Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Authors = Sami Shaffiee Haghshenas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1862 KiB  
Article
Predicting Number of Vehicles Involved in Rural Crashes Using Learning Vector Quantization Algorithm
by Sina Shaffiee Haghshenas, Giuseppe Guido, Sami Shaffiee Haghshenas and Vittorio Astarita
AI 2024, 5(3), 1095-1110; https://doi.org/10.3390/ai5030054 - 8 Jul 2024
Cited by 3 | Viewed by 1700
Abstract
Roads represent very important infrastructure and play a significant role in economic, cultural, and social growth. Therefore, there is a critical need for many researchers to model crash injury severity in order to study how safe roads are. When measuring the cost of [...] Read more.
Roads represent very important infrastructure and play a significant role in economic, cultural, and social growth. Therefore, there is a critical need for many researchers to model crash injury severity in order to study how safe roads are. When measuring the cost of crashes, the severity of the crash is a critical criterion, and it is classified into various categories. The number of vehicles involved in the crash (NVIC) is a crucial factor in all of these categories. For this purpose, this research examines road safety and provides a prediction model for the number of vehicles involved in a crash. Specifically, learning vector quantization (LVQ 2.1), one of the sub-branches of artificial neural networks (ANNs), is used to build a classification model. The novelty of this study demonstrates LVQ 2.1’s efficacy in categorizing accident data and its ability to improve road safety strategies. The LVQ 2.1 algorithm is particularly suitable for classification tasks and works by adjusting prototype vectors to improve the classification performance. The research emphasizes how urgently better prediction algorithms are needed to handle issues related to road safety. In this study, a dataset of 564 crash records from rural roads in Calabria between 2017 and 2048, a region in southern Italy, was utilized. The study analyzed several key parameters, including daylight, the crash type, day of the week, location, speed limit, average speed, and annual average daily traffic, as input variables to predict the number of vehicles involved in rural crashes. The findings revealed that the “crash type” parameter had the most significant impact, whereas “location” had the least significant impact on the occurrence of rural crashes in the investigated areas. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

26 pages, 3317 KiB  
Article
Risk Reduction in Transportation Systems: The Role of Digital Twins According to a Bibliometric-Based Literature Review
by Vittorio Astarita, Giuseppe Guido, Sina Shaffiee Haghshenas and Sami Shaffiee Haghshenas
Sustainability 2024, 16(8), 3212; https://doi.org/10.3390/su16083212 - 11 Apr 2024
Cited by 28 | Viewed by 3129
Abstract
Urban areas, with their dense populations and complex infrastructures, are increasingly susceptible to various risks, including environmental challenges and infrastructural strain. This paper delves into the transformative potential of digital twins—virtual replicas of physical entities—for mitigating these risks. It specifically explores the role [...] Read more.
Urban areas, with their dense populations and complex infrastructures, are increasingly susceptible to various risks, including environmental challenges and infrastructural strain. This paper delves into the transformative potential of digital twins—virtual replicas of physical entities—for mitigating these risks. It specifically explores the role of digital twins in reducing disaster risks, such as those posed by earthquakes and floods, through a comprehensive bibliometric-based literature review. Digital twins could contribute to risk reduction by combining data analytics, simulation, and predictive modeling by creating virtual replicas of physical entities and integrating real-time data streams to better address and manage risks in urban environments. In detail, they can help city planners and decision-makers analyze complex urban systems, simulate potential scenarios, and predict potential outcomes. This proactive approach allows both the identification of vulnerabilities and better implementation of targeted mitigation strategies to enhance urban resilience and sustainability. More informed decisions can be made relying on simulations, and it can also be possible to optimize resource allocation and better respond to emerging challenges. This work reviews the key publications in this domain, with the aim of finding relevant papers that can be useful to urban planners and policy-makers. The paper concludes by discussing the broader implications of these findings and identifying challenges in the widespread adoption of digital twin technology, including data privacy concerns and the need for interdisciplinary collaboration. It also outlines prospective avenues for future research in this emerging field. Full article
(This article belongs to the Special Issue Advances in Urban Transport and Vehicle Routing)
Show Figures

