Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Authors = Hwabin Jung

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8194 KiB  
Article
Synergistic Effects of Pea Protein on the Viscoelastic Properties of Sodium Alginate Gels: Findings from Fourier Transform Infrared and Large-Amplitude Oscillatory Shear Analysis
by Won Byong Yoon, Hwabin Jung and Timilehin Martins Oyinloye
Processes 2024, 12(8), 1638; https://doi.org/10.3390/pr12081638 - 3 Aug 2024
Cited by 4 | Viewed by 2288
Abstract
The rheological characteristics of pea protein (PP100%) and alginate (AG100%) as pure and mixed gels with different levels of pea protein (AP90:10, AP80:20, and AP70:30) were investigated via large-amplitude oscillatory shear (LAOS) and Fourier transform infrared (FTIR). Small-angle oscillatory shear (SAOS) was carried [...] Read more.
The rheological characteristics of pea protein (PP100%) and alginate (AG100%) as pure and mixed gels with different levels of pea protein (AP90:10, AP80:20, and AP70:30) were investigated via large-amplitude oscillatory shear (LAOS) and Fourier transform infrared (FTIR). Small-angle oscillatory shear (SAOS) was carried out for the samples, and a slight frequency dependence of the storage modulus (G′) and the loss modulus (G″) was observed for the pastes and gels, indicating the formation of a weak network, which is crucial for understanding the gel’s mechanical stability under small levels of deformation. Elastic and viscous Lissajous curves from the LAOS measurement at different levels of strain (1 to 1000%) elucidated that the mixed gels formed a strong network, which showed breakdown at high deformation (>100% strain). The synergistic strengthening of the network of the mixture was noticeable in the Fourier transform and Chevyshev harmonic analyses. This analysis indicated that the nonlinearity of e3/e1 and v3/v1 started at higher levels of strain for the mixed gels. The FTIR spectra revealed that there was no strong interconnection by crosslinking between pea protein and sodium alginate, indicating that the synergistic effect mainly came from electrostatic interactions. These findings suggest that combining alginate with pea protein can enhance the mechanical properties of gels, making them suitable for various food applications. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

14 pages, 2710 KiB  
Article
Effect of 450 nm Visible Blue Light from Light-Emitting Diode on Escherichia coli O157:H7 in Agar Gels: Optimizing the Lighting Array and Quantitative Microbial Exposure Assessment
by Hwabin Jung and Won Byong Yoon
Processes 2023, 11(5), 1331; https://doi.org/10.3390/pr11051331 - 26 Apr 2023
Cited by 2 | Viewed by 2089
Abstract
Visible blue light emitting diodes (LED) have been studied to inactivate Escherichia coli (E. coli) O157:H7 in agar gels. The LED array was optimized to attain uniform light illumination, and the light intensity distribution was visualized through optical simulation. The uniformity [...] Read more.
Visible blue light emitting diodes (LED) have been studied to inactivate Escherichia coli (E. coli) O157:H7 in agar gels. The LED array was optimized to attain uniform light illumination, and the light intensity distribution was visualized through optical simulation. The uniformity of LED light intensity was assessed, and the evenly spaced array showed the best uniformity with a Petri factor of 0.99. Microbial populations in agar gels prepared with and without a dye were analyzed after light irradiation. Each segment of the gels with different heights was taken to measure microbial reduction, and the results indicated that optical properties, such as opaqueness, played an important role in microbial reduction. The agar gel without and with a dye showed a maximum reduction of <3.4 and <2.1 log CFU/g, respectively. An exposure assessment for E. coli O157:H7 was conducted based on the assumption for the agar gel product after LED illumination. The probability results indicated that a risk (>5 log CFU/g) existed mainly in the bottom layer of the sample, despite the average contamination being <5 log CFU/g. This study provides a suitable approach for designing the LED photoinactivation process and subsequent exposure assessment to avoid risk. Full article
Show Figures

