Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Parthena-Maria K. Kosmidou ORCID = 0000-0002-2236-3350

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10795 KiB  
Article
Advanced Structural Technologies Implementation in Designing and Constructing RC Elements with C-FRP Bars, Protected Through SHM Assessment
by Georgia M. Angeli, Maria C. Naoum, Nikos A. Papadopoulos, Parthena-Maria K. Kosmidou, George M. Sapidis, Chris G. Karayannis and Constantin E. Chalioris
Fibers 2024, 12(12), 108; https://doi.org/10.3390/fib12120108 - 5 Dec 2024
Cited by 1 | Viewed by 1307
Abstract
The need to strengthen the existing reinforced concrete (RC) elements is becoming increasingly crucial for modern cities as they strive to develop resilient and sustainable structures and infrastructures. In recent years, various solutions have been proposed to limit the undesirable effects of corrosion [...] Read more.
The need to strengthen the existing reinforced concrete (RC) elements is becoming increasingly crucial for modern cities as they strive to develop resilient and sustainable structures and infrastructures. In recent years, various solutions have been proposed to limit the undesirable effects of corrosion in RC elements. While C-FRP has shown promise in corrosion-prone environments, its use in structural applications is limited by cost, bonding, and anchorage challenges with concrete. To address these, the present research investigates the structural performance of RC beams reinforced with C-FRP bars under static loading using Structural Health Monitoring (SHM) with an Electro-Mechanical Impedance (EMI) system employing Lead Zirconate Titanate (PZT) piezoelectric transducers which are applied to detect damage development and enhance the protection of RC elements and overall, RC structures. This study underscores the potential of C-FRP bars for durable tensile reinforcement in RC structures, particularly in hybrid designs that leverage steel for compression strength. The study focuses on critical factors such as stiffness, maximum load capacity, deflection at each loading stage, and the development of crack widths, all analyzed through voltage responses recorded by the PZT sensors. Particular emphasis is placed on the bond conditions and anchorage lengths of the tensile C-FRP bars, exploring how local confinement conditions along the anchorage length influence the overall behavior of the beams. Full article
Show Figures

Figure 1

19 pages, 9964 KiB  
Article
Numerical Analysis Exterior RC Beam-Column Joints with CFRP Bars as Beam’s Tensional Reinforcement under Cyclic Reversal Deformations
by Violetta K. Kytinou, Parthena-Maria K. Kosmidou and Constantin E. Chalioris
Appl. Sci. 2022, 12(15), 7419; https://doi.org/10.3390/app12157419 - 24 Jul 2022
Cited by 25 | Viewed by 4794
Abstract
In this paper the cyclic lateral response of reinforced concrete (RC) beam-column joints with composite carbon fiber-reinforced polymer (CFRP) bars as a longitudinal reinforcement in the beam is simulated with finite element (FE) modeling using software Abaqus. An experimental project of two full-scale [...] Read more.
In this paper the cyclic lateral response of reinforced concrete (RC) beam-column joints with composite carbon fiber-reinforced polymer (CFRP) bars as a longitudinal reinforcement in the beam is simulated with finite element (FE) modeling using software Abaqus. An experimental project of two full-scale joint specimens subjected to cyclic loading with supplementary accompanying pull-out tests of CFRP bars is also included in this study. These test results are used to calibrate the developed FE model, the constitutive laws of the materials and the bond response between CFRP bars and concrete. Comparisons between test data and numerical results indicate that the calibrated model accurately predicts the cyclic response of RC beam-column joint specimens with CFRP longitudinal bars as the beam’s tensional reinforcement. A parametric analysis is also performed to provide useful concluding remarks concerning the design of concrete joints with composite bars and the ability of CFRP bars to substitute for conventional steel bars in RC structural members under seismic excitations. Full article
(This article belongs to the Special Issue Seismic Assessment and Design of Structures)
Show Figures