Figure 1

16 pages, 2292 KiB  
Article
Application of Feature Selection Approaches for Prioritizing and Evaluating the Potential Factors for Safety Management in Transportation Systems
by Giuseppe Guido, Sami Shaffiee Haghshenas, Sina Shaffiee Haghshenas, Alessandro Vitale and Vittorio Astarita
Computers 2022, 11(10), 145; https://doi.org/10.3390/computers11100145 - 23 Sep 2022
Cited by 25 | Viewed by 2201
Abstract
Road safety assessment is one of the most important parts of road transport safety management. When road transportation networks are managed safely, they improve the quality of life for citizens and the economy as a whole. On the one hand, there are many [...] Read more.
Road safety assessment is one of the most important parts of road transport safety management. When road transportation networks are managed safely, they improve the quality of life for citizens and the economy as a whole. On the one hand, there are many factors that affect road safety. On the other hand, this issue is a dynamic problem, which means that it is always changing. So, there is a dire need for a thorough evaluation of road safety to deal with complex and uncertain problems. For this purpose, two machine learning methods called “feature selection algorithms” are used. These algorithms include a combination of artificial neural network (ANN) with the particle swarm optimization (PSO) algorithm and the differential evolution (DE) algorithm. In this study, two data sets with 202 and 564 accident cases from cities and rural areas in southern Italy are investigated and analyzed based on several factors that affect transportation safety, such as light conditions, weekday, type of accident, location, speed limit, average speed, and annual average daily traffic. When the performance and results of the two models were compared, the results showed that the two models made the same choices. In rural areas, the type of accident and the location were chosen as the highest and lowest priorities, respectively. According to the results, useful suggestions regarding the improvement of road safety on urban and rural roads were provided. The average speed and location were considered the highest and lowest priorities in urban areas, respectively. Finally, there was not a big difference between the results of the two algorithms in terms of how well the algorithm models worked, but the proposed PSO model converged more quickly than the proposed DE model. Full article
(This article belongs to the Special Issue Machine Learning for Traffic Modeling and Prediction)
Show Figures

Figure 1

17 pages, 992 KiB  
Article
Prioritizing the Potential Smartification Measures by Using an Integrated Decision Support System with Sustainable Development Goals (a Case Study in Southern Italy)
by Giuseppe Guido, Sina Shaffiee Haghshenas, Sami Shaffiee Haghshenas, Alessandro Vitale, Vincenzo Gallelli and Vittorio Astarita
Safety 2022, 8(2), 35; https://doi.org/10.3390/safety8020035 - 5 May 2022
Cited by 14 | Viewed by 3620
Abstract
With the increasing population of cities, expanding roads as one of the essential urban infrastructures is a necessary task; therefore, adverse effects such as increased fuel consumption, pollution, noise, and road accidents are inevitable. One of the most efficient ways to mitigate congestion-related [...] Read more.
With the increasing population of cities, expanding roads as one of the essential urban infrastructures is a necessary task; therefore, adverse effects such as increased fuel consumption, pollution, noise, and road accidents are inevitable. One of the most efficient ways to mitigate congestion-related adverse effects is to introduce effective intelligent transportation systems (ITS), using advanced technologies and mobile communication protocols to make roads smarter and reduce negative impacts such as improvement in fuel consumption and pollution, and reduction of road accidents, which leads to improving quality of life. Smart roads might play a growing role in the improved safety of road transportation networks. This study aims to evaluate and rank the potential smartification measures for the road network in Calabria, in southern Italy, with sustainable development goals. For this purpose, some potential smartification measures were selected. Experts in the field were consulted using an advanced procedure: four criteria were considered for evaluating these smartification measures. The Integrated fuzzy decision support system (FDSS), namely the fuzzy Delphi analytic hierarchy process (FDAHP) with the fuzzy technique for order performance by similarity to ideal solution (FTOPSIS) were used for evaluating and ranking the potential smartification measures. The results demonstrated that the repetition of signals in the vehicle has the highest rank, and photovoltaic systems spread along the road axis has the lowest rank to use as smartification measures in the roads of the case study. Full article
Show Figures

