Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Koppen Gudrun

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3090 KiB  
Article
Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe
by Laura Rodriguez Martin, Liese Gilles, Emilie Helte, Agneta Åkesson, Jonas Tägt, Adrian Covaci, Amrit K. Sakhi, An Van Nieuwenhuyse, Andromachi Katsonouri, Anna-Maria Andersson, Arno C. Gutleb, Beata Janasik, Brice Appenzeller, Catherine Gabriel, Cathrine Thomsen, Darja Mazej, Denis Sarigiannis, Elena Anastasi, Fabio Barbone, Hanna Tolonen, Hanne Frederiksen, Jana Klanova, Jani Koponen, Janja Snoj Tratnik, Kim Pack, Koppen Gudrun, Kristin Ólafsdóttir, Lisbeth E. Knudsen, Loïc Rambaud, Loreta Strumylaite, Lubica Palkovicova Murinova, Lucia Fabelova, Margaux Riou, Marika Berglund, Maté Szabados, Medea Imboden, Michelle Laeremans, Milada Eštóková, Natasa Janev Holcer, Nicole Probst-Hensch, Nicole Vodrazkova, Nina Vogel, Pavel Piler, Phillipp Schmidt, Rosa Lange, Sónia Namorado, Szilvia Kozepesy, Tamás Szigeti, Thorhallur I. Halldorsson, Till Weber, Tina Kold Jensen, Valentina Rosolen, Vladimira Puklova, Wojciech Wasowicz, Ovnair Sepai, Lorraine Stewart, Marike Kolossa-Gehring, Marta Esteban-López, Argelia Castaño, Jos Bessems, Greet Schoeters and Eva Govartsadd Show full author list remove Hide full author list
Toxics 2023, 11(10), 819; https://doi.org/10.3390/toxics11100819 - 28 Sep 2023
Cited by 12 | Viewed by 3217
Abstract
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000–2010, literature and aggregated data were collected in a [...] Read more.
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000–2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011–2012, biobanked samples from the DEMOCOPHES project were used. For 2014–2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5–12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24–52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM. Full article
Show Figures

Figure 1

17 pages, 523 KiB  
Article
PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies
by Bianca Cox, Natasha Wauters, Andrea Rodríguez-Carrillo, Lützen Portengen, Antje Gerofke, Marike Kolossa-Gehring, Sanna Lignell, Anna Karin Lindroos, Lucia Fabelova, Lubica Palkovicova Murinova, Anteneh Desalegn, Nina Iszatt, Tessa Schillemans, Agneta Åkesson, Ann Colles, Elly Den Hond, Gudrun Koppen, Nicolas Van Larebeke, Greet Schoeters, Eva Govarts and Sylvie Remyadd Show full author list remove Hide full author list
Toxics 2023, 11(8), 711; https://doi.org/10.3390/toxics11080711 - 18 Aug 2023
Cited by 4 | Viewed by 3730
Abstract
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). [...] Read more.
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016–2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from −0.34 to −0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Figure 1

23 pages, 2283 KiB  
Article
Exposure to Phthalates in European Children, Adolescents and Adults since 2005: A Harmonized Approach Based on Existing HBM Data in the HBM4EU Initiative
by Nina Vogel, Rosa Lange, Phillipp Schmidt, Laura Rodriguez Martin, Sylvie Remy, Andrea Springer, Vladimíra Puklová, Milena Černá, Péter Rudnai, Szilvia Középesy, Beata Janasik, Danuta Ligocka, Lucia Fábelová, Branislav Kolena, Ida Petrovicova, Michal Jajcaj, Milada Eštóková, Marta Esteban-Lopez, Argelia Castaño, Janja Snoj Tratnik, Anja Stajnko, Lisbeth E. Knudsen, Jorma Toppari, Katharina M. Main, Anders Juul, Anna-Maria Andersson, Niels Jørgensen, Hanne Frederiksen, Cathrine Thomsen, Amrit Kaur Sakhi, Agneta Åkesson, Christina Hartmann, Marie Christine Dewolf, Gudrun Koppen, Pierre Biot, Elly Den Hond, Stefan Voorspoels, Liese Gilles, Eva Govarts, Aline Murawski, Antje Gerofke, Till Weber, Maria Rüther, Arno C. Gutleb, Cedric Guignard, Tamar Berman, Holger M. Koch and Marike Kolossa-Gehringadd Show full author list remove Hide full author list
Toxics 2023, 11(3), 241; https://doi.org/10.3390/toxics11030241 - 4 Mar 2023
Cited by 5 | Viewed by 3447
Abstract
Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from [...] Read more.
Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe—as comparably as possible—the EU-wide general population’s internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies. Full article
Show Figures

