During the numerical plots, the explicit details
have been taken care of. In addition, for massive fields one can obtain the above-mentioned
results for the two types of integrals by taking the analytic continuation from v to —i|v|.

Appendix H. Time-Dependent Four-Point Amplitudes in OTOC

We define the following momenta integrated time-dependent amplitudes for / = 1,2,
which are given by:

L L
10 (1, 1) 1= /k R dky / B k26 (ke e, ki, ), (A255)

1= ky

L L
Iz(l)(Tl,Tz) ::/k k% dkl/

1=0 ko=

Bk 261 (k1 T, —ka, ket 1, ), (A256)
L L

T, ) ::/k Ok%dkl/k Ok%dkzSél)(kl,kz,—kz,—kl;rl,rz), (A257)
1= 2=

0 L L ")

L)) = [ Rk [ Bk & (e, ~k, ko, T), (42589
1= 2=
L

IS(I)(Tl,Tz) ;:/];

1=

L L
Ié(l) (Tl,Tz) = /k 0 k% dk1 /k 0 k% dkz 51(? (kl,kz, *kz, *kl;Tl,Tz), (A260)
1= JK2=

L
Ok%dk1 /k 0k§dkzSl(é)(kl,kz,—kl,—kz;Tl,Tz), (A259)
-

L L
Iél) (Tl/TZ) = /]; Ok% dkl / -0 k% dkz 57(1) (klr _klrkZ/ _kZ/ T]/TZ)/ (A261)

1= ky

L "L
Iél)(Tl,Tz) = /k k% dkl/k

Jky=0 Jky=

L L

! 1

(1, ) == /k K dk /k Bk £l (ki —ki ko, —kaim,m).  (A263)
1= 2=

0 k% dk2 51%) (kl, *kl, kz, *kz; T, Tz), (A262)
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From the symmetry properties of the momentum-dependent amplitudes, we have
derived the following results for I = 1,2, which are given by:

~—

) (mw) = (DY (n,w)  with weight w; =2, (A264)
(t,m) = (12T (1, ) with weight ws =1, (A265)
() = () (nm) with weight ws =1, (A266)
Iél)(Tlsz) = (- 1)2V11(’)(T1,72) with weight ws =1, (A267)
V(m,m) = (1T (n,%) with weight ws = 1, (A268)
B'(mw) = () (nm) withweight wy =1, (A269)
Iél)(ﬁ,ﬁ) = (- 1)2V11(’)(T1,72) with weight wg =1, (A270)
Ig(l)(Tl,Tz) = (- 1)21/1'(1)(1 , )  with weight wg = 1. (A271)

The details of all of these regularised four-point integral computations are given in
the following subsections. These computations are useful to construct the final expression
for the cosmological OTOC.

Appendix H.1. Computation of Il(l) (11, ™) and Il(z) (11, @)

First of all, we evaluate the amplitude integral for [ = 1, which is given by

o
(—1*

)1721/ 4

Y x(T,7),

i=1

() oo [ 2 o)
7V(T,7) = / K2k, / Bk (ky, kp, —ko, —kp; T, T) =
k=0 ky=0
(A272)

where we define four time-dependent functions, Xl.(l)’1 (T, T)V i =1,2,3,4, which are

given by the following expressions:

(A2 + BZ)T2L572V
5—-2v

ni_ 1, (A% + B?)L3~2%

1 32 3-2v

AB2Z73(iT)2 1T (4 —2v) —
T2

— AB22V73(—iT)?=3(T(3 — 2v) — T(3 — 2v, —2iLT))

iAB2?V=3(—iT)?(I'(4 — 2v) — T'(4 — 2v, —2iLT)) )

T'(4—2v,2iLT))

+AB22 T2 (—iT)?2>(I'(5 — 2v) — ['(5 — 2v, —2iLT)) +

+AB22'ST2(iT)?~3(I'(5 — 2v) — I'(5 — 2, 2iLT))

—AB2273(iT)?3(I(3 — 2v) — T'(3 — 2, 2iLT)) +

T3
5 32(A*+B*)LT* | 32(A%+B*)L®  iAB4"™(—iLT)*T (3 —2v,—2iLT)
5—2v 3-2v T3
 iAB4"T(—iLT)*T(4 —2v,—2iLT)  iAB4"(—iLT)*T(5 —2v, —2iLT)

T3 B T3
N iAB4V+1(iLT)?'T (3 — 2v,2iLT) N iAB4YFT1(iLT)?T'(4 — 2v,2iLT)

T3 T3
v (Z'LT)ZV) )

1AB4V(1LT)2VF(5 20,2iLT) | IAB4(2v —7)I(5 —2v) ((—iLT)

3 (2v —3)T3 (A273)
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X(l),l _ <7L2) — BZ(F(?’ —2v) —T(8—2v,—iL(T — 1)) (=iL(T — T))ZV B2(T+7) (T (4—2v) T (4—2v,—iL(T—1))) (—iL(T—1))%
2 (T—1)3 + Tt

N B2Tt(I'(5—2v) —T(5 - 2v, —iL(T — 1)))(—iL(T — 7))% N AB(iL(T 4+ 7))?(T(3 — 2v) — T (3 — 2v,iL(T + 1)))

