Preparation and Characterization of Poly(Acrylic Acid)-Based Self-Healing Hydrogel for 3D Shape Fabrication via Extrusion-Based 3D Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of New Self-Healing Hydrogel
2.3. Material Characterization
2.4. Rheology Characterization
2.5. Three-Dimensional Printing of the New Self-Healing Hydrogel
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigues, D.; Freitas, M.; Marisa Costa, V.; Arturo Lopez-Quintela, M.; Rivas, J.; Freitas, P.; Carvalho, F.; Fernandes, E.; Silva, P. Quantitative Histochemistry for Macrophage Biodistribution on Mice Liver and Spleen after the Administration of a Pharmacological-Relevant Dose of Polyacrylic Acid-Coated Iron Oxide Nanoparticles. Nanotoxicology 2017, 11, 256–266. [Google Scholar] [CrossRef]
- Sethy, P.K.; Mohapatra, P.; Patra, S.; Bharatiya, D.; Swain, S.K. Antimicrobial and Barrier Properties of Polyacrylic Acid/GO Hybrid Nanocomposites for Packaging Application. Nano-Struct. Nano-Objects 2021, 26, 100747. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Li, W.; Sun, J. Superstrong Water-Based Supramolecular Adhesives Derived from Poly (Vinyl Alcohol)/Poly (Acrylic Acid) Complexes. ACS Mater. Lett. 2021, 3, 875–882. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Metzler, M.; Węgrzynowska-Drzymalska, K. Effect of Stabilizer Type on the Physicochemical Properties of Poly(Acrylic Acid)/Silver Nanocomposites for Biomedical Applications. Polym. Bull. 2016, 73, 2927–2945. [Google Scholar] [CrossRef] [Green Version]
- Kausar, A. Poly (Acrylic Acid) Nanocomposites: Design of Advanced Materials. J. Plast. Film Sheeting 2021, 37, 409–428. [Google Scholar]
- Pourmadadi, M.; Farokh, A.; Rahmani, E.; Eshaghi, M.M.; Aslani, A.; Rahdar, A.; Ferreira, L.F.R. Polyacrylic Acid Mediated Targeted Drug Delivery Nano-Systems: A Review. J. Drug Deliv. Sci. Technol. 2023, 80, 104169. [Google Scholar] [CrossRef]
- Solhi, L.; Atai, M.; Nodehi, A.; Imani, M.; Ghaemi, A.; Khosravi, K. Poly(Acrylic Acid) Grafted Montmorillonite as Novel Fillers for Dental Adhesives: Synthesis, Characterization and Properties of the Adhesive. Dent. Mater. 2012, 28, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Charoensri, K.; Ko, J.A.; Park, H.J. Effects of Layered Double Hydroxides on Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Films for Green Food Packaging Applications. Prog. Org. Coat. 2022, 163, 106634. [Google Scholar] [CrossRef]
- Lim, S.L.; Ooi, C.W.; Tan, W.S.; Chan, E.S.; Ho, K.L.; Tey, B.T. Biosensing of Hepatitis B Antigen with Poly(Acrylic Acid) Hydrogel Immobilized with Antigens and Antibodies. Sens. Actuators. B-Chem. 2017, 252, 409–417. [Google Scholar]
- Wang, Y.; Wang, J.; Yuan, Z.; Han, H.; Li, T.; Li, L.; Guo, X. Chitosan Cross-Linked Poly(Acrylic Acid) Hydrogels: Drug Release Control and Mechanism. Colloids Surf B Biointerfaces 2017, 152, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Shin, B.G.; Jang, S.; Chung, K. Three-Dimensional Self-Healable Touch Sensing Artificial Skin Device. ACS Appl. Mater. Interfaces 2020, 12, 3953–3960. [Google Scholar] [CrossRef]
- Hodásová, L.; Alemán, C.; del Valle, L.J.; Llanes, L.; Fargas, G.; Armelin, E. 3D-Printed Polymer-Infiltrated Ceramic Network with Biocompatible Adhesive to Potentiate Dental Implant Applications. Materials 2021, 14, 5513. [Google Scholar] [CrossRef] [PubMed]
