Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Authors = Roberto Castro-Muñoz ORCID = 0000-0002-7657-3302

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
1 pages, 132 KiB  
Correction
Correction: Ullah et al. Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Using Deep Eutectic Solvents (DESs) for Neutral Red Dye Spectrophotometric Determination. Molecules 2022, 27, 6112
by Sana Ullah, Hameed Ul Haq, Muhammad Salman, Faheem Jan, Faisal Safi, Muhammad Balal Arain, Muhammad Shahzeb Khan, Roberto Castro-Muñoz and Grzegorz Boczkaj
Molecules 2025, 30(13), 2771; https://doi.org/10.3390/molecules30132771 - 27 Jun 2025
Viewed by 191
Abstract
In the original publication [...] Full article
29 pages, 1977 KiB  
Review
Capsaicin as a Microbiome Modulator: Metabolic Interactions and Implications for Host Health
by Iván Artemio Corral-Guerrero, Angela Elena Martínez-Medina, Litzy Yazmin Alvarado-Mata, Ana Cristina Figueroa Chávez, Roberto Muñoz-García, Miriam Paulina Luévanos-Escareño, Jazel Doménica Sosa-Martínez, María José Castro-Alonso, Padma Nimmakayala, Umesh K. Reddy and Nagamani Balagurusamy
Metabolites 2025, 15(6), 372; https://doi.org/10.3390/metabo15060372 - 5 Jun 2025
Viewed by 3090
Abstract
Background/Objectives: Capsaicin is the principal pungent compound in chili peppers and is increasingly recognized as a multifunctional phytochemical with systemic effects beyond its sensory properties. It has been linked to metabolic regulation, neuroprotection, inflammation control, and cancer modulation. This review aims to provide [...] Read more.
Background/Objectives: Capsaicin is the principal pungent compound in chili peppers and is increasingly recognized as a multifunctional phytochemical with systemic effects beyond its sensory properties. It has been linked to metabolic regulation, neuroprotection, inflammation control, and cancer modulation. This review aims to provide an integrative synthesis of capsaicin’s metabolism, its interaction with the gut microbiome, and its physiological implications across organ systems. Methods: We conducted a critical literature review of recent in vivo and in vitro studies exploring capsaicin’s metabolic fate, biotransformation by host enzymes and gut microbes, tissue distribution, and molecular pathways. The literature was analyzed thematically to cover gastrointestinal absorption, hepatic metabolism, microbiota interactions, and systemic cellular responses. Results: Capsaicin undergoes extensive hepatic metabolism, producing hydroxylated and dehydrogenated metabolites that differ in transient receptor potential vanilloid type 1 (TRPV1) receptor affinity and tissue-specific bioactivity. It crosses the blood–brain barrier, alters neurotransmitter levels, and accumulates in brain regions involved in cognition. In addition to its systemic effects, capsaicin appears to undergo microbial transformation and influences gut microbial composition, favoring short-chain fatty acid producers and suppressing pro-inflammatory taxa. These changes contribute to anti-obesity, anti-inflammatory, and potentially anticancer effects. Dose-dependent adverse outcomes, such as epithelial damage or tumor promotion, have also been observed. Conclusions: Capsaicin represents a diet-derived bioactive molecule whose systemic impact is shaped by dynamic interactions between host metabolism and the gut microbiota. Clarifying its biotransformation pathways and context-specific effects is essential for its safe and effective use in metabolic and neurological health strategies. Full article
Show Figures