Figure 1

23 pages, 2196 KiB  
Article
Evaluation of Contributing Factors Affecting Number of Vehicles Involved in Crashes Using Machine Learning Techniques in Rural Roads of Cosenza, Italy
by Giuseppe Guido, Sina Shaffiee Haghshenas, Sami Shaffiee Haghshenas, Alessandro Vitale, Vittorio Astarita, Yongjin Park and Zong Woo Geem
Safety 2022, 8(2), 28; https://doi.org/10.3390/safety8020028 - 8 Apr 2022
Cited by 38 | Viewed by 5790
Abstract
The evaluation of road safety is a critical issue having to be conducted for successful safety management in road transport systems, whereas safety management is considered in road transportation systems as a challenging task according to the dynamic of this issue and the [...] Read more.
The evaluation of road safety is a critical issue having to be conducted for successful safety management in road transport systems, whereas safety management is considered in road transportation systems as a challenging task according to the dynamic of this issue and the presence of a large number of effective parameters on road safety. Therefore, the evaluation and analysis of important contributing factors affecting the number of vehicles involved in crashes play a key role in increasing the efficiency of road safety. For this purpose, in this research work, two machine learning algorithms, including the group method of data handling (GMDH)-type neural network and a combination of support vector machine (SVM) and the grasshopper optimization algorithm (GOA), are employed. Hence, the number of vehicles involved in an accident is considered to be the output, and the seven factors affecting transport safety, including Daylight (DL), Weekday (W), Type of accident (TA), Location (L), Speed limit (SL), Average speed (AS), and Annual average daily traffic (AADT) of rural roads in Cosenza, southern Italy, are selected as the inputs. In this study, 564 data sets from rural areas were investigated, and the relevant, effective parameters were measured. In the next stage, several models were developed to investigate the parameters affecting the safety management of road transportation in rural areas. The results obtained demonstrated that the “Type of accident” has the highest level and “Location” has the lowest importance in the investigated rural area. Finally, although the results of both algorithms were the same, the GOA-SVM model showed a better degree of accuracy and robustness than the GMDH model. Full article
Show Figures

Figure 1

12 pages, 1710 KiB  
Article
Application of Harmony Search Algorithm to Slope Stability Analysis
by Sina Shaffiee Haghshenas, Sami Shaffiee Haghshenas, Zong Woo Geem, Tae-Hyung Kim, Reza Mikaeil, Luigi Pugliese and Antonello Troncone
Land 2021, 10(11), 1250; https://doi.org/10.3390/land10111250 - 15 Nov 2021
Cited by 31 | Viewed by 3621
Abstract
Slope stability analysis is undoubtedly one of the most complex problems in geotechnical engineering and its study plays a paramount role in mitigating the risk associated with the occurrence of a landslide. This problem is commonly tackled by using limit equilibrium methods or [...] Read more.
Slope stability analysis is undoubtedly one of the most complex problems in geotechnical engineering and its study plays a paramount role in mitigating the risk associated with the occurrence of a landslide. This problem is commonly tackled by using limit equilibrium methods or advanced numerical techniques to assess the slope safety factor or, sometimes, even the displacement field of the slope. In this study, as an alternative approach, an attempt to assess the stability condition of homogeneous slopes was made using a machine learning (ML) technique. Specifically, a meta-heuristic algorithm (Harmony Search (HS) algorithm) and K-means algorithm were employed to perform a clustering analysis by considering two different classes, depending on whether a slope was unstable or stable. To achieve the purpose of this study, a database made up of 19 case studies with 6 model inputs including unit weight, intercept cohesion, angle of shearing resistance, slope angle, slope height and pore pressure ratio and one output (i.e., the slope safety factor) was established. Referring to this database, 17 out of 19 slopes were categorized correctly. Moreover, the obtained results showed that, referring to the considered database, the intercept cohesion was the most significant parameter in defining the class of each slope, whereas the unit weight had the smallest influence. Finally, the obtained results showed that the Harmony Search algorithm is an efficient approach for training K-means algorithms. Full article
Show Figures

