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Abstract: Evaluating road safety is an enduring research topic in Infrastructure and Transportation
Engineering. The prediction of crash risk is very important for avoiding other crashes and safeguarding
road users. According to this task, awareness of the number of vehicles involved in an accident
contributes greatly to safety analysis, hence, it is necessary to predict it. In this study, the main aim
is to develop a binary model for predicting the number of vehicles involved in an accident using
Neural Networks and the Group Method of Data Handling (GMDH). For this purpose, 775 accident
cases were accurately recorded and evaluated from the urban and rural areas of Cosenza in southern
Italy and some notable parameters were considered as input data including Daylight, Weekday,
Type of accident, Location, Speed limit and Average speed; and the number of vehicles involved in an
accident was considered as output. In this study, 581 cases were selected randomly from the dataset
to train and the rest were used to test the developed binary model. A confusion matrix and a Receiver
Operating Characteristic curve were used to investigate the performance of the proposed model.
According to the obtained results, the accuracy values of the prediction model were 83.5% and 85.7%
for testing and training, respectively. Finally, it can be concluded that the developed binary model
can be applied as a reliable tool for predicting the number of vehicles involved in an accident.
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1. Introduction

Since the 20th century, road safety researchers considered accidents as unexpected and
unpredictable events [1]. This fatalist notion was overcome by the scientific concept that tries
to detect the potential influencing factors that affect the likelihood of road accident occurrence [2].
Traffic safety analysis was traditionally based on historic crash data which presents several lacks
due to the limited availability, unreliability and poor quality of collision data [3,4]. Many scientists
have spent considerable efforts in analyzing the impacts of various risk factors [5–9] and road safety
measures [10–12]. For this reason, they have developed a great number of statistical methodologies
to approach crash prediction problems [13]. Mathematical models have been the most popular
technique in analyzing crash data [14]. The most commonly-used methods are based on Logistic
Regression [15–21], Ordered Choice Models for the purpose of severity modeling of the crash injury
data [22–25], Bayesian Hierarchical Models [26–32], Bivariate Models [33], Nested Logit Models [34],
Multinomial Logit Models [35–39], in order to address the heterogeneity of the crash outcomes or
Mixed Logit Models [40–45], to analyze the crash injury severities.
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Even though good methodological progresses were made over the years, nowadays, it is
difficult to use statistical models to investigate efficiently the factors related to injury severity.
Numerous impediments related to the statistical analysis of crash data remain [46]: the need to
satisfy some statistical hypotheses [47] or the difficulty in managing several variables with many
categories [48,49]. To overcome the deficiencies of these methods, road safety researchers have proposed
new Non-Parametric Models [50], such as the Classification and Regression Tree (CART), widely used
for the analysis of crash outcomes [51–54], and the Support Vector Machine (SVM) models which
are normally utilized for the classification of crash injury severity [55–59]. Recently, Artificial Neural
Network (ANN) has also been used to carry out the classification of crash severity and their applications
have grown extraordinarily [60–64]. All these models have shown excellent analytical capabilities,
leading researchers to several useful conclusions, but the ever-increasing amount of data requires
the development of novel efficient algorithms which are able to handle these traffic crash records.
For this reason, Genetic Algorithm techniques can be applied as new optimal factors’ searching
algorithms to improve the performance of the analysis [55,65]. For example, the Nondominated Sorting
Genetic Algorithm (NSGA-II), a fast multi-objective genetic algorithm, has been used to explore the
process of significant factors’ identification of traffic crashes from a multi-objective optimization (MOP)
standpoint by Li et al. [66]. They have also defined the index of Factor Significance (Fs) for quantitative
evaluation of the significance of each factor and have individuated the top five significant factors for a
better fatal injury crash identification: (1) Driver Conduct, (2) Vehicle Action, (3) Roadway Surface
Condition, (4) Driver Restraint and (5) Driver Age. Amiri et al. [67] have investigated the severity
of Run-Off-Road (ROR) crashes where elderly drivers, aged 65 years or more, hit a fixed object by
applying two types of Artificial Intelligence (AI) techniques: Intelligent Genetic Algorithm (IGA)
