Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Kyeongwoon Chung ORCID = 0000-0003-4223-6989

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4017 KiB  
Article
Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering
by Srinivas Pattipaka, Hyunsu Choi, Yeseul Lim, Kwi-Il Park, Kyeongwoon Chung and Geon-Tae Hwang
Materials 2023, 16(14), 4912; https://doi.org/10.3390/ma16144912 - 9 Jul 2023
Cited by 10 | Viewed by 2793
Abstract
Dielectric materials are highly desired for pulsed power capacitors due to their ultra-fast charge-discharge rate and excellent fatigue behavior. Nevertheless, the low energy storage density caused by the low breakdown strength has been the main challenge for practical applications. Herein, we report the [...] Read more.
Dielectric materials are highly desired for pulsed power capacitors due to their ultra-fast charge-discharge rate and excellent fatigue behavior. Nevertheless, the low energy storage density caused by the low breakdown strength has been the main challenge for practical applications. Herein, we report the electric energy storage properties of (1 − x) Bi0.5(Na0.8K0.2)0.5TiO3-xBi0.2Sr0.7TiO3 (BNKT-BST; x = 0.15–0.50) relaxor ferroelectric ceramics that are enhanced via a domain engineering method. A rhombohedral-tetragonal phase, the formation of highly dynamic PNRs, and a dense microstructure are confirmed from XRD, Raman vibrational spectra, and microscopic investigations. The relative dielectric permittivity (2664 at 1 kHz) and loss factor (0.058) were gradually improved with BST (x = 0.45). The incorporation of BST into BNKT can disturb the long-range ferroelectric order, lowering the dielectric maximum temperature Tm and inducing the formation of highly dynamic polar nano-regions. In addition, the Tm shifts toward a high temperature with frequency and a diffuse phase transition, indicating relaxor ferroelectric characteristics of BNKT-BST ceramics, which is confirmed by the modified Curie-Weiss law. The rhombohedral-tetragonal phase, fine grain size, and lowered Tm with relaxor properties synergistically contribute to a high Pmax and low Pr, improving the breakdown strength with BST and resulting in a high recoverable energy density Wrec of 0.81 J/cm3 and a high energy efficiency η of 86.95% at 90 kV/cm for x = 0.45. Full article
Show Figures

Figure 1

11 pages, 1566 KiB  
Article
Preparation and Characterization of Poly(Acrylic Acid)-Based Self-Healing Hydrogel for 3D Shape Fabrication via Extrusion-Based 3D Printing
by Woohyeon Shin and Kyeongwoon Chung
Materials 2023, 16(5), 2085; https://doi.org/10.3390/ma16052085 - 3 Mar 2023
Cited by 7 | Viewed by 3617
Abstract
The three-dimensional (3D) printing of hydrogel is an issue of interest in various applications to build optimized 3D structured devices beyond 2D-shaped conventional structures such as film or mesh. The materials design for the hydrogel, as well as the resulting rheological properties, largely [...] Read more.
The three-dimensional (3D) printing of hydrogel is an issue of interest in various applications to build optimized 3D structured devices beyond 2D-shaped conventional structures such as film or mesh. The materials design for the hydrogel, as well as the resulting rheological properties, largely affect its applicability in extrusion-based 3D printing. Here, we prepared a new poly(acrylic acid)-based self-healing hydrogel by controlling the hydrogel design factors based on a defined material design window in terms of rheological properties for application in extrusion-based 3D printing. The hydrogel is designed with a poly(acrylic acid) main chain with a 1.0 mol% covalent crosslinker and 2.0 mol% dynamic crosslinker, and is successfully prepared based on radical polymerization utilizing ammonium persulfate as a thermal initiator. With the prepared poly(acrylic acid)-based hydrogel, self-healing characteristics, rheological characteristics, and 3D printing applicability are deeply investigated. The hydrogel spontaneously heals mechanical damage within 30 min and exhibits appropriate rheological characteristics, including G′~1075 Pa and tan δ~0.12, for extrusion-based 3D printing. Upon application in 3D printing, various 3D structures of hydrogel were successfully fabricated without showing structural deformation during the 3D printing process. Furthermore, the 3D-printed hydrogel structures exhibited excellent dimensional accuracy of the printed shape compared to the designed 3D structure. Full article
(This article belongs to the Special Issue Functional Polymeric Materials and Green Chemistry)
Show Figures