Figure 1

18 pages, 4728 KiB  
Article
Sensitivity Analysis for Performance Evaluation of a Real Water Distribution System by a Pressure Driven Analysis Approach and Artificial Intelligence Method
by Attilio Fiorini Morosini, Sina Shaffiee Haghshenas, Sami Shaffiee Haghshenas, Doo Yong Choi and Zong Woo Geem
Water 2021, 13(8), 1116; https://doi.org/10.3390/w13081116 - 18 Apr 2021
Cited by 26 | Viewed by 4057
Abstract
Proper performance of water distribution networks (WDNs) plays a vital role in customer satisfaction. The aim of this study is to conduct a sensitivity analysis to evaluate the behavior of WDNs analyzed by a pressure-driven analysis (PDA) approach and the classification technique by [...] Read more.
Proper performance of water distribution networks (WDNs) plays a vital role in customer satisfaction. The aim of this study is to conduct a sensitivity analysis to evaluate the behavior of WDNs analyzed by a pressure-driven analysis (PDA) approach and the classification technique by using an appropriate artificial neural network, namely the Group Method of Data Handling (GMDH). For this purpose, this study is divided into four distinct steps. In the first and second steps, a real network has been analyzed by using a Pressure-Driven Analysis approach (PDA) to obtain the pressure, and α coefficient, the percentage of supplied flow. The analysis has been performed by using three different values of the design peak coefficient k*. In the third step, the Group Method of Data Handling (GMDH) has been applied and several binary models have been constructed. The analysis has been carried out by using input data, including the real topology of the network and the base demand necessary to satisfy requests of users in average conditions and by assuming that the demand in each single one-hour time step depends on a peak coefficient. Finally, the results obtained from the PDA hydraulic analysis and those obtained by using them in the GMDH algorithm have been compared and sensitivity analysis has been carried out. The innovation of the study is to demonstrate that the input parameters adopted in the design are correct. The analysis confirms that the GMDH algorithm gives proper results for this case study and the results are stable also when the value of each k*, characteristic of a different time hour step, varies in an admissible technical range. It was confirmed that the results obtained by using the PDA approach, analyzed by using a GMDH-type neural network, can provide higher performance sufficiency in the evaluation of WDNs. Full article
Show Figures

Figure 1

24 pages, 2187 KiB  
Article
Feasibility of Stochastic Models for Evaluation of Potential Factors for Safety: A Case Study in Southern Italy
by Giuseppe Guido, Sina Shaffiee Haghshenas, Sami Shaffiee Haghshenas, Alessandro Vitale, Vittorio Astarita and Ashkan Shafiee Haghshenas
Sustainability 2020, 12(18), 7541; https://doi.org/10.3390/su12187541 - 12 Sep 2020
Cited by 33 | Viewed by 2813
Abstract
There is no definite conclusion about what the main variables that play a fundamental role in road safety are. Therefore, the identification of significant factors in road accidents has been a primary concern of the transportation safety research community for many years. Every [...] Read more.
There is no definite conclusion about what the main variables that play a fundamental role in road safety are. Therefore, the identification of significant factors in road accidents has been a primary concern of the transportation safety research community for many years. Every accident is influenced by multiple variables that, in a given time interval, concur to cause a crash scenario. Information coming from crash reports is very useful in traffic safety research, and several reported crash variables can be analyzed with modern statistical methods to establish whether a classification or clustering of different crash variables is possible. Hence, this study aims to use stochastic techniques for evaluating the role of some variables in accidents with a clustering analysis. The variables that are considered in this paper are light conditions, weekday, average speed, annual average daily traffic, number of vehicles, and type of accident. For this purpose, a combination of particle swarm optimization (PSO) and the genetic algorithm (GA) with the k-means algorithm was used as the machine-learning technique to cluster and evaluate road safety data. According to a multiscale approach, based on a set of data from two years of crash records collected from rural and urban roads in the province of Cosenza, 154 accident cases were accurately investigated and selected for three categories of accident places, including straight, intersection, and other, in each urban and rural network. PSO had a superior performance, with 0.87% accuracy on urban and rural roads in comparison with GA, although the results of GA had an acceptable degree of accuracy. In addition, the results show that, on urban roads, social cost and type of accident had the most and least influence for all accident places, while, on rural roads, although the social cost was the most notable factor for all accident places, the type of accident had the least effect on the straight sections and curves, and the number of vehicles had the least influence at intersections. Full article
Show Figures