and Artificial Neural Network (ANN). The authors identified Average Annual Daily Traffic (AADT),
number of involved vehicles, age, road surface condition, and gender as the most important variables in
the developed ANN, respectively. Zeng and Huang [68] have proposed, instead, a convex combination
(CC) algorithm to fast and stably train a neural network (NN) model for crash injury severity prediction,
and a modified NN pruning for function approximation (N2PFA) algorithm to optimize the network
structure employing a two-vehicle crash dataset provided by the Florida Department of Highway
Safety and Motor Vehicles. Delen et al. [69] have used a series of artificial neural networks to model
the potentially non-linear relationships between the injury severity levels and crash-related factors
to identify the prioritized importance of these ones. The technique used by Wang et al. [70] is more
complex. They have implemented a linear regression model and two machine-learning algorithms,
including a back-propagation neural network (BPNN) and a least squares support vector machine
(LSSVM), to explore the distance and time gap between the initial and secondary accidents, using inputs
of crash severity, violation category, weather condition, tow away, road surface condition, lighting,
parties involved, traffic volume, duration, and shock wave speed generated by the primary accident.
Similarly, Liu et al. (2018) have studied an automated way of predicting the crash rate levels for
each carrier using three different classification models (Artificial Neural Network, Classification and
Regression Tree (CART), and Support Vector Machine) and three separate variable selection methods
(Empirical Evidence, Multiple Factor Analysis, Garson’s algorithm) [71]. Furthermore, there is growing
interest in using traffic safety analysis techniques. Recently, Formosa et al. [72] have presented a
centralized digital architecture and employed a Deep Learning methodology to predict traffic conflicts.
Traffic conflicts have been identified by a Regional–Convolution Neural Network (R-CNN) model
which has detected lane markings and tracks vehicles from images captured by a single front-facing
camera of an instrumented vehicle. Afterwards, this data has been integrated with traffic variables
and calculated safety surrogate measures (SSMs) via a centralized digital architecture to develop a
series of Deep Neural Network (DNN) models in order to predict these traffic conflicts. With recent
developments in data collection techniques, big data infrastructure and machine learning algorithms can
be utilized to provide appropriate solutions for the highway traffic safety system [73,74]. For example,
Huang et al. [75] have explored the feasibility of using deep learning models to detect crash occurrence
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and predict crash risk. For this purpose, they used Artificial Intelligence and Volume, Speed, and Sensor
Occupancy data collected from roadside radar sensors along an Interstate in Iowa. Similar to this
research, Xie et al. [76] utilized rich information generated from connected vehicles to obtain surrogate
safety measures (SSMs) for risk identification. In particular, they have proposed time to collision
with disturbance (TTCD) for risk identification in order to capture rear-end conflict risks in various
car-following scenarios, even when the leading vehicle has a higher speed.

As could be seen from a literature review, the Artificial Neural Network (ANN) methodology
represents a robust tool used to investigate complex phenomena without assuming any preliminary
hypotheses on the model. The main aim of this research is to develop a binary model for predicting
the number of vehicles involved in an accident through the use of Neural Networks and the Group
Method of Data Handling (GMDH). The authors, applying a multi-scale approach, collected and
evaluated 775 accident cases from urban and rural areas in the Province of Cosenza, in southern
Italy. Several notable parameters were considered as input data of the model, including Daylight,
Weekday, Type of accident, Location, Speed limit and Average speed. Obviously, the number of vehicles
involved in an accident was considered as output. In this study, for the training stage, 581 accident
cases were selected randomly from the dataset. The rest were used to test the developed binary
model. A confusion matrix and a Receiver Operating Characteristic curve were used to investigate the
performance of the proposed model.

The paper is organized as follows: The methodology is presented in Section 2, with the theoretical
description of GMDH type of neural network and the binary model functional form and a correlation
analysis among data; in Section 3, a case study is described, Binary classification models are constructed
and then the best model is selected; the obtained results of the best model are discussed in Section 4;
and in Section 5, the conclusion is presented and some recommendations for future studies are suggested.