- Bie, H.; Chen, H.; Shan, L.; Tan, C.Y.; Al-Furjan, M.S.H.; Ramesh, S.; Gong, Y.; Liu, Y.F.; Zhou, R.G.; Yang, W.; et al. 3D Printing and Performance Study of Porous Artificial Bone Based on HA-ZrO2-PVA Composites. Materials 2023, 16, 1107. [Google Scholar] [CrossRef] [PubMed]
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D Printing-Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performances. Adv. Eng. Mater. 2022, 2201309. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Zolfagharian, A.; Bodaghi, M.; Baghani, M. A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures. Polymers 2022, 14, 5446. [Google Scholar] [CrossRef] [PubMed]
- Soleyman, E.; Aberoumand, M.; Soltanmohammadi, K.; Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 4D Printing of PET-G via FDM Including Tailormade Excess Third Shape. Manuf. Lett. 2022, 33, 1–4. [Google Scholar] [CrossRef]
- Hong, S.; Sycks, D.; Fai Chan, H.; Lin, S.; Lopez, G.P.; Guilak, F.; Leong, K.W.; Zhao, X. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Adv. Mater. 2015, 27, 4035–4040. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Li, W.; Liu, H.; Yuan, T.; Yang, Y.; Zhou, W.; Hu, Y.; Yang, Z. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. Macromol. Biosci. 2021, 21, 2000398. [Google Scholar] [CrossRef]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. State-of-the-Art of 3D Printing Technology of Alginate-Based Hydrogels—An Emerging Technique for Industrial Applications. Adv. Colloid. Interface. Sci. 2021, 293, 102436. [Google Scholar] [CrossRef]
- Kalossaka, L.M.; Sena, G.; Barter, L.M.C.; Myant, C. Review: 3D Printing Hydrogels for the Fabrication of Soilless Cultivation Substrates. Appl. Mater. Today 2021, 24, 101088. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Wei, X.; Chen, B.; Luo, Y. 3D Printed Hydrogel/PCL Core/Shell Fiber Scaffolds with NIR-Triggered Drug Release for Cancer Therapy and Wound Healing. Acta Biomater. 2021, 131, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, Q.; Zhan, R.; Xu, K.; Wang, Y.; Zhang, X.; Li, B.; Luo, G.; Xing, M.; Zhong, W. Tough but Self-Healing and 3D Printable Hydrogels for E-Skin, E-Noses and Laser Controlled Actuators. J. Mater. Chem. A 2019, 7, 24814–24829. [Google Scholar] [CrossRef]
- Liu, S.; Li, L. Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429–26437. [Google Scholar] [CrossRef]
- Ali Darabi, M.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y.; Chang, Q.; Jiang, J.; Cai, J.; Wang, Q.; Luo, G.; Xing, M. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability. Adv. Mater. 2017, 29, 1700533. [Google Scholar] [CrossRef]
- Deng, Z.; Hu, T.; Lei, Q.; He, J.; Ma, P.X.; Guo, B. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. ACS Appl. Mater. Interfaces 2019, 11, 6796–6808. [Google Scholar] [CrossRef] [PubMed]
- Abodurexiti, A.; Maimaitiyiming, X. Carbon Nanotubes-Based 3D Printing Ink for Multifunctional “Artificial Epidermis” with Long-Term Environmental Stability. Macromol. Chem. Phys. 2022, 223, 2100486. [Google Scholar] [CrossRef]
- Heidarian, P.; Gharaie, S.; Yousefi, H.; Paulino, M.; Kaynak, A.; Varley, R.; Kouzani, A.Z. A 3D Printable Dynamic Nanocellulose/Nanochitin Self-Healing Hydrogel and Soft Strain Sensor. Carbohydr. Polym. 2022, 291, 119545. [Google Scholar] [CrossRef]
- Tang, L.; Wu, S.; Xu, Y.; Li, Y.; Dai, B.; Yang, C.; Liu, A.; Tang, J.; Gong, L. Design of a DNA-Based Double Network Hydrogel for Electronic Skin Applications. Adv. Mater. Technol. 2022, 7, 2200066. [Google Scholar] [CrossRef]