Figure 1

12 pages, 1346 KiB  
Article
Risk Assessment of Dietary Exposure to Organophosphorus Flame Retardants in Children by Using HBM-Data
by Veronika Plichta, Johann Steinwider, Nina Vogel, Till Weber, Marike Kolossa-Gehring, Lubica Palkovičová Murínová, Soňa Wimmerová, Janja Snoj Tratnik, Milena Horvat, Gudrun Koppen, Eva Govarts, Liese Gilles, Laura Rodriguez Martin, Greet Schoeters, Adrian Covaci, Clémence Fillol, Loïc Rambaud, Tina Kold Jensen and Elke Rauscher-Gabernig
Toxics 2022, 10(5), 234; https://doi.org/10.3390/toxics10050234 - 3 May 2022
Cited by 13 | Viewed by 4216
Abstract
Due to their extensive usage, organophosphorus flame retardants (OPFRs) have been detected in humans and in the environment. Human are exposed to OPFRs via inhalation of indoor air, dust uptake or dietary uptake through contaminated food and drinking water. Only recently, few studies [...] Read more.
Due to their extensive usage, organophosphorus flame retardants (OPFRs) have been detected in humans and in the environment. Human are exposed to OPFRs via inhalation of indoor air, dust uptake or dietary uptake through contaminated food and drinking water. Only recently, few studies addressing dietary exposure to OPFRs were published. In this study, we used human biomonitoring (HBM) data of OPFRs to estimate how much the dietary intake may contribute to the total exposure. We estimated by reverse dosimetry, the daily intake of tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP), tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) for children using HBM data from studies with sampling sites in Belgium, Denmark, France, Germany, Slovenia and Slovakia. For estimating the dietary exposure, a deterministic approach was chosen. The occurrence data of selected food categories were used from a published Belgium food basket study. Since the occurrence data were left-censored, the Lower bound (LB)—Upper bound (UB) approach was used. The estimated daily intake (EDI) calculated on the basis of urine metabolite concentrations ranged from 0.03 to 0.18 µg/kg bw/d for TDCIPP, from 0.05 to 0.17 µg/kg bw/d for TCIPP and from 0.02 to 0.2 µg/kg bw/d for TCEP. Based on national food consumption data and occurrence data, the estimated dietary intake for TDCIPP ranged from 0.005 to 0.09 µg/kg bw/d, for TCIPP ranged from 0.037 to 0.2 µg/kg bw/d and for TCEP ranged from 0.007 to 0.018 µg/kg bw/d (summarized for all countries). The estimated dietary intake of TDCIPP contributes 11–173% to the EDI, depending on country and LB-UB scenario. The estimated dietary uptake of TCIPP was in all calculations, except in Belgium and France, above 100%. In the case of TCEP, it is assumed that the dietary intake ranges from 6 to 57%. The EDI and the estimated dietary intake contribute less than 3% to the reference dose (RfD). Therefore, the estimated exposure to OPFRs indicates a minimal health risk based on the current knowledge of available exposure, kinetic and toxicity data. We were able to show that the dietary exposure can have an impact on the general exposure based on our underlying exposure scenarios. Full article
Show Figures