Figure 1

15 pages, 854 KiB  
Article
Interpretation of COVID-19 Epidemiological Trends in Mexico Through Wastewater Surveillance Using Simple Machine Learning Algorithms for Rapid Decision-Making
by Arnoldo Armenta-Castro, Orlando de la Rosa, Alberto Aguayo-Acosta, Mariel Araceli Oyervides-Muñoz, Antonio Flores-Tlacuahuac, Roberto Parra-Saldívar and Juan Eduardo Sosa-Hernández
Viruses 2025, 17(1), 109; https://doi.org/10.3390/v17010109 - 15 Jan 2025
Viewed by 1381
Abstract
Detection and quantification of disease-related biomarkers in wastewater samples, denominated Wastewater-based Surveillance (WBS), has proven a valuable strategy for studying the prevalence of infectious diseases within populations in a time- and resource-efficient manner, as wastewater samples are representative of all cases within the [...] Read more.
Detection and quantification of disease-related biomarkers in wastewater samples, denominated Wastewater-based Surveillance (WBS), has proven a valuable strategy for studying the prevalence of infectious diseases within populations in a time- and resource-efficient manner, as wastewater samples are representative of all cases within the catchment area, whether they are clinically reported or not. However, analysis and interpretation of WBS datasets for decision-making during public health emergencies, such as the COVID-19 pandemic, remains an area of opportunity. In this article, a database obtained from wastewater sampling at wastewater treatment plants (WWTPs) and university campuses in Monterrey and Mexico City between 2021 and 2022 was used to train simple clustering- and regression-based risk assessment models to allow for informed prevention and control measures in high-affluence facilities, even if working with low-dimensionality datasets and a limited number of observations. When dividing weekly data points based on whether the seven-day average daily new COVID-19 cases were above a certain threshold, the resulting clustering model could differentiate between weeks with surges in clinical reports and periods between them with an 87.9% accuracy rate. Moreover, the clustering model provided satisfactory forecasts one week (80.4% accuracy) and two weeks (81.8%) into the future. However, the prediction of the weekly average of new daily cases was limited (R2 = 0.80, MAPE = 72.6%), likely because of insufficient dimensionality in the database. Overall, while simple, WBS-supported models can provide relevant insights for decision-makers during epidemiological outbreaks, regression algorithms for prediction using low-dimensionality datasets can still be improved. Full article
Show Figures

Figure 1

27 pages, 5684 KiB  
Review
Membrane-Assisted Dark Fermentation for Integrated Biohydrogen Production and Purification: A Comprehensive Review
by Octavio García-Depraect, Laura Vargas-Estrada, Raúl Muñoz and Roberto Castro-Muñoz
Fermentation 2025, 11(1), 19; https://doi.org/10.3390/fermentation11010019 - 3 Jan 2025
Cited by 3 | Viewed by 2570
Abstract
The aim of this review is to provide a comprehensive analysis of the membrane-assisted dark fermentation process for bioH2 production and purification. This review initially analyses the need for and the current state of the art in H2 production through dark [...] Read more.
The aim of this review is to provide a comprehensive analysis of the membrane-assisted dark fermentation process for bioH2 production and purification. This review initially analyses the need for and the current state of the art in H2 production through dark fermentation, evaluating the research landscape and the maturity level of the technology. Key factors influencing the dark fermentation process are then examined, along with emerging research trends in membrane-assisted fermentative H2 production systems. This review subsequently addresses the challenges inherent to dark fermentation and explores potential opportunities to enhance H2 production efficiency. Special attention is given to membrane technology as a promising strategy for process intensification in bioH2 production and recovery. Finally, this review provides an in-depth discussion of inorganic membranes, mixed matrix membranes (MMMs), and thin and ultrathin membranes, evaluating each membrane type in terms of its advantages, limitations, and purification performance. This review offers valuable insights into intensifying the dark fermentation process by leveraging membrane technology to enhance bioH2 production and purification efficiency. Full article
(This article belongs to the Special Issue Bioprocesses for Biomass Valorization in Biorefineries)
Show Figures