Figure 1

7 pages, 2914 KiB  
Communication
Ninhydrin Loaded Microcapsules for Detection of Natural Free Amino Acid
by Suhui Jeong, Yeji Jeon, Jaehun Mun, Se Min Jeong, Huiling Liang, Kyeongwoon Chung, Pyong-In Yi, Beum-Soo An and Sungbaek Seo
Chemosensors 2023, 11(1), 49; https://doi.org/10.3390/chemosensors11010049 - 5 Jan 2023
Cited by 10 | Viewed by 13133
Abstract
Natural free amino acids present in plant extracts or tea infusions provide a unique flavor and potential effect on anxiety and blood pressure reduction. Accordingly, quantifying free amino acids in foods has been of interest to food science and analytical research fields. The [...] Read more.
Natural free amino acids present in plant extracts or tea infusions provide a unique flavor and potential effect on anxiety and blood pressure reduction. Accordingly, quantifying free amino acids in foods has been of interest to food science and analytical research fields. The ninhydrin solution-based assay is a colorimetric method based on the formation and detection of Ruhemann’s purple complex. Media-based colorimetric detection requires specialized facilities and personnel; moreover, it can suffer from the interference of the analyte color. In this study, we developed ninhydrin-loaded microcapsules and a simple free amino acids detection procedure, by simply dipping the microcapsules into the analyte solution for 3 min. Among the five tested natural free amino acids, theanine exhibited the highest colorimetric response to microcapsule-based detection, with a limit of detection of 0.826 mM. Full article
Show Figures

Figure 1

12 pages, 9441 KiB  
Article
Synthesis of Yttria-Stabilized Zirconia Nanospheres from Zirconium-Based Metal–Organic Frameworks and the Dielectric Properties
by Hyun Woo Park, Eunyeong Cho, Yun Zou, Sea Hoon Lee, Jae Ryung Choi, Sang-Bok Lee, Kyeongwoon Chung, Se Hun Kwon, Jeonghun Kim and Hee Jung Lee
Nanomaterials 2023, 13(1), 28; https://doi.org/10.3390/nano13010028 - 21 Dec 2022
Cited by 8 | Viewed by 3484
Abstract
Yttria-stabilized zirconia (YSZ) nanospheres were synthesized by calcination at 900 °C after the adsorption of Y3+ ions into the pores of a zirconium-based metal–organic framework (MOF). The synthesized 3YSZ (zirconia doped with 3 mol% Y2O3), 8YSZ (8 mol% [...] Read more.
Yttria-stabilized zirconia (YSZ) nanospheres were synthesized by calcination at 900 °C after the adsorption of Y3+ ions into the pores of a zirconium-based metal–organic framework (MOF). The synthesized 3YSZ (zirconia doped with 3 mol% Y2O3), 8YSZ (8 mol% Y2O3), and 30YSZ (30 mol% Y2O3) nanospheres were found to exhibit uniform sizes and shapes. Complex permittivity and complex permeability were carried out in K-band (i.e., 18–26.5 GHz) to determine their suitability for use as low-k materials in 5G communications. The real and imaginary parts of the permittivity of the sintered 3YSZ were determined to be 21.24 and 0.12, respectively, while those of 8YSZ were 22.80 and 0.16, and those of 30YSZ were 7.16 and 0.38. Control of the real part of the permittivity in the sintered YSZ was facilitated by modifying the Y2O3 content, thereby rendering this material an electronic ceramic with potential for use in high-frequency 5G communications due to its excellent mechanical properties, high chemical resistance, and good thermal stability. In particular, it could be employed as an exterior material for electronic communication products requiring the minimization of information loss. Full article
Show Figures

Figure 1

Back to TopTop