Figure 1

21 pages, 4587 KiB  
Article
Urinary Polycyclic Aromatic Hydrocarbon Metabolites Are Associated with Biomarkers of Chronic Endocrine Stress, Oxidative Stress, and Inflammation in Adolescents: FLEHS-4 (2016–2020)
by Veerle J. Verheyen, Sylvie Remy, Eva Govarts, Ann Colles, Laura Rodriguez Martin, Gudrun Koppen, Stefan Voorspoels, Liesbeth Bruckers, Esmée M. Bijnens, Stijn Vos, Bert Morrens, Dries Coertjens, Annelies De Decker, Carmen Franken, Elly Den Hond, Vera Nelen, Adrian Covaci, Ilse Loots, Stefaan De Henauw, Nicolas Van Larebeke, Caroline Teughels, Tim S. Nawrot and Greet Schoetersadd Show full author list remove Hide full author list
Toxics 2021, 9(10), 245; https://doi.org/10.3390/toxics9100245 - 1 Oct 2021
Cited by 16 | Viewed by 4567
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants of public health concern. Multiple biological mechanisms have been hypothesized to contribute to PAHs-associated adverse health effects. Little is known about the impact of PAHs on endocrine stress and inflammation in adolescence. We examined 393 Flemish [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants of public health concern. Multiple biological mechanisms have been hypothesized to contribute to PAHs-associated adverse health effects. Little is known about the impact of PAHs on endocrine stress and inflammation in adolescence. We examined 393 Flemish adolescents (14–15 years) cross-sectionally, measured urinary concentrations of hydroxylated naphthalene, fluorene, phenanthrene and pyrene metabolites, and calculated the sum of all measured metabolites. We determined hair cortisol concentration (HCC) as endocrine stress biomarker, leucocyte counts and neutrophil–lymphocyte ratio (NLR) in peripheral blood as inflammatory biomarkers, and urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) concentration as oxidative stress biomarker. Exposure–response associations were analyzed by multiple regression, adjusted for a priori selected covariates. A doubling of 1-hydroxypyrene concentration was associated with a factor of 1.13 (95% CI: 1.03, 1.24) increase in HCC and a factor of 1.07 (95% CI: 1.02, 1.13) increase in 8-oxodG. Doublings of 2- and 3-hydroxyphenanthrene concentrations were associated with a factor of 1.08 (95% CI: 1.02, 1.14) and 1.06 (95% CI: 1.00, 1.12) increase in 8-oxodG, respectively. Doubling of 2-hydroxyphenanthrene and of the sum of 2- and 3-hydroxyfluorene was associated with, respectively, a factor of 1.08 (95% CI: 1.02, 1.14) and 1.06 (95% CI: 1.01, 1.13) increase in NLR. Our results indicate the glucocorticoid pathway as a potential target for PAH exposure in adolescents and suggest oxidative stress, endocrine stress, and inflammation in adolescence as underlying mechanisms and early markers for PAH-related adverse health effects. Full article
Show Figures

Figure 1

12 pages, 448 KiB  
Article
Maternal Vitamin D and Newborn Telomere Length
by Lisa Daneels, Dries S. Martens, Soumia Arredouani, Jaak Billen, Gudrun Koppen, Roland Devlieger, Tim S. Nawrot, Manosij Ghosh, Lode Godderis and Sara Pauwels
Nutrients 2021, 13(6), 2012; https://doi.org/10.3390/nu13062012 - 11 Jun 2021
Cited by 11 | Viewed by 4324
Abstract
Nutrition is important during pregnancy for offspring health. Gestational vitamin D intake may prevent several adverse outcomes and might have an influence on offspring telomere length (TL). In this study, we want to assess the association between maternal vitamin D intake during pregnancy [...] Read more.
Nutrition is important during pregnancy for offspring health. Gestational vitamin D intake may prevent several adverse outcomes and might have an influence on offspring telomere length (TL). In this study, we want to assess the association between maternal vitamin D intake during pregnancy and newborn TL, as reflected by cord blood TL. We studied mother–child pairs enrolled in the Maternal Nutrition and Offspring’s Epigenome (MANOE) cohort, Leuven, Belgium. To calculate the dietary vitamin D intake, 108 women were asked to keep track of their diet using the seven-day estimated diet record (EDR) method. TL was assessed in 108 cord blood using a quantitative real-time PCR method. In each trimester of pregnancy, maternal serum 25-hydroxyvitamin D (25-OHD) concentration was measured. We observed a positive association (β = 0.009, p-value = 0.036) between newborn average relative TL and maternal vitamin D intake (diet + supplement) during the first trimester. In contrast, we found no association between average relative TL of the newborn and mean maternal serum 25-OHD concentrations during pregnancy. To conclude, vitamin D intake (diet + supplements), specifically during the first trimester of pregnancy, is an important factor associated with TL at birth. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