2. Methods

To predict the number of vehicles involved in an accident, a binary model was developed.
The model is based on Neural Networks and, in particular, makes use of the Group Method of Data
Handling (GMDH) technique. In this study, 775 accident cases were analyzed, employing a portion of
the database for the training phase and the rest for the setup of the binary model. The performance of
the proposed model was investigated using a confusion matrix and a Receiver Operating Characteristic.
The flowchart of steps of conducting the research is shown in Figure 1.

2.1. Group Method of Data Handling (GMDH) Type of Neural Network

In order to assess the complex problems and systems, artificial intelligence and machine learning
methods can be applied as an alternative powerful tool instead of classical methods. These methods are
widely used in a variety of scientific fields and had a vital role in the development of sciences [77–82].
As one of the most important artificial intelligence and machine learning methods, the Group Method
of Data Handling (GMDH) type of neural network is a reliable tool for identifying and assessing
complex phenomena which is computer-based mathematical modeling. GMDH is one of the families of
Inductive Algorithms, which was first introduced by Ivakhnenko [83,84]. He proposed a new idea that
an iterative and incremental algorithm could be used instead of building estimation models together.
This approach has a suitable capability to tolerate imprecision, uncertainty and deal with vagueness of
complex and unstructured systems to reach a reliable modeling. In this approach, polynomial neurons
are produced as simple structures and added step by step and then a complex system is formed by
combining these simple structures. Natural selection patterns like evolutionary algorithms and gradual
model construction indicate the capability of this approach in comparison with classical regression
methods in obtaining a high-order input and output relationship [85]. The Polynomial Neural Network
(PNN) is known as one of the most basic and important algorithms for building a GMDH model.
The general form of GMDH works based on a map of input and output data which is a self-organized
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and a unilateral neural network, and also, it is called the polynomial of Ivakhnenko equation. The basic
neural network map is based on Equation (1) [86,87].
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where m indicates the amount of data for values X1, X2, X3, . . . ., Xm for an output such as y.
By combining the quadratic polynomials of all the neurons based on Equation (2), output ŷ with an
approximate function f̂ for a set of inputs such as X = (Xi1, Xi2, Xi3, . . . , Xim) with the least possible
error compared to output y was obtained [88].

ŷ = f̂ (xi1, xi2, xi3, . . . , xim), i = (1, 2, 3, . . . , m) (2)

GMDH is made up of several layers; data initially is entered in the first layer and, after processing
and combination of data, it is entered in the second layer as a new input. This process continues and
when the algorithm reaches an optimal convergence in layer (n + 1) compared to layer (n), the process
will be finished. According to Figure 2, data set is divided randomly into two parts including training
and testing (checking) parts [89].Sustainability 2020, 12, x FOR PEER REVIEW 4 of 20 
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GMDH have been used successfully for complex system modeling, pattern recognition,
and knowledge discovery, hence, in this study, GMDH was applied to assess safety in a road
transportation system.

2.2. Correlation Analysis

Before the binary classification modeling, it should be noted that the parametric correlation of
each independent input data set should be calculated and controlled, because, although in this study,
the input data set were considered by contribution of experts and the literature review, the correlation
analysis is necessary to prevent misleading results. Hence, the Pearson correlation coefficient was used
as one of the popular and practical approaches to measure the linear correlation between two variables.
It is also called the Pearson product-moment correlation coefficient or bilateral correlation coefficient.
Equations (3)–(6) demonstrate the mathematical relations of Pearson’s correlation coefficient [90,91].
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in which X and Y are the independent parameters. SSX and SSY are the standard deviation of X and
Y, respectively. SPDXY is the covariance of X and Y. ρ(r) is called Pearson’s correlation coefficient
which is in the interval of −1 and +1. The absolute value of these coefficients is used for ρ(r) and the
positive and negative signs of these coefficients only show a direct and reverse relation between the
two independent variables, respectively. If the value of correlation is close to 1, it is clear that there is a
strong relation between two independent parameters and if the value of the correlation is close to 0,
it is clear that there is a weak relation between them. In addition, negative correlation demonstrates
that as one variable increases, so the other reduces, and vice versa [92,93].