(T—7) (T+1)
A2(iL(T — 7)) 1(T(4 — 2v) —T(4 — 2v,iL(T — 7)))  AB(T — T)(iL(T + 1)) (I'(4 — 2v) — T'(4 — 2v,iL(T 4+ 1)))
* (T—1)f " (T+1)f
A’T(iL(T —1))®*t(T(5-2v) = T(5 - 2v,iL(T — 1))  A%(iL(T —1))*(I'(3 —2v) — (3 — 2v,iL(T — 7)))
" (T—1p B (T
_ A2T(L(T-1))? (E 2>Lr4 20,iL(T—1))) AE(—iL(TJrT))ZV(F((ST—EL';S—F(S—ZV,—I'L(T+1)))
_ AB(—iL(T +1))*(T(4 —2v) —T(4 —2v,—iL(T +1)))  ABTT(—iL(T + 1))*(T(5 — 2v) — I(5 — 2v, —iL(T + 1))
(T+7)3 (T+ 1)
o ABTT(iL(T + T))ZV(T(S —2v) —I'(5 —2v,iL(T + T)))) (AZ(I‘(SZV)l'(32v/iL(T-r)))(iL(TT))ZV
(T+1)5 (T-7)3
A2(T(4—2v) =T (4 —2v, —iL(T — 7)) (—iL(T — 7))%  A?2Tt(T(5-2v) —T(5 —2v, —iL(T — 7)))(—iL(T — 7))%
* (T2 B (T
N B2(iL(T — 7))?(I'(3 — 2v) — (3 — 2v,iL(T — 1))) N AB(L(T +71))?(T(3 — 2v) — T'(3 — 2v,iL(T + 1)))
(t—T)3 (T+1)3
+B (iL(T — 7))*7(T(4 — 2v) —T(4 — 2v,iL(T — 1))) n ABT(iL(T +7))®(T'(4 — 2v) — T(4 — 2v,iL(T + 1)))
(T—1)4 (T+7)*
ABT(iL(T+71))?*(T(4—2v) = T(4 - 2v,iL(T +7))) = B*T(L(T —7))*7(T(5—-2v) —T(5—2v,iL(T — 1)))
* T+ - TP
ABTT(iL(T +71))>(T(5—2v) —T(5 —2v,iL(T+1))) B2T(L(T — 7))?(T(4 —2v) — (4 — 2v,iL(T — 1)))
+ T+ - (T—1)"
_ AB(—iL(T +1))*(F(3—2v) —T(3 —2v,—iL(T +1))) ABT(—iL(T +1))*(I(4—2v) —T(4 —2v, —iL(T + 1)))
(T+71)3 (T+7)*

ABT(—iL(T + 7)) (T(4 —2v) —T(4 —2v, —iL(T 4+ 7)))  ABTt(—iL(T + 1)) (T(5 —2v) — (5 — 2v, —iL(T +1)))
- (T+7) - (T+1)° )' (A274)
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X(l)/l _ 7LL*2U AZLSTZ(_L)—ZV n (AZ + BZ)LS(_L)—ZV BZTZ(_L)5—21/ l'BZT(_L>4—2|/
3 32 5—2v 3-2v 5—2v v—-2
| AB2* ()2 (I (4 —2v) ~T(4—2v, ~2iL7)) | AB2*~(it)**}([(5 —2v) ~ [(5 —2v, ~2iL1))

T 4
+AB22 372 (—it)* 3 (I(5 — 2v) — ['(5 — 2v,2iL1)) + AB2%' 3 (it)>3(I'(3 — 2v) — ['(3 — 2v, —2iL7))
32(A2 4+ B?)L°T?  32(A%+B?)L3 N iAB4Y(2v — 7)I'(5 — 2v) ((—iLT)® — (iLT)?)

+AB22 73 (—it)*3(T(3 — 2v) — T(3 — 2, 2iLT))) (

5—2v 3-2v (2v—3)T3
_iAB4"*1(<iLT)T(3 — 2v,~2iLT) _ iAB4"*(~iLT)*T(4 — 2v,~2iLT)
T3 T3
_ iAB4"(7iLT)Zv;*3(5 —2v,—2iLT) X iAB4+! (iLT)2;£(3 —2v,2iLT) N iAB4V+1(iLT):;T(4—21/,2iLT) N iAB4'/(iLT)Z;é"(S—Zv,ZiLT) ) ) (A275)
0 _ 2y [ BTG =20) ~ T(3 = 2v, —iL(T = D)) (<iL(T = 1)) BT([(4=2v) — T(4 = 2v, ~iL(T = 1))(=iL(T = 1))*
=) < T=p + T=)
 BPr(T(4—2v) = T(4 — 2v, —iL(T — 1)) (=iL(T = 7)* _ BATT(I(5—2v) — (5 — 2v, —iL(T — 7)) (—iL(T — 7))*
(T—1)* (T—7)°
A2(L(T — 1)) (T3 — 2v) = T(3 — 2v,iL(T — 7)) = AB(L(T +7))?([(3 — 2v) — I(3 — 2v,iL(T + 7)))
+ c_Tp + T+rp
A2(iL(T — 7)) 7(T(4 — 2v) — T(4 — 2v,iL(T — 7))  ABT(L(T 4 7))% (T(4 — 2v) — T(4 — 2, iL(T + 7)))
+ T3 + T+1)
ABT(L(T +7))?(T(4 — 2v) —=T(4 — 2v,iL(T +71)))  A?T(iL(T — 7))*7(T(5 —2v) — T'(5 — 2v,iL(T — 7)))
* T+07 * T—p
ABTT(L(T + 7)) (T(5 — 2v) — T(5 — 2v,iL(T + 7))  A2T(L(T — 7))*(T(4 — 2v) — T(4 — 2v,iL(T — 7)))
+ T+r)p - Ty
 AB(—iL(T+7))*(T(3 = 2v) ~T(3—2v,—iL(T+71)))  ABT(=iL(T +1))* (I (4 —2v) — (4 — 2v,—iL(T + 1))
(T+7)3 (T+7)*
_ ABT(—iL(T+7))*(T(4 —2v) —T(4 —2v, —iL(T + 7)))  ABTT(—iL(T +1))*(I(5 — 2v) — (5 — 2v, —iL(T + 1))) )
(T+7)* (T+7)°
A%(T(3—2v) —T(3 —2v, —iL(T — 7)))(—iL(T — 7))  A2T(T(4—2v) —T(4 —2v, —iL(T — 7)))(—iL(T — 7))%
( (T—1p * T
| APT(T(4—2v) = T(d = 20, —iL(T — ) (—IL(T = )  ATe(T(5—2v) — T(5 — 20, —iL(T — 1)) (=iL(T — 7))*
(T—1)* (T—7)°
AB(L(T + 7)) (T3 — 2v) = [(3 — 20,iL(T + 7)))  B2(iL(T — 7))*t([(4 — 2v) — [(4 — 2v,iL(T — 7)))
+ T+7p + T— 1)
ABT(L(T + 7)) (T(4 — 2v) — T(4 — 20,iL(T +1))) . ABT(L(T + 7)) (T(4 — 2v) — (4 — 20,iL(T + 7))
+ (T+1)* + (T+1)4
BT(iL(T — ©))*t(T(5 — 2v) — T(5 — 2v,iL(T — 7))  ABTT(L(T +7))%(L(5 — 2v) — [(5 — 2v,iL(T + 7)))
* T—p + T+7p
BT — 1) (T3 —2v) ~T(3 - 20,iL(T—1)))  BT(L(T — 7))*(T(4 - 2v) — (4 — 2v,iL(T — 7))
T T
 AB(—iL(T+7)*(T(3—=2v) = T(3—2v,—iL(T+71)))  ABT(=iL(T +7))*(I(4—2v) — (4 —2v,—iL(T+1)))
(T+7)? (T+1)*
ABT(—iL(T+71)¥(T(4—2v) —T(4—2v, —iL(T+ 7 ABTT(—iL(T+1))2(T(5—-2v) =T(5—2v, —iL(T+ T
_ (—iL( N ( <(T+-Z)4 ( ( ) (—iL( N>( ((T+'r)>5 ( ( )))) (A276)