21 pages, 1312 KiB  
Article
Human Biomonitoring Data Enables Evidence-Informed Policy to Reduce Internal Exposure to Persistent Organic Compounds: A Case Study
by Ann Colles, Dries Coertjens, Bert Morrens, Elly Den Hond, Melissa Paulussen, Liesbeth Bruckers, Eva Govarts, Adrian Covaci, Gudrun Koppen, Kim Croes, Vera Nelen, Nicolas Van Larebeke, Stefaan De Henauw, Tine Fierens, Griet Van Gestel, Hana Chovanova, Maja Mampaey, Karen Van Campenhout, Ilse Loots, Willy Baeyens and Greet Schoetersadd Show full author list remove Hide full author list
Int. J. Environ. Res. Public Health 2021, 18(11), 5559; https://doi.org/10.3390/ijerph18115559 - 22 May 2021
Cited by 7 | Viewed by 3285
Abstract
Human biomonitoring (HBM) monitors levels of environmental pollutants in human samples, which often is a topic of concern for residents near industrially contaminated sites (ICSs). Around an ICS area in Menen (Belgium), including a (former) municipal waste incinerator and a metal recovery plant, [...] Read more.
Human biomonitoring (HBM) monitors levels of environmental pollutants in human samples, which often is a topic of concern for residents near industrially contaminated sites (ICSs). Around an ICS area in Menen (Belgium), including a (former) municipal waste incinerator and a metal recovery plant, increasing environmental concentrations of dioxins and polychlorinated biphenyls (PCBs) were observed, causing growing concern among residents and authorities. The local community succeeded in convincing the responsible authorities to investigate the problem and offer research funding. Persistent organic pollutants (POPs) were measured in two consecutive HBM studies (2002–2006 and 2010–2011), in the context of the Flemish Environment and Health Study (FLEHS), as well as in soil and locally produced food. Meanwhile, local authorities discouraged consumption of locally produced food in a delineated area of higher exposure risk. Ultimately, HBM and environmental data enabled tailored dietary recommendations. This article demonstrates the usefulness of HBM in documenting the body burdens of residents near the ICS, identifying exposure routes, evaluating remediating actions and providing information for tailored policy strategies aiding to further exposure reduction. It also highlights the role of the local stakeholders as an example of community-based participatory research and how such an approach can create societal support for research and policy. Full article
(This article belongs to the Special Issue Biomonitoring of Persistent Organic Pollutants)
Show Figures

Figure 1

19 pages, 4252 KiB  
Article
First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523
by Kristin Köppen, Grisna I. Prensa, Kerstin Rydzewski, Hana Tlapák, Gudrun Holland and Klaus Heuner
Viruses 2021, 13(2), 327; https://doi.org/10.3390/v13020327 - 20 Feb 2021
Cited by 3 | Viewed by 3158
Abstract
Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) including the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to [...] Read more.
Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) including the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and the phage particles seem to be defective for infecting new bacterial cells. Nevertheless, recombinant KIRK DNA was able to integrate site-specifically into the genome of different Francisella species after DNA transformation. Full article
(This article belongs to the Special Issue Viruses of Microbes 2020: The Latest Conquests on Viruses of Microbes)
Show Figures

Figure 1

14 pages, 2087 KiB  
Article
The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome
by Sara Pauwels, Lin Symons, Eva-Lynn Vanautgaerden, Manosij Ghosh, Radu Corneliu Duca, Bram Bekaert, Kathleen Freson, Inge Huybrechts, Sabine A. S. Langie, Gudrun Koppen, Roland Devlieger and Lode Godderis
Nutrients 2019, 11(6), 1408; https://doi.org/10.3390/nu11061408 - 22 Jun 2019
Cited by 39 | Viewed by 8721
Abstract
Nutrition in the postnatal period is associated with metabolic programming. One of the presumed underlying mechanisms involves epigenetic modifications (e.g., DNA methylation). Breastfeeding has an unknown impact on DNA methylation at a young age. Within the Maternal Nutrition and Offspring’s Epigenome (MANOE) study, [...] Read more.
Nutrition in the postnatal period is associated with metabolic programming. One of the presumed underlying mechanisms involves epigenetic modifications (e.g., DNA methylation). Breastfeeding has an unknown impact on DNA methylation at a young age. Within the Maternal Nutrition and Offspring’s Epigenome (MANOE) study, we assessed the effect of breastfeeding duration on infant growth and buccal methylation in obesity-related genes (n = 101). A significant difference was found between infant growth and buccal RXRA and LEP methylation at 12 months of breastfeeding. For RXRA CpG2 methylation, a positive association was found with duration of breastfeeding (slope = 0.217; 95% confidence interval (CI) 1.03, 0.330; p < 0.001). For RXRA CpG3 and CpG, mean methylation levels were significantly lower when children were breastfed for 4–6 months compared to non-breastfed children (only CpG3), and those breastfed for 7–9 months, 10–12 months, or 1–3 months. On the other hand, higher LEP CpG3 methylation was observed when mothers breastfed 7–9 months (6.1%) as compared to breastfeeding for 1–3 months (4.3%; p = 0.007) and 10–12 months (4.6%; p = 0.04). In addition, we observed that infant weight was significantly lower when children were breastfed for 10–12 months. Breastfeeding duration was associated with epigenetic variations in RXRA and LEP at 12 months and with infant biometry/growth. Our results support the hypothesis that breastfeeding could induce epigenetic changes in infants. Full article
Show Figures