Figure 1

19 pages, 2809 KiB  
Article
Development of a Binary Classification Model to Assess Safety in Transportation Systems Using GMDH-Type Neural Network Algorithm
by Giuseppe Guido, Sina Shaffiee Haghshenas, Sami Shaffiee Haghshenas, Alessandro Vitale, Vincenzo Gallelli and Vittorio Astarita
Sustainability 2020, 12(17), 6735; https://doi.org/10.3390/su12176735 - 20 Aug 2020
Cited by 45 | Viewed by 4111
Abstract
Evaluating road safety is an enduring research topic in Infrastructure and Transportation Engineering. The prediction of crash risk is very important for avoiding other crashes and safeguarding road users. According to this task, awareness of the number of vehicles involved in an accident [...] Read more.
Evaluating road safety is an enduring research topic in Infrastructure and Transportation Engineering. The prediction of crash risk is very important for avoiding other crashes and safeguarding road users. According to this task, awareness of the number of vehicles involved in an accident contributes greatly to safety analysis, hence, it is necessary to predict it. In this study, the main aim is to develop a binary model for predicting the number of vehicles involved in an accident using Neural Networks and the Group Method of Data Handling (GMDH). For this purpose, 775 accident cases were accurately recorded and evaluated from the urban and rural areas of Cosenza in southern Italy and some notable parameters were considered as input data including Daylight, Weekday, Type of accident, Location, Speed limit and Average speed; and the number of vehicles involved in an accident was considered as output. In this study, 581 cases were selected randomly from the dataset to train and the rest were used to test the developed binary model. A confusion matrix and a Receiver Operating Characteristic curve were used to investigate the performance of the proposed model. According to the obtained results, the accuracy values of the prediction model were 83.5% and 85.7% for testing and training, respectively. Finally, it can be concluded that the developed binary model can be applied as a reliable tool for predicting the number of vehicles involved in an accident. Full article
Show Figures

Figure 1

21 pages, 3823 KiB  
Article
Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications
by Sina Shaffiee Haghshenas, Behrouz Pirouz, Sami Shaffiee Haghshenas, Behzad Pirouz, Patrizia Piro, Kyoung-Sae Na, Seo-Eun Cho and Zong Woo Geem
Int. J. Environ. Res. Public Health 2020, 17(10), 3730; https://doi.org/10.3390/ijerph17103730 - 25 May 2020
Cited by 49 | Viewed by 6321
Abstract
Nowadays, an infectious disease outbreak is considered one of the most destructive effects in the sustainable development process. The outbreak of new coronavirus (COVID-19) as an infectious disease showed that it has undesirable social, environmental, and economic impacts, and leads to serious challenges [...] Read more.
Nowadays, an infectious disease outbreak is considered one of the most destructive effects in the sustainable development process. The outbreak of new coronavirus (COVID-19) as an infectious disease showed that it has undesirable social, environmental, and economic impacts, and leads to serious challenges and threats. Additionally, investigating the prioritization parameters is of vital importance to reducing the negative impacts of this global crisis. Hence, the main aim of this study is to prioritize and analyze the role of certain environmental parameters. For this purpose, four cities in Italy were selected as a case study and some notable climate parameters—such as daily average temperature, relative humidity, wind speed—and an urban parameter, population density, were considered as input data set, with confirmed cases of COVID-19 being the output dataset. In this paper, two artificial intelligence techniques, including an artificial neural network (ANN) based on particle swarm optimization (PSO) algorithm and differential evolution (DE) algorithm, were used for prioritizing climate and urban parameters. The analysis is based on the feature selection process and then the obtained results from the proposed models compared to select the best one. Finally, the difference in cost function was about 0.0001 between the performances of the two models, hence, the two methods were not different in cost function, however, ANN-PSO was found to be better, because it reached to the desired precision level in lesser iterations than ANN-DE. In addition, the priority of two variables, urban parameter, and relative humidity, were the highest to predict the confirmed cases of COVID-19. Full article
Show Figures