Figure 1

16 pages, 4896 KiB  
Article
Enhancing the Separation Performance of Chitosan Membranes Through the Blending with Deep Eutectic Solvents for the Pervaporation of Polar/Non-Polar Organic Mixtures
by Francesco Galiano, Asma Msahel, Francesca Russo, Natalia Rovella, Alfonso Policicchio, Sofiane Ben Hamouda, Amor Hafiane, Roberto Castro-Muñoz and Alberto Figoli
Membranes 2024, 14(11), 237; https://doi.org/10.3390/membranes14110237 - 11 Nov 2024
Cited by 8 | Viewed by 1934
Abstract
This study explores the development of chitosan-based membranes blended with three distinct deep eutectic solvents (DESs) for the pervaporation separation of methanol and methyl tert-butyl ether. DESs were selected for their eco-friendly properties and their potential to enhance membrane performance. The chitosan [...] Read more.
This study explores the development of chitosan-based membranes blended with three distinct deep eutectic solvents (DESs) for the pervaporation separation of methanol and methyl tert-butyl ether. DESs were selected for their eco-friendly properties and their potential to enhance membrane performance. The chitosan (CS) membranes, both crosslinked and non-crosslinked, were characterized in terms of morphology, chemical composition, wettability, mechanical resistance, and solvent uptake. Pervaporation tests revealed that incorporating DESs significantly enhanced the membranes’ selective permeability toward methanol, with up to a threefold increase in separation efficiency compared to pristine CS membranes. The membranes demonstrated a strong dependence on feed temperature, with higher temperatures improving permeation flux but reducing separation factor. Crosslinking with glutaraldehyde further increased membrane selectivity by reducing free volume into the polymer matrix. These findings underscore the potential of DESs as green additives for improving the performance of biopolymer membranes, making them promising candidates for efficient and eco-friendly organic–organic separations. Full article
(This article belongs to the Special Issue Membranes for Energy and the Environment)
Show Figures

Figure 1

14 pages, 2189 KiB  
Article
Iron (Magnetite) Nanoparticle-Assisted Dark Fermentation Process for Continuous Hydrogen Production from Rice Straw Hydrolysate
by Jacobo Pérez-Barragán, Cristina Martínez-Fraile, Raúl Muñoz, Laura Vargas-Estrada, Rafael Maya-Yescas, Elizabeth León-Becerril, Roberto Castro-Muñoz and Octavio García-Depraect
Appl. Sci. 2024, 14(21), 9660; https://doi.org/10.3390/app14219660 - 23 Oct 2024
Cited by 7 | Viewed by 1678
Abstract
The use of metal nanoparticles (NPs) to enhance hydrogen production in dark fermentation (DF) has become a pioneering field of interest. In particular, iron-based nanoparticles (FeNPs) play a pivotal role in enhancing the activity of metalloenzymes and optimizing feedstock utilization, resulting in improved [...] Read more.
The use of metal nanoparticles (NPs) to enhance hydrogen production in dark fermentation (DF) has become a pioneering field of interest. In particular, iron-based nanoparticles (FeNPs) play a pivotal role in enhancing the activity of metalloenzymes and optimizing feedstock utilization, resulting in improved hydrogen production. This study investigated the effect of FeNPs (magnetite) supplementation at three different concentrations of 50, 100, and 200 ppm in a continuous dark fermenter for the production of hydrogen from rice straw acid hydrolysate. The highest hydrogen production rate of 2.6 ± 0.3 NL H2/L-d was achieved with the addition of 100 ppm of nanoparticles, representing a 53% increase compared to the condition without FeNPs addition. This improvement was driven by a microbial community in which Clostridium was the major dominant genus. In addition, increasing the nanoparticle concentration to 100 ppm resulted in an increase in butyrate concentration to 2.0 ± 0.1 g/L, which is 43% higher than the butyrate concentration without FeNPs. However, when the NP concentration was increased to 200 ppm, the hydrogen production rate decreased to 1.6 ± 0.2 NL H2/L-d. This study can serve as a guideline for future research aimed at evaluating the effects of FeNPs in continuous dark fermentation systems. This work highlights the potential benefits and challenges associated with the use of FeNPs, paving the way for future studies to optimize their application and improve the efficiency of dark fermentation processes. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends)
Show Figures