2.3. Binary Modeling

The main goal of the binary classification model is to recognize a pattern and relation between
input dataset including daylight, type of accident, weekday, location, speed limit and average speed,
and the number of vehicles as a dependent variable (output). In order to construct an optimum binary
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model for prediction of the number of vehicles, determining the control parameters and performance
indices of the algorithm contribute greatly to increasing the convergence speed of the algorithm. Hence,
at first, in this study, the confusion matrix is considered as one of the practical performance indices for
determining the accuracy and reliability of binary classification results analysis for learning with or
without an observer. Figure 3 shows the general form of the confusion matrix for a two-cluster problem.
In addition, according to the parameters defined in Equations (7) and (8), the value of accuracy (ACC)
and error are calculated, respectively.

Acc =
TP + TN

TP + FP + TN + FN
(7)

Error =
FP + FN

TP + FP + TN + FN
= 1−Acc (8)
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As mentioned earlier, determining control parameters is the most notable section for increasing
the convergence speed of the algorithm. It should be noted that there are no special equations and
some of these parameters are determined by previous studies and others are usually determined
based on the experience of experts and trial and error [94–96]. Hence, in the second step, the binary
classification models are constructed based on three of the most important control parameters of the
algorithm, including selection pressure (SP), maximum number of layers (MNL) and maximum number
of neurons in a layer (MNNL). The SP is considered equal to 0.6 based upon previous studies [85,97].
This parameter influences the sensitivity of the modeling error, which is dimensionless; while the
maximum number of layers and maximum number of neurons in a layer are selected according to the
experience of experts and trial and error. The MNL is considered 5, 10, 15, 20 and 30 and the MNNL
includes 5, 10, 20 and 30, and totally, 20 models were constructed for predicting the number of vehicles.
It is worth mentioning that there are some recommendations for the ratio of training and testing data
from the whole dataset.

3. Case Study

3.1. Data Collection and Preparation

The dataset was extracted from the Italian ACI-ISTAT database [98] with reference to the years
2017 and 2018. ISTAT is the Italian National Institute of Statistics, the main supplier of official
statistical information in Italy. It collects and produces information on the Italian economy and
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society and makes it available for study and decision-making purposes. ISTAT works in cooperation
with the Automobile Club of Italy (ACI) to standardize the accident data, collecting police reports.
Statistical information on accidents is collected by ISTAT by means of a total monthly survey of all
road accidents occurring in the entire national territory that have caused injuries to people (dead or
injured). The ACI actively collaborates in this investigation. The survey takes place by filling in the
ISTAT CTT/INC model called “Road accidents” by the authority that intervened on the site (traffic
police, carabinieri, municipal police) for each road accident involving a vehicle circulating on the
network road and causing injuries. Therefore, accidents from which no injuries to people have resulted,
accidents that have not occurred in public traffic areas and accidents in which vehicles are not involved
are excluded from the survey.

In order to parameterize the contents of the survey, the following definitions are used:

- Road accidents: those that occur in a road open to public traffic, as a result of which, one or more
people were injured or killed and in which at least one vehicle was involved;

- Dead: people who died instantly (within 24 h) or those who died from the second to the thirtieth
day, starting with that of the accident included;

- Injured: people who suffered injuries as a result of the accident. Given the difficulty of defining
objective criteria on the level of severity of the injuries suffered, there is no distinction between
serious or light injuries.

A total of 775 accident cases were accurately recorded and evaluated from urban and rural areas
of Cosenza in southern Italy (Figure 4). These accidents have been grouped, taking into account several
categories (Table 1).Sustainability 2020, 12, x FOR PEER REVIEW 8 of 20 
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Table 1. Accident database fields considered.