Here, we have introduced two factors, A and B, which are defined as:

3 3
el (2 ( ) e =" | (12 ()
A= exp| —i v+ = Cy, B= — exp|i< =(v+ = C,. A277
Ve ITE) RN EANRE VS VA N6 RN AN VA 2
For general Mota—Allen vacua, we choose C; = cosha, C; = exp(iy)sinha. Now
setting v = 0 and &« = 0 = <y, we get the constants for « vacua and Bunch-Davies vacuum.
Next, we evaluate the amplitude integral for [ = 2, which is given by:
L L _T)3-2v(_p)3-2v 4
(T, 7) = /k Ok%dk1 /k Okgdbq@) (ky, ko, —ko, —ky; T,7) = 1) = 1() = ) Y x2(T, 1),
= )= i=1

(A278)
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where we define four time-dependent functions, X l.(z)’l (T,7)V i=1,2,3,4, which can be
analytically computable; but, due to the length of the expressions, we do not provide the
explicit details of the expressions here. The details have been used for the numerical plots.
For massive fields, one can obtain the above-mentioned results for the two types of the
integrals by taking the analytic continuation from v to —i|v|.

Appendix H.2. Computation of Iz(l) (11, ™) and IZ(Z) (11, @)
In this context, we have to evaluate the following integral for [ = 1, which is given by:

L L 4
(T, 7) = /k Okﬁdkl /k Ok%dkzé’l(;)(kl,kz, —ky, —kg; T,7) = (-T)" 2 ()2 Y xV2(1,0),  (A279)
1= Jhy= i=1
where we define four time-dependent functions, Xi(l)’z(T, T)V i =1,2,3,4, which are
given by the following expressions:

x(M2 _ xM1 x(D2_ xM1 xM2 _ y11 ym2 _ y(1)1, (A280)

Consequently, one can write:
4
(T, 7) = (-=T) 2 (=) Y xWA(T, 1) = (-1 Z(T, 7). (A281)
i=1

Next, we have to evaluate the following integral for [ = 2, which is given by:

L
(1,7 = |

L 4
2 _ _ 2),2
kl:ok%dkl /k Z:Okgdkzgf;(kl,kz, —ky,—k; T,7) = (-T)* 2 (—0)> 2 Y xP(T,1),  (A282)

i=1

where we define four time-dependent functions, Xl-(z)’z(T, T)V i =1,2,3,4, which are
given by the following expressions:

X2 = x@ D2 @2 x D2 @21 x 2 @1 (aog3)

Consequently, one can write:

4
(T, 1) = (- T)* 2 (—t)> 2 L XD, 1) = (-)* (T, 7). (A284)
i=1

Appendix H.3. Computation of 13(1) (11, T0) and Iéz) (11, 2)

In this context, we have to evaluate the following integral for [ = 1, which is given by:

L (_T)1721/(_T>172v

13
N X1, T),  (A285)

1=

(1,7 = |

k=

L
K2k, / BakreV (ky, ko, —ko, —ky; T, ) =
0 ko=0 i=1

where we define four time-dependent functions, Xl.(l)’B(T, T)V i =1,2,3,4, which are
given by the following expressions:

1)1
—x{U (A286)
Consequently, one can write:

7T)1_2V(7T)1_2V

70(T,7) = { CiE
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Next, we have to evaluate the following integral for I = 2, which is given by:

L (_T)372v(_r>372v

4
(—1)% )3 XZ-(Z)’3(T, T), (A288)

i=1

(1,7 = |

k=

L
Ok%dkl /k Okgdkzgéz)(kl,kz, —ko, —ky; T, 7) =
—

where we define four time-dependent functions, sz)’B(T, T)V i =1,2,3,4, which are
given by the following expressions:

23 _ xP1 (A289)

Consequently, one can write:

4
> XP¥(T, 1) = (-1)PT(T ). (A290)
i=1

Appendix H.4. Computation ofIil) (11, ©2) and Iiz) (11, )

In this context, we have to evaluate the following integral for | = 1, which is given by:

(_T)172V(_T)172v
(1%

L L 4
IV = [ Rk [ Bkl ko, —ki, —kei T, 7) = Y xW4T,T), (a2
= = i=1

where we define four time-dependent functions, Xl.(l) ’4(T, T)V i =1,2,3,4, which are
given by the following expressions:

1)4 DA 1),4 1)1 1)4 1 1),4 A1
x4 = x D x DA x (D1 x4 _ W1 DA x D3 (a292)
Consequently, one can write:
-T 1-2v T 1-2v 4 ;
(T, 7) = (=T) (_1()2V ) x0T, ) = (—1)2 2 (T, 7). (A293)
i=1

Next, we have to evaluate the following integral for I = 2, which is given by:

(—T)3_2V(—T)3_2V
(1%

(2) L L, (2) 2 )4
7,7(T, 1) = /k Ok1dk1 /k Okzdk257 (k1, ko, —kq, —ko; T, 7) = Y X 7H(T, 1), (A294)
= o= i=1
where we define four time-dependent functions, Xia)’4
given by the following expressions:

(T,7)V i =1,2,3,4, which are

4

X@4 — x@1 x@4 _ x@1 x@4 _ x@1 x4 _ y(2)1, (A295)

Consequently, one can write:

(—T)3_2V(—T)3_2V
(1=

4
Y xP4(T,7) = (-1 2P(T, 7). (A296)
i=1

7T, 7) =

Appendix H.5. Computation ofI5(1) (71, ) and I5(2) (11, ™)
In this context, we have to evaluate the following integral for I = 1, which is given by:

(_T)kz%_r)lfzu
1%

Yy xV(1,1),  (A297)

(1) Y L L . _
(T, 1) = K2dk, KBdka(Y) (1, ko, =K1, —1ep; T, 7) =
klIO k2:O i=1
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where we define four time-dependent functions, Xi(l)’S(T, T)V i =1,2,3,4, which are
given by the following expressions:

5 _ x5 _ (D1 ()5 _ 5

( D1 (15 (1)1
x5 S, XS (D1 x5 — x (U1 (A298)

x{V

Consequently, one can write:

(T, 7) = ( xWA(1,7) = (-1)2zV(T, 7). (A299)

—T)1_2V(—T)1_2V 4
(71)21/ =

1

Next, we have to evaluate the following integral for [ = 2, which is given by:

<_T)3(iul();)“v ixfz)'S(Tf ), (A300)
i=1

L L
1(1,7) = / K2k, /k

k] =0 =

KBdk£2) (k1,1 k1, —kp; T, T) =
0

where we define four time-dependent functions, Xl.(z)’S(T, T)V i =1,2,3,4, which are
given by the following expressions:

(2),5

X§z),5 _ Xf)’l, x5 — Xéz)’l, Xéz),s _ X?()Z),ll Xiz)'S _ Xf“. (A301)

Consequently, one can write:

(_T)3721/(_T)3721/
(1

(T, 7) = i X231, 1) = (-1)*7(1, 7). (A302)

Appendix H.6. Computation ofIé(l) (11, ) and 16(2) (11, )

In this context, we have to evaluate the following integral for [ = 1, which is given by:

L L -T 1-2v/_ \1-2v 4
(T, 7) = /k 1:0k%dk1 /k Fokgdkzeﬁ>(k1,k2,—kz, kT, = S0 - 1()2f) ;X(l)'6(T,T), (A303)

i
where we define four time-dependent functions, Xl-(l) /6(T, T)V i =1,2,3,4, which are
given by the following expressions:
W6 x(M1 1)6 _ (D)1 (1)6 _ 5 ()1 5(1)6 _ 5 (1)1
X; = X7, X=X, Xy =X, Xy =X (A304)
Consequently, one can write:

_T)172v(_T)1721/
17

4
Y xW8(T, 1) = (=12 Z(T, ). (A305)
i=1

70(1,7) =

In this context, we have to evaluate the following integral for | = 2, which is given by:

(_T)B—Zv (_7)3—21/
17

@) Lo b ) SIOY
7(T,7) = /k Rk /k ko€l (k1 ke, —lea, ko T, ) = Y xP(T, 1), (A306)
= 2= i=1

where we define four time-dependent functions, Xi(z)’é(T, )V i =1,2,3,4, which are
given by the following expressions:

2),6 2),1 2),6 2)1 2),6 2)1 2),6 2),1
xPe = x@1 x2e _ x D1 @6 x@1 5 @6 _ x21 - (A307)
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Consequently, one can write:

(_ T)372v(_7__)372v
(1P

4
7(T,7) = Y XPNT, ) = (-0 (Tr). (A308)
i=1

Appendix H.7. Computation offél) (11, ) and I;z) (11, )

In this context, we have to evaluate the following integral for | = 1, which is given by:

L
V(1,7 = |

L
Kk, / Rako eV (ky, —ky, ko, —ko; T, T) =
k=0 ky=0

4
Y. xW(T,7),  (A309)
i=1

where we define four time-dependent functions, Xl-(l)’7(T, T)V i =1,2,3,4, which are
given by the following expressions:

X§1)’7 _ X%l)’l, Xél)y _ Xél)’l, Xél)y _ Xél),ll Xil)] _ Xil),l. (A310)
Consequently, one can write:
-T 1-2v T 1-2v 4
70(1,7) = { )(_1()2V ) ;XZ.“)’(T,T) = (—)*2(T, 7). (A311)

Next, we have to evaluate the following integral for I = 2, which is given by:

L L -T 3-2v T 3-2v 4
0 = [ Bk [ Bikee (ke ke T,T) = (=T) (_1()2V) Y xP7(10),  (As1)
- - i=1

()7

i

where we define four time-dependent functions, X
given by the following expressions:

(T,7)V i =1,2,3,4, which are

X@7 — x@1 x@7 _ x@1 x@7 _ x@1 5@ _ g1, (A313)

Consequently, one can write:

—T)3_2V(—T)3_2V

4
1) Y XP7(T,7) = (~1222(T, 7). (A314)

i=1

(1,7 = ¢

Appendix H.8. Computation ofl'él) (11, T2) and Iéz) (11, 12)
In this context, we have to evaluate the following integral for [ = 1, which is given by:

(_T)l—Zv(_T)l—Zv
(1%

4
Y xW¥(T,r)  (A315)

L L
(T, 7) = / Kdky / BakEV (ky, —kyp, Ky, —ko; T, 7) =
Jk1=0 k=0 =

where we define four time-dependent functions, Xl.(l)’S(T, T)V i =1,2,3,4, which are
given by the following expressions:

X;l),B X§1>’1, Xél)’8 _ Xél)'l, Xél)'g _ Xél),l’ Xil),S _ Xil),l. (A316)

Consequently, one can write:

_T>172v(_7)172u 4

(T, 7) = ( CiE ;Xfl)'S(T, ) = (-1)*2(T, 7). (A317)
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Next, we have to evaluate the following integral for I = 2, which is given by:

(_T)szv(_T)Sfmx
(_1)21/

(2) k L (2) 4 (2),8
I (T, 7) = /k k%dklfk ladko &1y (K1, —k1, ko, —ko; T, T) = Y X 7T, ) (A318)
1=0 2=0 i=1

where we define four time-dependent functions, sz)’S(T, T)V i =1,2,3,4, which are
given by the following expressions:

X(Z),S _ X(l)'l, X£2),8 _ Xél),ll X§2)'8 _ Xél),l, X(Z),S _ X(l)'l. (A319)

Consequently, one can write:

(1,7 = | XPHT, 1) = (-)¥TP(T, 0. (A320)

—T)3_2V(—T)3_2" 4
(_1 )ZV i=1
Appendix H.9. Computation of 19(1) (11, ™) and 19(2) (11, @)
In this context, we have to evaluate the following integral for [ = 1, which is given by:

k L )2 _p)1-2v 4
19<1>(T,r):/ Ok%ikl/:Okgdkzgﬁ)(kl,_kl,kz,_kz;T,T):( )" (=1)

k= ks (-1 :

xMr, ) (A321)
1

where we define four time-dependent functions, Xi(l)’g(T, T)V i =1,2,3,4, which are
given by the following expressions:
Xgl),9

19 _ Xél),ll Xél),9 _ Xél),l’ (19 _ Xf)’l. (A322)

—  xl
= X 4

Consequently, one can write:

—T)l_ZV(—T)l_ZV

4
1) Y xW(1,7) = (12 2(T, ). (A323)

i=1

7 (1,7) = |

In this context, we have to evaluate the following integral for [ = 1, which is given by:

xV(T, 1) (A324)

L L T 1-2v T 1-2v 4
(T, 7) = / Kk / 7Ok%dk251q)(k1,—k1,k2,—kz;T,T) _ =D (D)
= =1

ky= ky (=1 i

where we define four time-dependent functions, Xi(l)’g(T, T)V i =1,2,3,4, which are
given by the following expressions:

D1 (1)9

x{D2 = x (D1 x (DO _ x (W1 50O _ x (D1

xV? = x|

1 (A325)

Consequently, one can write:

_T>172v(_7)172v 4

70(1,7) = { CiE ;xi“)'%nr) = (-1)2z(T, 7). (A326)
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Appendix I. Computation of the Normalisation Factor in Four-Point OTOC
Appendix 1.1. Normalisation Factor of Four-Point OTOC Computed from Rescaled Field Variable

Further, our objective is to compute the normalisation factors of two OTOCs computed
from the rescaled field variable f and its conjugate momentum I1, which are given by the
following expressions:

Nf i = - 1 - -
) = e s P f )l

f ._ 1

M2 (0 ) = G i () i) (4329)

(A327)

for this we need to explicitly evaluate the denominator of the above-mentioned expressions.
Now, the product of the two thermal two-point functions for general Mota—Allen
vacua are evaluated as:

G fas = 7y B )] o aa)
(()11(7))p = zv(lﬁ)T P ) )] (A330)

where the thermal partition function for cosmology computed for Mota—Allen vacua can
be expressed as:

Zany (B i) = exp(—2sin ytana) exp ( (1 + ;53(0)> /d3k In (z sinh W)) Vi=1,2 (A331)

| cosh

Next, we compute the expressions for the numerators with respect to the general Mota—
Allen vacua, which are given by:

Te[e A fx, 1) flx m) |

(e,7)
_ exp(—2sinytana) i . Ak
Tcosha] /d‘I’BD <‘PBD{exp(2 exp(iy) tanh o /W Ay, A1,

exp (= [ i (sl + 36°0) ) Ee(m) )

3 3
/ (1127-1;33 / (11271:)43 exp((k3 + k4).X) [fks (Tl )fk4 (Tl) M1, + fjk3 (Tl )fk4 (Tl) atk3ak4

+fies (1) 1, (1) 10T 4, + Fro (1) o4, (1) “tkg,“th]
eXP<—éeXP( 7)tanha / (‘; k>23 at.a kz)}wg,ﬁ (A332)

Now, we will explicitly compute the individual contributions, which are given by:

Phy
_*eXp —l’)/ tanhﬂ( /W akzﬂk2>|TBD>

"
LS

( exp(—z’y)tanha) (/ é k)23 1+<2 kz) [¥Bp) = exp(—;exp(—i'y) tanh o ) |[¥Bp), (A333)

43k
(‘-I’BDexp( exp(iy) tanh /(271)23511(2@2)

d3k2 1. ¥

= {exp(—;exp(—i'y)tanha/(z E k2“k2>|‘FBD>] ‘I’BDexp< exp(zy)tanhuc) (A334)

and we have used the following sets of useful results:
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/d‘f'BD (YeD| eXP(ﬁ/d3k (ﬂﬁﬂk + ;53(0)>Ek(Tl))ak3ak4|TBD> =0, (A335)

/ d¥5p (¥5p|exp (—,B / Pl (aﬂak + ;53(o)> Ek(ﬁ)) at i 71, ¥BD)

— (27) exp (— <1 + ;53(0)> / £k In (2 sinh ﬁEkz(Tl)» (ks +ky), (A336)
[ un (tunlexp( 6 [ £k (ko 30°0) ) Eulm) ) o'y, [¥o)