Figure 1

12 pages, 2213 KiB  
Article
Effect of Pouch Size on Sterilization of Ready-to-Eat (RTE) Bracken Ferns: Numerical Simulation and Texture Evaluation
by Hwabin Jung, Yun Ju Lee and Won Byong Yoon
Processes 2023, 11(1), 35; https://doi.org/10.3390/pr11010035 - 23 Dec 2022
Cited by 3 | Viewed by 2453
Abstract
Bracken fern (Pteridium aquilium, BF) is a widely consumed vegetable. It has the potential to be manufactured as a ready-to-eat (RTE) product as a cooking ingredient and a side dish. The aim of the current study was to develop sterilized BF [...] Read more.
Bracken fern (Pteridium aquilium, BF) is a widely consumed vegetable. It has the potential to be manufactured as a ready-to-eat (RTE) product as a cooking ingredient and a side dish. The aim of the current study was to develop sterilized BF RTE products and to investigate textural qualities depending on the size of the pouches. The F0-value at the cold point according to pouch size (100, 150, and 200 g) targeted at 15 min was determined through heat transfer simulation using the calibrated heat transfer coefficient. The location of the cold points in the stand-up pouches was moved upward from the bottom of the pouch by increasing the pouch size. The sterilization time for 100, 150, and 200 g was evaluated as 35.0, 41.5, and 47.5 min, respectively. The textural properties measured using the cutting test showed significant differences according to the location in the pouch. The textural degradation of BF in the top part of the pouch was more extensive than that at the bottom due to the smaller dimensions. In addition, the percentage of textural degradation in the top part increased with increasing pouch sizes. The methods introduced in this study can be applied to validate the degree of sterilization and the texture of various stalk vegetables used for ready-to-eat products packed in stand-up pouches. Full article
(This article belongs to the Special Issue New Advances in Food Processing and Preservation)
Show Figures

Figure 1

12 pages, 2836 KiB  
Article
Evaluating the Mechanical Response of Agarose-Xanthan Mixture Gels Using Tensile Testing, Numerical Simulation, and a Large Amplitude Oscillatory Shear (LAOS) Approach
by Hwabin Jung, Timilehin Martins Oyinloye and Won Byong Yoon
Foods 2022, 11(24), 4042; https://doi.org/10.3390/foods11244042 - 14 Dec 2022
Cited by 7 | Viewed by 2104
Abstract
Large deformation stress response characteristics of hydrocolloid mixture gel systems were investigated based on texture and rheological measurements. Agarose and xanthan mixtures at different ratios (1:0, 0.75:0.25, and 0.5:0.5) were chosen as the model systems. A decrease in failure stress from 2.65 to [...] Read more.
Large deformation stress response characteristics of hydrocolloid mixture gel systems were investigated based on texture and rheological measurements. Agarose and xanthan mixtures at different ratios (1:0, 0.75:0.25, and 0.5:0.5) were chosen as the model systems. A decrease in failure stress from 2.65 to 1.82 MPa and an increase in failure strain from 0.08 to 0.13 with higher xanthan ratios were obtained based on the ring tensile test, indicating that xanthan molecules could improve the flexibility of the agarose network. The gels showed severe water loss by compression, particularly for the pure agarose gel (6.74%). Compared to the compression test, the gels presented low water loss after the ring tensile test (<1.3%) indicating that the ring tensile test could calculate the correct stress–strain relationship. Digital image correlation (DIC) and numerical simulation revealed that agarose-xanthan gel systems possess a deformation behavior with homogeneous strain distribution before failure. Elastic and viscous Lissajous–Bowditch curves from the large amplitude oscillatory shear (LAOS) measurement at different strains and frequencies elucidated that the agarose-xanthan gel was dominated by the agarose structure with a similar magnitude of elasticity at a low frequency. The large deformation approach from this study has great potential for elucidating and understanding the structure of food and biopolymer gels. Full article
(This article belongs to the Special Issue Food Hydrocolloids: Structure, Properties and Application)
Show Figures