Data Field Type Data Field Description

Human characteristic Driver gender Male or female

Vehicle characteristic Vehicle type Car, motorcycle, truck and other

Road environment
Road type

National rural road, provincial rural
road, national and provincial rural road

in urban context, urban road

Geometric element Straight, curve, crossroad, signalized
intersection, traffic light

Other environment
Date Date of the accident

Light conditions Daylight and nighttime

Day of the week Weekday and weekend

Location environment Macro area location Urban and rural

Accident characteristic

Number of vehicles Number of vehicles involved

Accident nature

Way out, collision with an accidental
obstacle, side collision, front-side

collision, rear-end collision, head-on
collision, pedestrian collision, impact

with parked vehicle, impact with
stopped vehicle, fall from vehicle,

sudden braking

Accident severity Injuries and deaths

The ISTAT database was matched up with a traffic surveys on the same rural and urban roads
considered, deriving average vehicle speeds and average traffic volumes. The surveys were carried
out in October 2019 by using Bluetooth radar sensors to acquire vehicle speed and traffic volumes
(Figure 5). Radar sensors were located on the road sections with observed crashes. After the analysis
of traffic volumes and speed values’ statistical trends over a ten-year period, and considering social,
economic, demographic and travel demand characteristics of the study area, traffic volumes and
vehicle speed values were considered invariant over the last five years. Radar sensors were positioned
in a segment where it could be assumed that homogeneous flow and speed conditions were present for
the entire length. For example, when a sensor was positioned on a link with homogeneous geometric
characteristics greater than 2 miles in length, a circular buffer of 2 miles diameter around the location of
the radar sensor (1 mile upstream and downstream) was traced [99]. The geometric homogeneity of a
road segment was defined, taking into account number of lanes, lane and shoulder width, speed limit,
median type, and median width.
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3.2. Correlation Analysis

In this section, after selecting and preparing a dataset including daylight, type of accident, weekday,
location, speed limit and average speed, a correlation analysis was conducted based on Pearson’s
correlation coefficient by statistical package for the social sciences (SPSS) software. The obtained results
are shown in Table 2.

Table 2. Accident database fields considered.

Daylight Type of Accident Weekday Location Speed Limit Average Speed

Daylight 1

Type of accident −0.03 1

Weekday −0.12 −0.01 1

Location 0.05 −0.16 0.01 1

Speed Limit 0.01 −0.21 0.01 0.29 1

Average Speed 0.01 −0.15 0.03 0.16 0.85 1

According to Table 2, there is a weak correlation between the input data, which is therefore suitable
for modeling; as it is known, if |ρ| > 0.85, the correlation coefficient is defined as “strong”, which is
inappropriate for modeling. For example, the value of Pearson’s correlation between Daylight and
Average speed is 0.01, and it means that not only are they independent of each other, but also, they have
a direct relation; hence, by increasing or decreasing one of them, another will increase or decrease,
respectively. Additionally, Daylight and Weekday are independent of each other with a correlation
equal to −0.12 and they have an inverse relation. In addition, Type of accident is independent from
other variables and it has an inverse relation with other variables. It is worth mentioning that although
there is a high correlation coefficient between Speed limit and Average speed of about 0.85, this value
can be acceptable by considering their nature. Consequently, it can be concluded that the value of ρ is
acceptable for all variables in this study and it shows that they were properly selected.

3.3. Binary Modeling

In this study, 775 accident cases were accurately evaluated and recorded from the urban and rural
areas of Cosenza in southern Italy, and based on the suggestion proposed in Looney’s research study,
0.75 of dataset (581 cases) were selected randomly to train, and the rest (0.25 of dataset) were used to test
the developed binary model [100]. As mentioned before, there are considered three control parameters
for constructing models that the SP is considered equal to 0.6, based upon previous studies [85,97],
and also, the values of MNL are considered 5, 10, 15, 20 and 30 and the values of MNNL include 5,
10, 20 and 30, hence, a total of 20 models were constructed for forecasting the number of vehicles.
The obtained results of 20 models are shown in Table 3.

Finally, after constructing the models to select the best model, a simple ranking method was used
for ranking each model which was introduced by Zorlu et al. [101]. The results of this ranking are
shown in Table 4.