— (21)3exp (— <1 v ;53(o)> / Pk In (2 sinh ﬁEkz(Tl))) (ks + ky), (A337)
/ d¥sp (Yep| exp (—/3 / Pk <altak + ;53(0)> Ek('q)) a1 4, [Fap) = 0. (A338)

Consequently, we can simplify the final result of the previously mentioned trace as
given by the following expressions:

{ —BH(1y f(x,Tl)f(x’Tl)}(a,“r)

3 3
= Zus () [ T [ s @08 e k) [ () () + £ () (1)

Gy
_ w For (), (A339)
Tl P fx ) o) |
3 3
= Zus(B) [ T [ G @8 e k) [f () () + £ () ()
_ ZunBi) pam) () (A340)

T2

where we define regularised time-dependent functions ]-'1(“’7) (11) and .7-"1(“’7) (1) as:

A / ks 1 |fi (1),
_iAB 2 [32(A2 + B?) B L27? N 1 N (2v = 7)T(5 —2v) ((—iL1y)* — (iL1y)?")
C 37 iAB " \5-2v " 3-2v (2v - 3)

+(iL‘L'1)2V {4T (3 —2v,2iLty) + ' (5 —2v,2iL1y) +4I'(4 — 2v,2iL7Ty)}
—(—iL1 ¥ {4T(3 — 2v,2iL7y) + T(5 — 2v, —2iL1; ) + 4T (4 — 2, —2iLTl)}} ) (A341)

Here, the constants A and B are, in general, dependent on the mass parameter v and
the vacuum parameters « and <y for the Mota—Allen vacua. Replacing 7 with 1, one can
write down the expression for ]-"1(“’7) (12).

Similarly, following the same logical arguments one can show that:
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Tr {e—ﬁﬁ(mﬁ(x, )I(x, Tl)}
(a7)

- 3 3
= Zua(B) [ s [ Tt (208 (o ) [T ()T, (1) + 11 (51 g ()

ZM(rB 7) ]_—(M)( ),

3 (A342)
7T
Tr [e—ﬁH<fz>ﬂ(x, )(x, Tz)}( )
a7y
3 3
= 2u(pr) [ Gy [ s (28 ki) [T ()1 (1) + Ty (1) (1)
_ Za(rlj;’fz) F (1), (A343)

where we define regularised time-dependent functions ]-'2(“'7) (71) and .7-"2(“’7) (1) as:

Fo) (¢ / dks K [Ty, (1) 2,
1 .
= — L% |—id" "M ABGT (~2v, —2iL7 ) (—iL1y)* + 223 ABivyiT (—2v, —2iL7y ) (—iL7)*
T4t 1 1
1

F2 T ABIV2 T (—2(v + 1), —2iL7y ) (—ilmy)® + 22 B ABIGT(—2(v + 1), —2iL7y ) (—iLt )%

—i22 PP ABUGT(—2(v + 1), —2iL7 ) (—ilty)® + 22 B ABi(1 — 2v)2 BT (—2v — 3, —2iL1y ) (—iL7)?"

F22 B ABIV T (—2v — 1, —2iL1y ) (—il1 )% — 3i2* TP ABGT(—2v — 1, —2iL 7y ) (—iL7)?"

422 B ABivET(—2v — 1, =2iL7y ) (—iL1)? + 22TV ABIiTIT (1 — 2v, —2iL7 ) (—iL7)?
LN g 2]

+

1, [rf [402(2A2 4+ B?) + B2(4v — 3) —5A?]  Blin[dv(v—1)+1]
1

4t L(2v+1) L2(v+1)

+4v T ABIT? (7(—1’L'rl) —13(iLn)% + 4° ((—iLTl)ZV + 7(1’L11)2V)

+v (9(iLT1)2" - 25(—1’LT1)2") 12 (68(1’LT1)2" - 28(—iLT1)2”))F(—2v —3)

—i22 P ABVA T (il 1) ? T (—2v — 3,2iL1y) — 2" T3 ABT} (iL 1) T (—2v — 3,2iL 7))
4225 ABivt) (il )2 T (—2v — 3,2iL7y ) + 223 ABiv?T (il ) T (—2v — 1,2iL7y)
+5 22+ ABiT] (il )T (—2v — 1,2iL1y) — 3122 3 ABv73 (il )*'T(—2v — 1,2iLTy)

, . , 4(A%+BY)[v(1 —v) —1]
_in2u+1 3 2v _ A344
22 ABT (iL)™'T(1 — 2v,2iLTy) + (20 1 3) , (A344)
Replacing 11 with 1, one can write down the expression for ]:2(“’7) (2).
Then, we have found the following expression:
F@)fm)p = e[ PO fom) fxm)] = 7 () (A345)
Zun (i) ’ e T ’
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20\ 7 1 ) 7 ? _ 1

(@i (@) = 7y Bl P wfem)] | = 57 (@) (A346)
(T(w)T1(71))p = Zay(l,B;’LH)Tr [e—ﬁmﬁ)ﬁ(x, )I(x, rl)] = %}'2(“’7)(71), (A347)
(T1(02)T(12)) p = MT M ) )| = = LA (@), (A348)

Consequently, the normalisation factors of the previously defined two types of auto-
correlated OTO functions for the rescaled field variable and its canonically conjugate
momenta operators can be computed as:

Moo = - i ) A349
) = S F s @@y Az Dy
Nf _ 1 _ %
5 (11, ) = = . (A350)

(L)) p (M) () g FL) (1) L (1)

For further computation, we frequently drop the exponent («,7) as appearing in the
normalisation factors. Therefore, in this simple notation, one can write:

f _ us
Nl (Tl, TZ) - fl(Tl)fl(Tz) ’ (A351)
4
N (1, 1) = 4 (A352)

Appendix 1.2. Normalisation Factor of Four-Point OTOC Computed from Curvature Perturbation
Field Variable

Now, we are going to perform the similar computations when we express the nor-

malisation factors of the two types of the desired OTOCs written in terms of the scalar
curvature perturbation field variable and its canonical conjugate momenta:

1
((m)i(m))pll(n)(r2))p”

7 o 1
M (0 ) = T (T o) (0 () T () .

for this we need to explicitly evaluate the denominator of the above-mentioned expression.