Figure 1

16 pages, 4654 KiB  
Article
Determination and Validation of Discrete Element Model Parameters of Soybeans with Various Moisture Content for the Discharge Simulation from a Cylindrical Model Silo
by Hwabin Jung and Won Byong Yoon
Processes 2022, 10(12), 2622; https://doi.org/10.3390/pr10122622 - 7 Dec 2022
Cited by 3 | Viewed by 2146
Abstract
This study investigates the physical parameters that affect the flow patterns of soybeans with various moisture content (12% to 60%) at varying orifice sizes (20, 40, and 60 mm) in a cylindrical silo. The flow conditions required to obtain a steady mass flow [...] Read more.
This study investigates the physical parameters that affect the flow patterns of soybeans with various moisture content (12% to 60%) at varying orifice sizes (20, 40, and 60 mm) in a cylindrical silo. The flow conditions required to obtain a steady mass flow during discharge were evaluated via experiments and three-dimensional discrete element method (DEM) simulation. The discharged mass flow rates at different flow conditions provided the critical size of the orifice. If the reduced diameter (Dred) of an orifice is >5.59, the flow showed a steady state. Based on the mass flow index (MFI), the flow patterns at 40% and 60% moisture content at 40 and 60 mm orifice sizes, respectively, showed funnel flows. although these flow conditions were satisfied to maintain a steady flow. The maximum wall pressure for the funnel flow showed the location of the interlocking phenomenon where the stagnant zone began during discharging. DEM simulation was validated through the mass profiles using the parameters obtained by the experiments. This study demonstrates that the experimental and analytical results with DEM simulation predict the flow behaviors of soybeans well at various moisture contents. These results are useful for designing silos for continuous food processing. Full article
Show Figures

Figure 1

14 pages, 3653 KiB  
Article
Using Numerical Analysis to Develop a Retort Process to Enhance Antioxidant Activity and Physicochemical Properties of White Radish (Raphanus sativus L.) in Different-Sized Packages
by Hwabin Jung, Yun Ju Lee and Won Byong Yoon
Processes 2022, 10(12), 2589; https://doi.org/10.3390/pr10122589 - 4 Dec 2022
Cited by 4 | Viewed by 2416
Abstract
Thermal processing of white radish using retort sterilization at different temperatures was investigated according to the dimension of the package. Four different samples with the same weight and volume were placed in packages with different dimensions. The degree of sterilization (i.e., F0 [...] Read more.
Thermal processing of white radish using retort sterilization at different temperatures was investigated according to the dimension of the package. Four different samples with the same weight and volume were placed in packages with different dimensions. The degree of sterilization (i.e., F0-value) at the cold point targeted at 6 min was determined based on experimental data and heat transfer simulation. The sterilization time was considerably increased with a decrease in surface area to unit volume ratio (φ) at each temperature. The sterilization time for the sample with the highest φ (155.56) was approximately five times faster than the sample with the lowest φ (72.22) at all heating temperatures. Numerical simulation conducted with a proper heat transfer coefficient (h) showed mostly good agreement with the experimental data (RMSE < 2 °C). Changes in color and total phenolic content were higher for samples heated at higher temperatures. Hardness values of white radish samples measured for center and edge parts separately were more uniform for samples with a high φ. Results in this study suggest that optimizing heating conditions of root vegetables must consider their package dimensions to satisfy quality attributes after sterilization. Numerical simulation can be utilized as a useful tool to design the sterilization process. Full article
(This article belongs to the Special Issue New Advances in Food Processing and Preservation)
Show Figures

Figure 1

15 pages, 6055 KiB  
Article
Stress and Strain Characteristics under the Large Deformation of Surimi Gel during Penetration and Extension Tests Using Digital Image Correlation and the Numerical Simulation Method
by Hwabin Jung, Timilehin Martins Oyinloye and Won Byong Yoon
Gels 2022, 8(11), 740; https://doi.org/10.3390/gels8110740 - 15 Nov 2022
Cited by 4 | Viewed by 2576
Abstract
The stress and strain properties of surimi gels (72.49% moisture content) under large deformation were analyzed during penetration (cylindrical, conical, and spherical puncture) and extension (ring tensile) tests. Mechanical measurements were compared and validated using digital image correlation (DIC) and numerical simulations. The [...] Read more.
The stress and strain properties of surimi gels (72.49% moisture content) under large deformation were analyzed during penetration (cylindrical, conical, and spherical puncture) and extension (ring tensile) tests. Mechanical measurements were compared and validated using digital image correlation (DIC) and numerical simulations. The DIC and the finite element method reflected the influence of the probe shape and the surface area in contact with the gel during the measurements. In puncture tests, a larger probe surface increased the strain concentration at the puncture point. In the extension test, the strain distribution was symmetrical. The strain values observed during penetration tests were comparable in both the DIC and numerical simulation. The tensile failure characteristics observed in DIC and numerical simulations are similar to those found in the experiment. The study demonstrated that the extension method with the ring tensile device did not show a stress concentration during the measurement, and DIC and numerical simulation can be effective tools in analyzing the textural properties of surimi gel during the puncture and ring tensile tests. Full article
(This article belongs to the Special Issue Recent Advance in Food Gels)
Show Figures