According to the obtained results from Table 4, the 16th and 19th models have the highest and
lowest ranks among other developed models, which includes SP, MNL and MNNL of 0.6, 20 and 30,
and also 0.6, 30 and 20 respectively.
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Table 3. The effect of control parameters on performance of GMDH algorithm.

Model No. SP MNL MNNL Accuracy of Training (%) Accuracy of Testing (%)

1 0.6 5 5 81.2 76.2

2 0.6 5 10 80.6 76.8

3 0.6 5 20 81.9 78.9

4 0.6 5 30 81.1 77.8

5 0.6 10 5 81.6 76.8

6 0.6 10 10 81.4 77.5

7 0.6 10 20 82.6 80.9

8 0.6 10 30 82.8 77.8

9 0.6 15 5 81.4 81.2

10 0.6 15 10 82.8 82

11 0.6 15 20 82.6 78.5

12 0.6 15 30 81.6 80.9

13 0.6 20 5 80.4 80.2

14 0.6 20 10 82.5 81.9

15 0.6 20 20 81.1 79.9

16 0.6 20 30 85.7 83.5

17 0.6 30 5 81.6 80.9

18 0.6 30 10 79.4 78.8

19 0.6 30 20 81.1 75.3

20 0.6 30 30 83.5 80.9

Table 4. Ranking of each developed model.

Model No. SP MNL MNNL Ranking for
Accuracy of Training

Ranking for
Accuracy of Testing Total Rank

1 0.6 5 5 12 10 22

2 0.6 5 10 10 11 21

3 0.6 5 20 15 16 31

4 0.6 5 30 11 13 24

5 0.6 10 5 14 11 25

6 0.6 10 10 13 12 25

7 0.6 10 20 17 18 35

8 0.6 10 30 18 13 31

9 0.6 15 5 13 12 25

10 0.6 15 10 18 13 31

11 0.6 15 20 17 14 31

12 0.6 15 30 14 18 32

13 0.6 20 5 9 17 26

14 0.6 20 10 16 19 35

15 0.6 20 20 11 16 27

16 0.6 20 30 20 20 40

17 0.6 30 5 14 18 32

18 0.6 30 10 8 15 23

19 0.6 30 20 11 9 20

20 0.6 30 30 19 18 37
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4. Results and Discussion

As mentioned above, the 16th model indicates the best performance among the 20 developed
models, whose MNL value of optimum is 30. Figure 6 shows the value of root mean square error
(RMSE) in each layer. Although the deference of RMSE between consecutive layers from the second
layer to end shows the desired precision level, this value is fixed from the 28th layer to the 30th,
which demonstrates the suitable speed of convergence and flexibility of the algorithm.
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According to Figure 6 and Equations (7) and (8), the obtained results of the confusion matrix
for the 16th model is calculated and shown in Figure 7 for training (a), testing (b) and all data (c).
For training data in the confusion matrix, the results explain that the optimum model could estimate
106 and 3 data of class “0” (number of vehicles involved in the accident = 1) as correctly and wrongly,
respectively, whose accuracy was 97.2%, and also it could predict 392 and 80 data of class “1” (number of
vehicles involved in the accident > 1) as correctly and wrongly, respectively, whose accuracy was 83.1%.
It should be noted that the total accuracy of training data obtained was 85.7%. In addition, for testing
data, 27 cases were correctly predicted and 1 case was wrongly predicted from class “0”, while, 31 data
of class “1” were wrongly predicted in class “0” and 135 data in this class were correctly estimated.
Finally, the confusion matrix of all data shows that the data of class “0” and “1” were predicted with
97.1% and 82.6% accuracy and, consequently, the accuracy of the total data is reached with highly
acceptable degrees of accuracy at 85.2%.