Now, the product of the two thermal two-point functions written in terms of curvature
perturbation and its canonically conjugate momenta are evaluated for the generalised
Mota—Allen quantum vacua as:

NE(t, ) ==

(A353)

EEms = 5y Tl (a9

(M ()T (1)) g = sz(lﬁ}TZ)Tr I T ()] (A356)

where the thermal partition function for primordial cosmology in terms of curvature
perturbation field variable is computed for generalised Mota—Allen vacua and can be
expressed as:

exp(—2sin ytana) Z%D (B;T)

i =1,2. A357
| cosh «| vi=L (A357)

ZEW(,B,‘ T) =

Here, the thermal partition function for primordial cosmology in terms of the curvature
perturbation field variable is computed for the Bunch-Davies quantum vacuum as:
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2(r :
Z%D(ﬁ; T;) & exp (— (1 + ;53(0)> /d3k In (2 sinh W)) Vi=1,2. (A358)

Here, we define the conformal time-dependent energy dispersion relation in terms of
the curvature perturbation field variable and its canonically conjugate momenta as:

2
N TN , 1 d*z(7;) 1 dz(t) NIV
Big(n) s = |T§() +<k et G ) Py =12 (A359)
Consequently, we can simplify the final result of the previously mentioned trace in
terms of the curvature perturbation and its canonically conjugate momenta as given by the
following expression:
1) £ o5 Ziy (1)
7ﬁH(T1) — L4 s (06,’7)
Tr[e g(x,rl)g(x,rl)}(am ) (1), (A360)
1) £ o7 Zin(Bi2)
—pA(m) _ Zig(Bm) am
Tr[e g(x,rz)g(x,rz)}(m) A (1), (A361)
C(B-
AT - Zi(Bi2) )
BH(m) _ Zalpym2) B
Tr[e 1n§(x,rl)ng(x,rl)}(m) it 72 () (A362)
¢
_ap N N Z:(B; T
Tee ﬁH<Tz>né<x,rz)n€(x,rz>}(a) = %Iﬁm)(m (A363)
Then, we have found the following expressions for the thermal two-point functions:
CE)m)p = T PO m)im)] = g A (m), (A364)
Z5(B;m) @ 7?2 (n)
s s 1 () 2 s 1
T [,BAm) - = gla
(C(r)¢(m))p Zg(ﬁ;rl)Tr{e Q(X,Tl)é(X,Tl)La) 7'(27:2(T1)}—1 (1), (A365)
A A 1 q A - 1
= —pH(n) _ oyl
(I (r)1Iz (7)) p Zgﬁ(ﬁ;TZ)Tr[e Hg(x,rl)Hg(x,Tl)Lam nzzz(rl)fz (1), (A366)
A A 1 N 1
I (0)11; (1)) g = Tr[e PAITT, (x, 1)1 (x, = o F (). A367
(Ng(m)Mg(m))p = 2] lzom)] = s A () (A367)

This further implies that the connecting relations between the two-point thermal
correlation functions computed from the rescaled field variable and curvature perturbation
variable and their conjugate momenta are given by:

(f(r)f(m))p =22 (m){C(m)e(n))p (A368)
(f(e)f(n)p =22 () ({(r){(2))p, (A369)
(M(e)11(1)) g = 2°(1) (g (1)1 (1)) g, (A370)
(M(w2)11(12))p = 2°(2) (Mg (1) 1T (12) ) (A371)

Consequently, the normalisation factors of the two desired auto-correlated OTOs for
the curvature perturbation variable and in terms of the canonically conjugate momenta can
be finally computed as:
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ng(Tl,Tz) =

Ni(t,m) =

1 @) oo
Cem)p ey 7o () 7o (1) z°(n)z° ()N} (1, @), (A372)
] 1 B 2% (1) 7% (1) _ Zz(Tl)ZZ(Tz)N;(TLTZ)- (A373)

(M1 ()T (1)) p (Mg ()T (0))p  FSD (1) FLo) (1)

Appendix J. Computation of the Normalisation Factor in Classical Limit of
Four-Point OTOC

Appendix ].1. Normalisation Factor of the Classical Version of Four-Point OTOC Computed from
Rescaled Field Variable

Further, our aim is to compute the normalisation factor of the classical version of OTOC
computed from the rescaled field variable f, which is given by the following expression:

f — 1
Mietasicn (7172 3= 7 ] T .
le,Classical(Tl’Tz) = ! (A375)

(f(r)f(m)) p (T2l 1(12)) 5

for this we need to explicitly evaluate the denominators of the above-mentioned expres-
sions. In the classical limiting case there is no physical notion of vacuum state that exists
using which we can take the thermal average over a statistical ensemble. To avoid such
confusion in the classical case, the commutator brackets are replaced by the usual Pois-
son brackets and the thermal tracing operation to find the OTOC will be replaced by the
DfDI1
2

Now, the two thermal two-point functions in the classical limiting case are evaluated

in terms of the phase-space averaged Poisson brackets as:

//DfDH ~PH() {f(x,m), f(x,71)}pg, (A376)
DfDII

phase-space measure over which we have to perform the average at the end.