- Zhang, X.; Sheng, N.; Wang, L.; Tan, Y.; Liu, C.; Xia, Y.; Nie, Z.; Sui, K. Supramolecular Nanofibrillar Hydrogels as Highly Stretchable, Elastic and Sensitive Ionic Sensors. Mater. Horiz. 2019, 6, 326–333. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Z.; Wang, S.; Yao, X.; Han, X.; Cao, W.; Pu, J. An Anti-Freezing and Strong Wood-Derived Hydrogel for High-Performance Electronic Skin and Wearable Sensing. Compos. Pt. B-Eng. 2022, 239, 109954. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, D.; Zhao, L.; Wang, X.; Han, W.; Wang, L. Chemically Modified Silk Fibroin Hydrogel for Environment-Stable Electronic Skin. Sens. Actuators Rep. 2022, 4, 100089. [Google Scholar] [CrossRef]
- Shin, W.; Kim, J.S.; Kim, H.; Choi, H.J.; Lee, H.J.; Um, M.K.; Choi, M.K.; Chung, K. Material Design for 3D Multifunctional Hydrogel Structure Preparation. Macromol. Mater. Eng. 2021, 306, 2100007. [Google Scholar] [CrossRef]
- Tian, X.; Jin, J.; Yuan, S.; Chua, C.K.; Tor, S.B.; Zhou, K. Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical Review. Adv. Energy Mater. 2017, 7, 1700127. [Google Scholar] [CrossRef]
- Hou, Z.; Lu, H.; Li, Y.; Yang, L.; Gao, Y. Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review. Front. Mater. 2021, 8, 91. [Google Scholar] [CrossRef]
- khoobi, M.; Moghimi, M.; Motlagh, G.H.; Sorouri, F.; Haririan, E. Cross-Linked Poly(Acrylic Acid) Hydrogel Loaded with Zinc Oxide Nanoparticles and Egg White Proteins for Antimicrobial Application. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5234–5243. [Google Scholar] [CrossRef]
Sample | Acrylic Acid (M) | Covalent Crosslinker Length | Covalent Crosslinker Concentration (mol%/AA) | Dynamic Crosslinker Concentration (mol%/AA) | Ionic Conductor Concentration (M) | Storage Modulus (G’, Pa) | Tan δ | Reference |
---|---|---|---|---|---|---|---|---|
a | 1.5 | PEGDA (Mn~250) | 1.0 | 2.0 | 0.1 | 1075 | 0.12 | This work |
b | 1.5 | PEGDA (Mn~250) | 0.5 | 1.5 | 0.1 | 1055 | 0.081 | [32] |
c | 1.5 | PEGDA (Mn~250) | 3.0 | 1.5 | 0.1 | 2806 | 0.041 | [32] |
d | 1.5 | PEGDA (Mn~250) | 0.5 | 2.0 | 0.1 | 535 | 0.164 | [32] |
e | 1.5 | PEGDA (Mn~250) | 1.0 | 1.5 | 0.1 | 1479 | 0.066 | [32] |
f | 1.5 | PEGDA (Mn~250) | 0.5 | 1.5 | 0.3 | 124 | 0.393 | [32] |
g | 1.5 | PEGDA (Mn~250) | 0 | 1.5 | 0.1 | 281 | 0.275 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, W.; Chung, K. Preparation and Characterization of Poly(Acrylic Acid)-Based Self-Healing Hydrogel for 3D Shape Fabrication via Extrusion-Based 3D Printing. Materials 2023, 16, 2085. https://doi.org/10.3390/ma16052085
Shin W, Chung K. Preparation and Characterization of Poly(Acrylic Acid)-Based Self-Healing Hydrogel for 3D Shape Fabrication via Extrusion-Based 3D Printing. Materials. 2023; 16(5):2085. https://doi.org/10.3390/ma16052085
Chicago/Turabian StyleShin, Woohyeon, and Kyeongwoon Chung. 2023. "Preparation and Characterization of Poly(Acrylic Acid)-Based Self-Healing Hydrogel for 3D Shape Fabrication via Extrusion-Based 3D Printing" Materials 16, no. 5: 2085. https://doi.org/10.3390/ma16052085
APA StyleShin, W., & Chung, K. (2023). Preparation and Characterization of Poly(Acrylic Acid)-Based Self-Healing Hydrogel for 3D Shape Fabrication via Extrusion-Based 3D Printing. Materials, 16(5), 2085. https://doi.org/10.3390/ma16052085