Figure 1

14 pages, 1525 KiB  
Article
Nutritional Characterization of Whole Mangosteen Pulp with Seeds and Its Application as an Alternate Functional Ingredient in Crackers
by Nisa Saelee, Roberto Castro-Muñoz, Worawan Panpipat and Manat Chaijan
Foods 2024, 13(18), 2987; https://doi.org/10.3390/foods13182987 - 20 Sep 2024
Cited by 1 | Viewed by 2807
Abstract
Mangosteen (Garcinia mangostana L.) fruits are high in nutrients and phytochemical compounds. The use of fresh whole mangosteen fruit pulp, including the seeds (MFS), instead of flour and sugar in crackers not only enhances the functional nutritional and medicinal benefits for consumers [...] Read more.
Mangosteen (Garcinia mangostana L.) fruits are high in nutrients and phytochemical compounds. The use of fresh whole mangosteen fruit pulp, including the seeds (MFS), instead of flour and sugar in crackers not only enhances the functional nutritional and medicinal benefits for consumers but also adds value to the products. The study investigated the nutritional value of MFS and then employed MFS to formulate MFS-based crackers with varying levels of MFS substitution in order to develop crackers enriched with functional ingredients. Proximate compositions, amino acids, sugars, minerals, fatty acids, color, texture, and antiradical properties were analyzed in fresh MFS and MFS-based crackers. The results indicated that MFS can be a source of crude fiber, minerals, amino acids, omega-6, and omega-9 fatty acids. Adding 13%, 18%, and 23% ground MFS to the crackers improved their nutritional value and physical characteristics compared to the control (0% MFS). MFS-based crackers promoted significantly (p < 0.05) higher fiber (4.04 ± 0.00–5.66 ± 0.01%gdw), ash (2.45 ± 0.00–2.74 ± 0.01%gdw), and protein (4.72 ± 0.00–7.72 ± 0.05%gdw) than the control without MFS addition. Carbohydrates (including dietary fiber) and total sugar decreased significantly (p < 0.05) to 57.68 ± 0.00–55.21 ± 0.11%gdw and 2.37 ± 0.00–4.42 ± 0.01%gdw, respectively, in all MFS-based crackers compared to the control basal cracker with added sugar. Moreover, MFS-based crackers contained oleic acid (C18:1, omega-9) at 5.19–5.78%gdw and linoleic acid (C18:2, omega-6) at 0.63–0.77%gdw. Furthermore, the MFS-based crackers had higher levels of minerals (i.e., potassium, phosphorus, sulfur, calcium, and magnesium) and bioactive compounds such as total phenolic acid and total flavonoid, as well as antiradical activity. This study revealed that MFS can be applied as an alternative functional ingredient in the manufacturing of nutritious cracker products, and the findings could potentially be implemented to promote the utilization of mangosteen seed as a sustainable agricultural product and waste-reducing method. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 2727 KiB  
Article
Effect of Dietary Supplementation with Organic Silicon on the Growth Performance, Blood Biochemistry, Digestive Enzymes, Morphohistology, Intestinal Microbiota and Stress Resistance in Juvenile Hybrid Tilapia (Oreochromis mossambicus × Oreochromis niloticus)
by Yuniel Méndez-Martínez, Helen A. Valensuela-Barros, Yanis Cruz-Quintana, Aroldo Botello-León, Roberto D. Muñoz-Mestanza, Grace L. Orellana-Castro and Carlos Angulo
Biology 2024, 13(7), 531; https://doi.org/10.3390/biology13070531 - 17 Jul 2024
Cited by 2 | Viewed by 2521
Abstract
In recent decades, interest has been aroused worldwide in the use of silicon in nutrition; however, information on its effect on nutrition and metabolism of fish is limited. The objective of the research was to evaluate the effect of dietary supplementation with organic [...] Read more.
In recent decades, interest has been aroused worldwide in the use of silicon in nutrition; however, information on its effect on nutrition and metabolism of fish is limited. The objective of the research was to evaluate the effect of dietary supplementation with organic silicon on the growth performance, blood biochemistry, digestive enzymes, morphohistology and intestinal microbiota and stress resistance in hybrid Tilapia (Oreochromis mossambicus × Oreochromis niloticus). Methodologically, six levels of organic silicon (DOS) [control (0), 10, 20, 30, 40 and 50 mg·kg−1] were used to feed juvenile fish (initial weight 7.51 ± 0.25 g) grown for eight weeks in 18 aquariums (15 fish/aquarium). The results indicated that growth performance showed differences (p < 0.05) for specific growth rate, feed conversion and survival. Triglycerides, cholesterol and glucose, transaminases and digestive enzymes were significantly influenced by DOS levels. The histological study confirmed that the administered diets did not cause damage and induced significant morphological changes in the proximal intestine. The 16S rRNA gene sequencing analysis of the gut microbiota showed a high diversity and richness of OTU/Chao-1, with Fusobacteria, Proteobacteria, Bacteroidetes and Acidobacteria predominating in the DOS treatments compared to the control (p < 0.05). Induction of hypoxia stress after the feeding period showed a significant relative survival rate of 83.33% in fish fed 50 mg·kg−1. It is concluded that the DOS treatments performed better than the control treatment in most of the variables analysed. DOS had no negative effects on the fish. The results showed that up to 50 mg·kg−1 DOS improved digestive, metabolic and growth performance in hybrid Tilapia. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