Figure 1

18 pages, 2524 KiB  
Article
Development of Policy Relevant Human Biomonitoring Indicators for Chemical Exposure in the European Population
by Jurgen Buekers, Madlen David, Gudrun Koppen, Jos Bessems, Martin Scheringer, Erik Lebret, Denis Sarigiannis, Marike Kolossa-Gehring, Marika Berglund, Greet Schoeters and Xenia Trier
Int. J. Environ. Res. Public Health 2018, 15(10), 2085; https://doi.org/10.3390/ijerph15102085 - 21 Sep 2018
Cited by 33 | Viewed by 7666
Abstract
The European Union’s 7th Environmental Action Programme (EAP) aims to assess and minimize environmental health risks from the use of hazardous chemicals by 2020. From this angle, policy questions like whether an implemented policy to reduce chemical exposure has had an effect over [...] Read more.
The European Union’s 7th Environmental Action Programme (EAP) aims to assess and minimize environmental health risks from the use of hazardous chemicals by 2020. From this angle, policy questions like whether an implemented policy to reduce chemical exposure has had an effect over time, whether the health of people in specific regions or subpopulations is at risk, or whether the body burden of chemical substances (the internal exposure) varies with, for example, time, country, sex, age, or socio-economic status, need to be answered. Indicators can help to synthesize complex scientific information into a few key descriptors with the purpose of providing an answer to a non-expert audience. Human biomonitoring (HBM) indicators at the European Union (EU) level are unfortunately lacking. Within the Horizon2020 European Human Biomonitoring project HBM4EU, an approach to develop European HBM indicators was worked out. To learn from and ensure interoperability with other European indicators, 15 experts from the HBM4EU project (German Umweltbundesamt (UBA), Flemish research institute VITO, University of Antwerp, European Environment Agency (EEA)), and the World Health Organization (WHO), European Core Health Indicator initiative (ECHI), Eurostat, Swiss ETH Zurich and the Czech environmental institute CENIA, and contributed to a workshop, held in June 2017 at the EEA in Copenhagen. First, selection criteria were defined to evaluate when and if results of internal chemical exposure measured by HBM, need to be translated into a European HBM-based indicator. Two main aspects are the HBM indicator’s relevance for policy, society, health, and the quality of the biomarker data (availability, comparability, ease of interpretation). Secondly, an approach for the calculation of the indicators was designed. Two types of indicators were proposed: ‘sum indicators of internal exposure’ derived directly from HBM biomarker concentrations and ‘indicators for health risk’, comparing HBM concentrations to HBM health-based guidance values (HBM HBGVs). In the latter case, both the percentage of the studied population exceeding the HBM HBGVs (PE) and the extent of exceedance (EE), calculated as the population’s exposure level divided by the HBM HBGV, can be calculated. These indicators were applied to two examples of hazardous chemicals: bisphenol A (BPA) and per- and polyfluoroalkyl substances (PFASs), which both have high policy and societal relevance and for which high quality published data were available (DEMOCOPHES, Swedish monitoring campaign). European HBM indicators help to summarize internal exposure to chemical substances among the European population and communicate to what degree environmental policies are successful in keeping internal exposures sufficiently low. The main aim of HBM indicators is to allow follow-up of chemical safety in Europe. Full article
(This article belongs to the Special Issue Environmental Health Indicators for Policy Support)
Show Figures

Figure 1

19 pages, 2018 KiB  
Article
Toxicity of Urban PM10 and Relation with Tracers of Biomass Burning
by Rosette Van Den Heuvel, Jeroen Staelens, Gudrun Koppen and Greet Schoeters
Int. J. Environ. Res. Public Health 2018, 15(2), 320; https://doi.org/10.3390/ijerph15020320 - 12 Feb 2018
Cited by 26 | Viewed by 5005
Abstract
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of [...] Read more.
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter. Full article
(This article belongs to the Special Issue Ambient Air Pollution and Health Vulnerability)
Show Figures

Figure 1

Back to TopTop