<f(Tl)f(T1)>ﬁ ZClassmal :B Tl

<f(T2)f(T2)>'B ZClassmal ,B Tl //
(M1(e)T1())p = E= o1, g {06 1), 100 T) e, (AS78)

“PH®If(x, 1), f(x,T2) }pp, (A377)

ZClassmal ,B Tl

(I(2)1(12))p =

DfDH _BH(m)
ZClassmal ,B T2 // {H(X Tz) (X’TZ>}PB' (A379)

where the thermal partition function for cosmology in the classical limit is computed as:

Zctassical (B T7) = exp<— JE (2 sinh 5E‘<2(T’))> V=12 (A380)
Now, we compute the Poission brackets as:
oo foomlen = [ sk [ R explitia + ka)o) Uiy (1), (1)
- "gln(f) /k f_o KRk, = 6%w1(0), (A381)
o) fomlm = [ sk [ explitia + k) i (1) fie(2)
_ MO / f_o Ry — 6L—3w1(0) (A382)
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3 3
o) M mbey = [ Gk [ G explili + ko)) {Th (1), T (1)
_ “;2752) /k L:() Kk, = 6L—;w2(0), (A383)
3 3
(M6 w) o)) = [ (‘;‘)13 / (‘12:)23 exp(i(ki + k2)) {TTi, (12), T, (22) } o
3
_ “;27'53) /k f_o Kk, = 6%%(0). (A384)

Here, it is important to note that W1(0) # W3(0). Then, we have found the following
expression:

3
(Flr)fm)l = oy Wa(0) = (Flrf(m)ly (385)
M)} = 5 Wa(0) = (1) TI(m2)p (386

Consequently, the normalisation factors of the classical limit of the two types of desired
OTOCs for the rescaled field variable and its associated canonical conjugate momenta can
be computed as:

3674 3674
M classical (T 72) = = (A387)
y ’ 62 1) ’
L wl (0) L6G§(ernel(0)
3674 367t
N{Classica](Tl ) = = (A388)
s ’ 62 2 ’
L WZ(O) Lécg(zrnel(o)

which further implies, le Classical (T1/ T2) # sz Classical (T1, T2). Now, considering the ex-
amples of non-Gaussian coloured noise and Gaussian white noise, we get the following
simplified results for the normalisation factors in the classical limit:

3677 :
N{Classical(Tl’Tz) = L6A1 ’ Coloured Noise (A389)
0 White Noise
367277 :
N Classicat (T 72) = L6A; Coloured Noise (A390)
0 White Noise

where for the non-Gaussian coloured noise we have, 71 # 72, A1 # As.

Appendix ].2. Normalisation Factor of the Classical Version of Four-Point OTOC Computed from
Curvature Perturbation Field Variable

Now, we are going to perform a similar type of computation where we express the
normalisation factors of the two types of the desired OTOCs in the classical limit written
in terms of the scalar curvature perturbation field variable and its canonically conjugate
momentum variable as:

7 . 1

Nl,Classical(Tll TZ) = <€(T1)€(Tl)>ﬁ<§(TZ)€(T2)>ﬁ’ (A391)
g — 1

Nz,Classical(Tll TZ) = <H€(T1)Hg(’ﬁ»‘g<Hg(T2)H§(T2)>ﬁI (A392)
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for this, we need to explicitly evaluate the denominators of the above-mentioned expres-
sions.

Now, the product of the two thermal two-point functions written in terms of curvature
perturbation and its canonically conjugate momenta are evaluated as:

(T2 = [ Rt L), L) b, (4399

D fDH

ZClassmal ,B Tl

<€(TZ)§(TZ)>‘B ZClassmal(,B TZ //
(I(T)TT(71))p = / / bf DH “BH(®) (TT(x, 1), 11(x,71) }pp, (A395)

“PH()(7(x,12),{(x, ) }pg, (A394)

ZClassu:al ,B Tl

(M(m2)11(12))p =

DfDH _BH(1y)
ZClassmal ,B Tz // {H(x Tz) (X/ TZ)}PB, (A396)

where the thermal partition function for cosmology in the classical limit in terms of curva-
ture perturbation field variable can be computed as:

2(t\E .
Zglassical (‘3, Tl) =exp <_ /dgk In (2 sinh W)) Vi= 1/ 2/ (A397)

Here, we define the time-dependent energy dispersion relation in terms of the curva-
ture perturbation field variable and the its canonically conjugate momentum as:

Bug(m): = [f(m[ + <k2 - dz;gf) + (z(lm dzd(;f)f) G2V i=1,2 (A398)
Now, we compute the classical Poission brackets as:

{Cxm), {(x,m)}tpg = /(cil:)lg/ (f;; exp(i(ky + k2).x){Ci, (1), Ci, (T1) } ps (A399)

txm) i nlm = [ {2‘;3 / (‘f:)é exp(i(ls + k2) ) {iq (71), G (1) i (A400)

{T:060), I (x 1) }pg = / (‘;3:)13 / (‘123:)23 exp(i(ki + ko) x) { Iz, (), Iz, (72) s (A401)

(0, 0), (%) g = / (d;‘)lg / (‘;3:)2 exp(i(ly + k) X){ Tz (), Tz, (72) } g (A402)

Then, we have found the following expressions for the thermal two-point auto-
correlation functions:

3
CE)Em) = gy Wi(0) (A103)
3
CE@)m))s = g Wi(0) (Ad04)
3
(NI (40)p = gz W) (A405)
L?)

(g () (12))p = MTZ(Q)WZ(O) - (A406)
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This further implies that the following connecting relations between the two-point
thermal auto-correlation functions computed from the rescaled field variable and curvature
perturbation field variable and their conjugate momenta in the classical limit are given by:

(f(r)f(r))p =2*(m)(C(m)5(T1))ps (A407)
(f(n)f(12)p = 22 () {{(12)L(12))ps (A408)
(TH(t)TI(71)) g = 2% (1) (T (70) 1Tz (1)) s (A409)
(T(1)I(12)) g = 2°(12) (TTg (22) T (12)) (A410)

Consequently, the normalisation factors of auto-correlated OTO functions in the classi-
cal limit for the curvature perturbation variable and its canonically conjugate momenta can
be computed as:

1
Metwsion 1) = szt~ 7 i () —
1
A% ctassen (7172) = (0 (7)1 (1)) p (T ()T (72))p ()20 Nt (7172 (12
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