17 pages, 9043 KiB  
Review
Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review
by Roberto Castro-Muñoz
Molecules 2024, 29(12), 2829; https://doi.org/10.3390/molecules29122829 - 13 Jun 2024
Cited by 2 | Viewed by 2104
Abstract
Today, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials [...] Read more.
Today, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials are being used in membrane separation either in self-standing membranes or composites with polymer phases. For instance, pervaporation (PV), as a highly selective technology for liquid separation, benefits from using 2D materials to selectively transport water or other solvent molecules. Therefore, this review paper offers an interesting update in revising the ongoing progress of PV membranes using 2D materials in several applications, including solvent purification (the removal of water from organic systems), organics removal (the removal of organic molecules diluted in water systems), and desalination (selective water transport from seawater). In general, recent reports from the past 3 years have been discussed and analyzed. Attention has been devoted to the proposed strategies and fabrication of membranes for the inclusion of 2D materials into polymer phases. Finally, the future trends and current research gaps are declared for the scientists in the field. Full article
Show Figures

Figure 1

16 pages, 297 KiB  
Article
Feasibility and Short-Term Outcomes in Liver-First Approach: A Spanish Snapshot Study (the RENACI Project)
by Mario Serradilla-Martín, Celia Villodre, Laia Falgueras-Verdaguer, Natalia Zambudio-Carroll, José T. Castell-Gómez, Juan L. Blas-Laina, Vicente Borrego-Estella, Carlos Domingo-del-Pozo, Gabriel García-Plaza, Francisco J. González-Rodríguez, Eva M. Montalvá-Orón, Ángel Moya-Herraiz, Sandra Paterna-López, Miguel A. Suárez-Muñoz, Maialen Alkorta-Zuloaga, Gerardo Blanco-Fernández, Enrique Dabán-Collado, Miguel A. Gómez-Bravo, José I. Miota-de-Llamas, Fernando Rotellar, Belinda Sánchez-Pérez, Santiago Sánchez-Cabús, David Pacheco-Sánchez, Juan C. Rodríguez-Sanjuan, María A. Varona-Bosque, Lucía Carrión-Álvarez, Sofía de la Serna-Esteban, Cristina Dopazo, Elena Martín-Pérez, David Martínez-Cecilia, María J. Castro-Santiago, Dimitri Dorcaratto, Marta L. Gutiérrez-Díaz, José M. Asencio-Pascual, Fernando Burdío-Pinilla, Roberto Carracedo-Iglesias, Alfredo Escartín-Arias, Benedetto Ielpo, Gonzalo Rodríguez-Laiz, Andrés Valdivieso-López, Emilio De-Vicente-López, Vicente Alonso-Orduña and José M. Ramiaadd Show full author list remove Hide full author list
Cancers 2024, 16(9), 1676; https://doi.org/10.3390/cancers16091676 - 26 Apr 2024
Viewed by 1715
Abstract
(1) Background: The liver-first approach may be indicated for colorectal cancer patients with synchronous liver metastases to whom preoperative chemotherapy opens a potential window in which liver resection may be undertaken. This study aims to present the data of feasibility and short-term outcomes [...] Read more.
(1) Background: The liver-first approach may be indicated for colorectal cancer patients with synchronous liver metastases to whom preoperative chemotherapy opens a potential window in which liver resection may be undertaken. This study aims to present the data of feasibility and short-term outcomes in the liver-first approach. (2) Methods: A prospective observational study was performed in Spanish hospitals that had a medium/high-volume of HPB surgeries from 1 June 2019 to 31 August 2020. (3) Results: In total, 40 hospitals participated, including