Figure 1

15 pages, 3424 KiB  
Article
Development of a Binary Model for Evaluating Water Distribution Systems by a Pressure Driven Analysis (PDA) Approach
by Attilio Fiorini Morosini, Sina Shaffiee Haghshenas, Sami Shaffiee Haghshenas and Zong Woo Geem
Appl. Sci. 2020, 10(9), 3029; https://doi.org/10.3390/app10093029 - 26 Apr 2020
Cited by 19 | Viewed by 3188
Abstract
Investigation of Water Distribution Networks (WDNs) is considered a challenging task due to the unpredicted and uncertain conditions in water engineering. When in a WDN, a pipe failure occurs, and shut-off valves to isolate the broken pipe to allow repairing works are activated. [...] Read more.
Investigation of Water Distribution Networks (WDNs) is considered a challenging task due to the unpredicted and uncertain conditions in water engineering. When in a WDN, a pipe failure occurs, and shut-off valves to isolate the broken pipe to allow repairing works are activated. In these new conditions, the hydraulic parameters in the network are modified because the topology of the entire system changes. If the head becomes inadequate, the Pressure Driven Analysis (PDA) is the correct approach to evaluate the performance of water networks. Hence, in the present study, the water distribution system was evaluated in pressure-driven conditions for 100 different scenarios and then using a type of neural network called Group Method of Data Handling (GMDH) as a stochastic technique. For this purpose, several most notable parameters including the base demand, pressure, and alpha (the percentage of effective supplied flow) were calculated using simulations based on a PDA approach and applied to the water distribution network of Praia a Mare in Southern Italy. In the second stage, the output parameters were used in a developed binary classification model. Finally, the obtained results showed that the GMDH algorithm can be applied as a powerful tool for modeling water distribution networks. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 3794 KiB  
Article
Development of an Assessment Method for Investigating the Impact of Climate and Urban Parameters in Confirmed Cases of COVID-19: A New Challenge in Sustainable Development
by Behrouz Pirouz, Sina Shaffiee Haghshenas, Behzad Pirouz, Sami Shaffiee Haghshenas and Patrizia Piro
Int. J. Environ. Res. Public Health 2020, 17(8), 2801; https://doi.org/10.3390/ijerph17082801 - 18 Apr 2020
Cited by 61 | Viewed by 8061
Abstract
Sustainable development has been a controversial global topic, and as a complex concept in recent years, it plays a key role in creating a favorable future for societies. Meanwhile, there are several problems in the process of implementing this approach, like epidemic diseases. [...] Read more.
Sustainable development has been a controversial global topic, and as a complex concept in recent years, it plays a key role in creating a favorable future for societies. Meanwhile, there are several problems in the process of implementing this approach, like epidemic diseases. Hence, in this study, the impact of climate and urban factors on confirmed cases of COVID-19 (a new type of coronavirus) with the trend and multivariate linear regression (MLR) has been investigated to propose a more accurate prediction model. For this propose, some important climate parameters, including daily average temperature, relative humidity, and wind speed, in addition to urban parameters such as population density, were considered, and their impacts on confirmed cases of COVID-19 were analyzed. The analysis was performed for three case studies in Italy, and the application of the proposed method has been investigated. The impacts of parameters have been considered with a delay time from one to nine days to find out the most suitable combination. The result of the analysis demonstrates the effectiveness of the proposed model and the impact of climate parameters on the trend of confirmed cases. The research hypothesis approved by the MLR model and the present assessment method could be applied by considering several variables that exhibit the exact delay of them to new confirmed cases of COVID-19. Full article
Show Figures

Figure 1

21 pages, 5562 KiB  
Article
Investigating a Serious Challenge in the Sustainable Development Process: Analysis of Confirmed cases of COVID-19 (New Type of Coronavirus) Through a Binary Classification Using Artificial Intelligence and Regression Analysis
by Behrouz Pirouz, Sina Shaffiee Haghshenas, Sami Shaffiee Haghshenas and Patrizia Piro
Sustainability 2020, 12(6), 2427; https://doi.org/10.3390/su12062427 - 20 Mar 2020
Cited by 199 | Viewed by 22140
Abstract
Nowadays, sustainable development is considered a key concept and solution in creating a promising and prosperous future for human societies. Nevertheless, there are some predicted and unpredicted problems that epidemic diseases are real and complex problems. Hence, in this research work, a serious [...] Read more.
Nowadays, sustainable development is considered a key concept and solution in creating a promising and prosperous future for human societies. Nevertheless, there are some predicted and unpredicted problems that epidemic diseases are real and complex problems. Hence, in this research work, a serious challenge in the sustainable development process was investigated using the classification of confirmed cases of COVID-19 (new version of Coronavirus) as one of the epidemic diseases. Hence, binary classification modeling was used by the group method of data handling (GMDH) type of neural network as one of the artificial intelligence methods. For this purpose, the Hubei province in China was selected as a case study to construct the proposed model, and some important factors, namely maximum, minimum, and average daily temperature, the density of a city, relative humidity, and wind speed, were considered as the input dataset, and the number of confirmed cases was selected as the output dataset for 30 days. The proposed binary classification model provides higher performance capacity in predicting the confirmed cases. In addition, regression analysis has been done and the trend of confirmed cases compared with the fluctuations of daily weather parameters (wind, humidity, and average temperature). The results demonstrated that the relative humidity and maximum daily temperature had the highest impact on the confirmed cases. The relative humidity in the main case study, with an average of 77.9%, affected positively, and maximum daily temperature, with an average of 15.4 °C, affected negatively, the confirmed cases. Full article
Show Figures

Figure 1

Back to TopTop