For more evaluating, the results were assessed by another three performance indexes, namely,
Precision, Recall, F1 score [102]. Figure 8 shows evaluation of confusion matrix by accuracy and in
comparison with other techniques. In this analysis and evaluation, although the recall is lower than
the other performance index, the results of this method should be considered together based upon the
results of precision, of which, finally, the results show that the optimum developed model can provide
the desired performance capability in estimating the number of vehicles involved in an accident.
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In classification problems, using a receiver operating characteristic (ROC) curve can play a key
role in analysis results which is a probability-based curve. Hence, the ROC curve was also used to
evaluate the results provided by the 16th model. Figure 9 indicates the results for training, testing and
all data based on the ROC curve. It should be noted that the threshold was considered at 0.5 which
is a common value in this case. According to the performance of the 16th model, which was better
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than other developed models, the area under curve (AUC) of the 16th model is higher in comparison
with other developed models. The value of the AUC obtained for evaluating the performance of the
developed binary classification model ranges between 0 and 1. It is worth mentioning that the value
of AUC equal and less than 0.5 shows that the performance of the developed model is not accepted,
while this value is higher than 0.5 for the train, test and total ROC curve.Sustainability 2020, 12, x FOR PEER REVIEW 14 of 20 
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Furthermore, based on these analyses, the following remarks and results can be highlighted:

- The correlation analysis showed that input data including Daylight, Weekday, Type of accident,
Location, Speed limit and Average speed were correctly considered for the binary classification;

- Figures 6–9 depict that the GMDH algorithm has a high capability to train and develop the
model, which can correctly predict 661 data of the first and second classes from 775 data (total).
Additionally, on the basis of the acquired results of confusion matrices, the results were assessed
by the other three performance indexes and they indicated that the proposed model can provide
higher performance capacity in evaluation of safety in transportation system;

- Consequently, it can be concluded that the proposed binary classification model based on the
GMDH algorithm was a reliable and alternative model instead of the classical model with a
high appropriate acceptable degree to predict the number of vehicles involved in an accident,
which may lead transportation engineers toward a greater accuracy and robustness of design
and planning of roads by eventually investigating opportune countermeasures to reduce the
safety risk;



Sustainability 2020, 12, 6735 14 of 19

- It is worth mentioning that the binary classification model presented in this study is a model
developed for the road network of the Cosenza area, which requires a more in-depth analysis to
be transferred to other contexts;

- In spite of the fact that the developed model was a reliable system model for evaluation of safety
in transportation systems of this case study, it does not have capability for investigation of safety
in transportation systems with incomplete data.

5. Conclusions

Assessing safety due to the ambiguity and uncertainty which exist in the effective parameters
affecting accidents is not an easy task. Hence, artificial intelligence (AI) and machine learning (ML) are
effective methods to evaluate some recurring problems in transportation engineering, especially in road
safety assessment. In this study, the main aim is the prediction of the number of vehicles involved in an
accident to assess safety using the GMDH algorithm. This was accomplished using 775 accident cases
obtained from the urban and rural areas of Cosenza in southern Italy. Several important parameters
such as Daylight, Weekday, Type of accident, Location, Speed limit and Average speed were selected
as input data and the number of vehicles involved in an accident was considered as output. Generally,
20 developed models were constructed based on three control parameters of algorithms including
selection pressure, maximum number of layers and maximum number of neurons in a layer. In addition,
in this modeling, 75% of the whole data set were selected for training and the rest considered for the
testing dataset and the accuracy of each model was determined according to the confusion matrix.
Finally, the 16th model with 85.7% and 83.5% accuracy for the training and testing dataset was selected
as the best developed binary classification model. Furthermore, the authors intend to compare the
results obtained for the analyzed case study to those obtained for other contexts and to provide a robust
analysis of the model transferability. More efforts need to be made to investigate other parameters
affecting the number of vehicles involved in an accident based on the dataset available, also for other
regions or other countries. It is worth mentioning that road safety depends on the concurrency of three
main factors: human behavior, infrastructure and environment; so it is necessary to model, as well as
possible, the complex relationships existing among latent and real variables by coupling AI and ML
techniques with other classic techniques such as Structural Equation Models (SEM). In future works,
it is recommended to see the effectiveness of other types of artificial intelligence and machine-learning
methods in order to improve analysis for a binary classification such as Learning Vector Quantization
(LVQ) and Naive Bayes (NB) algorithm, and then comparing results with a logit model.
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