a total of 2288 hepatectomies, 1350 for colorectal liver metastases, 150 of them (11.1%) using the liver-first approach, 63 (42.0%) in hospitals performing <50 hepatectomies/year. The proportion of patients as ASA III was significantly higher in centers performing ≥50 hepatectomies/year (difference: 18.9%; p = 0.0213). In 81.1% of the cases, the primary tumor was in the rectum or sigmoid colon. In total, 40% of the patients underwent major hepatectomies. The surgical approach was open surgery in 87 (58.0%) patients. Resection margins were R0 in 78.5% of the patients. In total, 40 (26.7%) patients had complications after the liver resection and 36 (27.3%) had complications after the primary resection. One-hundred and thirty-two (89.3%) patients completed the therapeutic regime. (4) Conclusions: There were no differences in the surgical outcomes between the centers performing <50 and ≥50 hepatectomies/year. Further analysis evaluating factors associated with clinical outcomes and determining the best candidates for this approach will be subsequently conducted. Full article
30 pages, 1718 KiB  
Review
Nanofiltration-Assisted Concentration Processes of Phenolic Fractions and Carotenoids from Natural Food Matrices
by Roberto Castro-Muñoz
Separations 2024, 11(2), 64; https://doi.org/10.3390/separations11020064 - 19 Feb 2024
Cited by 6 | Viewed by 3502
Abstract
In new food formulations, carotenoids and phenolic compounds are likely to be the most sought after food ingredients according to their bioactivity, nutraceutical, nutritional value, and compatibility properties once incorporated into food formulations. Such solutes are naturally present in many plant-based sources, and [...] Read more.
In new food formulations, carotenoids and phenolic compounds are likely to be the most sought after food ingredients according to their bioactivity, nutraceutical, nutritional value, and compatibility properties once incorporated into food formulations. Such solutes are naturally present in many plant-based sources, and some portions are directly consumed when enriching food products and formulations; however, some portions, which are contained in the parts of the plant sources not considered edible, including the leaves, peel, and seeds, among other by-products, are commonly wasted. Related to this, scientists have found a new window for obtaining these bioactive molecules, but their recovery remains a challenge. To some extent, the final purification and polishing requires highly selective performance to guarantee the desired properties and concentration. In this regard, membrane technologies, such as nanofiltration (NF), represent an alternative, owing to their highly selective properties when separating low-molecular-weight compounds. NF becomes immediately suitable when the pretreated extracts are subjected to further efficient concentration, fractionation, and polishing of phenolic fractions and carotenoids. The separation efficiency (usually higher than 97%) of NF technology is high according to the low pore size of NF membranes, but the low temperature in process separation also contributes to the separation of thermolabile compounds. Therefore, this paper reviews the ongoing cases of studies reporting the successful separation and polishing of phenolic fractions and carotenoids from distinct sources. In particular, we have focused our attention on the main interactions during the separation process and the drawbacks and advantages of using membranes for such a case study. Full article
Show Figures