Figure 1

22 pages, 21732 KiB  
Article
Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams: An Experimental Study
by Constantin E. Chalioris, Parthena-Maria K. Kosmidou and Chris G. Karayannis
Materials 2019, 12(9), 1398; https://doi.org/10.3390/ma12091398 - 29 Apr 2019
Cited by 107 | Viewed by 6059
Abstract
Reinforced concrete (RC) beams under cyclic loading usually suffer from reduced aggregate interlock and eventually weakened concrete compression zone due to severe cracking and the brittle nature of compressive failure. On the other hand, the addition of steel fibers can reduce and delay [...] Read more.
Reinforced concrete (RC) beams under cyclic loading usually suffer from reduced aggregate interlock and eventually weakened concrete compression zone due to severe cracking and the brittle nature of compressive failure. On the other hand, the addition of steel fibers can reduce and delay cracking and increase the flexural/shear capacity and the ductility of RC beams. The influence of steel fibers on the response of RC beams with conventional steel reinforcements subjected to reversal loading by a four-point bending scheme was experimentally investigated. Three slender beams, each 2.5 m long with a rectangular cross-section, were constructed and tested for the purposes of this investigation; two beams using steel fibrous reinforced concrete and one with plain reinforced concrete as the reference specimen. Hook-ended steel fibers, each with a length-to-diameter ratio equal to 44 and two different volumetric proportions (1% and 3%), were added to the steel fiber reinforced concrete (SFRC) beams. Accompanying, compression, and splitting tests were also carried out to evaluate the compressive and tensile splitting strength of the used fibrous concrete mixtures. Test results concerning the hysteretic response based on the energy dissipation capabilities (also in terms of equivalent viscous damping), the damage indices, the cracking performance, and the failure of the examined beams were presented and discussed. Test results indicated that the SFRC beam demonstrated improved overall hysteretic response, increased absorbed energy capacities, enhanced cracking patterns, and altered failure character from concrete crushing to a ductile flexural one compared to the RC beam. The non-fibrous reference specimen demonstrated shear diagonal cracking failing in a brittle manner, whereas the SFRC beam with 1% steel fibers failed after concrete spalling with satisfactory ductility. The SFRC beam with 3% steel fibers exhibited an improved cyclic response, achieving a pronounced flexural behavior with significant ductility due to the ability of the fibers to transfer the developed tensile stresses across crack surfaces, preventing inclined shear cracks or concrete spalling. A report of an experimental database consisting of 39 beam specimens tested under cyclic loading was also presented in order to establish the effectiveness of steel fibers, examine the fiber content efficiency and clarify their role on the hysteretic response and the failure mode of RC structural members. Full article
Show Figures

Graphical abstract

20 pages, 10660 KiB  
Article
Reinforced Concrete Beams with Carbon-Fiber-Reinforced Polymer Bars—Experimental Study
by Chris G. Karayannis, Parthena-Maria K. Kosmidou and Constantin E. Chalioris
Fibers 2018, 6(4), 99; https://doi.org/10.3390/fib6040099 - 14 Dec 2018
Cited by 76 | Viewed by 10801
Abstract
Innovative reinforcement as fiber-reinforced polymer (FRP) bars has been proposed as alternative for the substitution of the traditional steel bars in reinforced concrete (RC) structures. Although the advantages of this polymer reinforcement have long been recognised, the predominantly elastic response, the reduced bond [...] Read more.
Innovative reinforcement as fiber-reinforced polymer (FRP) bars has been proposed as alternative for the substitution of the traditional steel bars in reinforced concrete (RC) structures. Although the advantages of this polymer reinforcement have long been recognised, the predominantly elastic response, the reduced bond capacity under repeated load and the low ductility of RC members with FRP bars restricted its wide application in construction so far. In this work, the behavior of seven slender concrete beams reinforced with carbon-FRP bars under increasing static loading is experimentally investigated. Load capacities, deflections, pre-cracking and after-cracking stiffness, sudden local drops of strength, failure modes, and cracking propagation have been presented and commented. Special attention has been given in the bond conditions of the anchorage lengths of the tensile carbon-FRP bars. The application of local confinement conditions along the anchorage lengths of the carbon-FRP bars in some specimens seems to influence their cracking behavior. Nevertheless, more research is required in this direction. Comparisons of experimental results for carbon-FRP beams with beams reinforced with glass-FRP bars extracted from recent literature are also presented and commented. Comparisons of the experimental results with the predictions according to ACI 440.1R-15 and to CSA S806-12 are also included herein. Full article
Show Figures

Figure 1

18 pages, 9250 KiB  
Article
Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements
by Constantin E. Chalioris, Parthena-Maria K. Kosmidou and Nikos A. Papadopoulos
Fibers 2018, 6(3), 52; https://doi.org/10.3390/fib6030052 - 25 Jul 2018
Cited by 105 | Viewed by 10709
Abstract
The effectiveness of a new retrofitting technique to upgrade the structural behaviour of reinforced concrete (RC) deep beams without steel stirrups using carbon fibre-reinforced polymer (CFRP) ropes as the only transverse shear reinforcement is experimentally investigated. Five shear-critical beams with rectangular and T-shaped [...] Read more.
The effectiveness of a new retrofitting technique to upgrade the structural behaviour of reinforced concrete (RC) deep beams without steel stirrups using carbon fibre-reinforced polymer (CFRP) ropes as the only transverse shear reinforcement is experimentally investigated. Five shear-critical beams with rectangular and T-shaped cross-section are tested under monotonic loading. The strengthening schemes include (a) one vertical and one diagonal single-link CFRP rope that are internally applied through the web of the rectangular beam using an embedded through-section (ETS) system and (b) two vertical U-shaped double-link ropes that are applied around the perimeter of the web of the flanged beam using a near-surface-mounted (NSM) system. In both cases, the free lengths of the CFRP ropes have been properly anchored using epoxy bonded lap splices of the rope as NSM at (a) the top and the bottom of the web of the rectangular beam and (b) the top of the slab of the T-beam. Promising results have been derived, since the proposed strengthening technique enhanced the strength and altered the brittle shear failure to a ductile flexural one. The experimental results of this study were also used to check the validity of an analytical approach to predict the strength of shear strengthened deep beams using FRP ropes as transverse link reinforcement. Full article
Show Figures

Figure 1

Back to TopTop