Figure 1

25 pages, 1859 KiB  
Review
Ongoing Progress on Pervaporation Membranes for Ethanol Separation
by Muhammad Imad and Roberto Castro-Muñoz
Membranes 2023, 13(10), 848; https://doi.org/10.3390/membranes13100848 - 23 Oct 2023
Cited by 11 | Viewed by 5565
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic [...] Read more.
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water–) and concentrated solutions (water-ethanol–). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water–ethanol and ethanol–water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure–performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

3 pages, 183 KiB  
Editorial
Emerging Processes for Sustainable Processing of Food Ingredients and Products
by Roberto Castro-Muñoz
Foods 2023, 12(19), 3633; https://doi.org/10.3390/foods12193633 - 30 Sep 2023
Cited by 1 | Viewed by 1712
Abstract
In recent decades, traditional food processing processes, such as homogenization, pasteurization, canning, drying, and smoking, among others, have been successfully applied to obtain, to some extent, acceptable food items [...] Full article
41 pages, 7496 KiB  
Review
A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity
by Shahida Anusha Siddiqui, Iskandar Azmy Harahap, Priyanka Suthar, Yuan Seng Wu, Nibedita Ghosh and Roberto Castro-Muñoz
Foods 2023, 12(19), 3610; https://doi.org/10.3390/foods12193610 - 28 Sep 2023
Cited by 26 | Viewed by 7393
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets [...] Read more.
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health. Full article
Show Figures

Graphical abstract

14 pages, 1014 KiB  
Review
Passive Sampler Technology for Viral Detection in Wastewater-Based Surveillance: Current State and Nanomaterial Opportunities
by Alberto Aguayo-Acosta, Mildred G. Jiménez-Rodríguez, Fernando Silva-Lance, Mariel Araceli Oyervides-Muñoz, Arnoldo Armenta-Castro, Orlado de la Rosa, Antonio Ovalle-Carcaño, Elda M. Melchor-Martínez, Zahra Aghalari, Roberto Parra-Saldívar and Juan Eduardo Sosa-Hernández
Viruses 2023, 15(9), 1941; https://doi.org/10.3390/v15091941 - 16 Sep 2023
Cited by 6 | Viewed by 2453
Abstract
Although wastewater-based surveillance (WBS) is an efficient community-wide surveillance tool, its implementation for pathogen surveillance remains limited by ineffective sample treatment procedures, as the complex composition of wastewater often interferes with biomarker recovery. Moreover, current sampling protocols based on grab samples are susceptible [...] Read more.
Although wastewater-based surveillance (WBS) is an efficient community-wide surveillance tool, its implementation for pathogen surveillance remains limited by ineffective sample treatment procedures, as the complex composition of wastewater often interferes with biomarker recovery. Moreover, current sampling protocols based on grab samples are susceptible to fluctuant biomarker concentrations and may increase operative costs, often rendering such systems inaccessible to communities in low-to-middle-income countries (LMICs). As a response, passive samplers have emerged as a way to make wastewater sampling more efficient and obtain more reliable, consistent data. Therefore, this study aims to review recent developments in passive sampling technologies to provide researchers with the tools to develop novel passive sampling strategies. Although promising advances in the development of nanostructured passive samplers have been reported, optimization remains a significant area of opportunity for researchers in the area, as methods for flexible, robust adsorption and recovery of viral genetic materials would greatly improve the efficacy of WBS systems while making them more accessible for communities worldwide. Full article
(This article belongs to the Special Issue Nanotechnological Applications in Virology 2023)
Show Figures

Figure 1

Back to TopTop