Figure 1

17 pages, 4810 KiB  
Article
Effects of Container Design on the Temperature and Moisture Content Distribution in Pork Patties during Microwave Heating: Experiment and Numerical Simulation
by Hwabin Jung, Myeong Gi Lee and Won Byong Yoon
Processes 2022, 10(11), 2382; https://doi.org/10.3390/pr10112382 - 13 Nov 2022
Cited by 7 | Viewed by 2997
Abstract
Effects of the container design on the heat transfer rate and food quality during microwave heating were explored and validated with numerical simulations and experiments. The uniformity of moisture content and temperature was investigated, and to describe microwave heating patterns, a simulation model [...] Read more.
Effects of the container design on the heat transfer rate and food quality during microwave heating were explored and validated with numerical simulations and experiments. The uniformity of moisture content and temperature was investigated, and to describe microwave heating patterns, a simulation model was created. Pork patties with different moisture and salt contents were heated in three different containers (center and edge-perforated lid as well as without lid) to achieve 80 °C using a domestic microwave oven. Compared to the center or mid-way positions, the temperatures at the edge of the patties rose quickly. By containing the evaporated vapor from the heated pork patties inside the container, the container with a center-perforated lid decreased the heating rate and non-uniformity in temperature and moisture content. A simplified numerical model for the electromagnetics, heat, and momentum transfer coupling simulation was developed to understand the moisture and temperature distribution of the pork patties after microwave heating. Heating uniformity and the final quality of the pork patties could be improved by a container with a center-perforated lid. The proposed model was able to describe the microwave warming process for ready-to-eat products; thus, it is a useful tool for designing microwavable ready meals. Full article
(This article belongs to the Special Issue Processing Foods: Process Optimization and Quality Assessment (II))
Show Figures

Figure 1

12 pages, 1545 KiB  
Article
Effects of Potato Protein Isolated Using Ethanol on the Gelation and Anti-Proteolytic Properties in Pacific Whiting Surimi
by Won Byong Yoon, Jae Won Park and Hwabin Jung
Foods 2022, 11(19), 3114; https://doi.org/10.3390/foods11193114 - 6 Oct 2022
Cited by 8 | Viewed by 2513
Abstract
Pacific whiting is a primary species utilized for surimi processing in the Pacific Northwest of the US. However, endogenous protease in Pacific whiting surimi deteriorates the quality during slow cooking. The demand for clean-labeled and economically competitive protease inhibitors has been increasing. In [...] Read more.
Pacific whiting is a primary species utilized for surimi processing in the Pacific Northwest of the US. However, endogenous protease in Pacific whiting surimi deteriorates the quality during slow cooking. The demand for clean-labeled and economically competitive protease inhibitors has been increasing. In the present study, the anti-proteolytic effect of potato protein isolate (PPI), a by-product from the potato starch industry, prepared using 20% ethanol on the endogenous protease activity of Pacific whiting (PW) surimi was investigated. The ohmic heating method was carried out for a better assessment of the anti-proteolytic activity of inhibitors. A factorial design was carried out in which the independent variables were the four types of inhibitors and their concentration (0, 0.5, 1, 2, and 3% w/w) at two heating conditions. The heating condition was used as a blocking factor. All experiments were randomized within each block. The addition of 2% PPI which demonstrated the highest anti-proteolytic activity among five different concentrations significantly increased the breaking force, penetration distance, and water retention ability of PW surimi gel as the endogenous proteases were effectively inhibited when heated ohmically at 60 °C for 30 min prior to heating up to 90 °C. In addition, SDS-PAGE disclosed that PPI successfully retained the intensity of myofibrillar heavy chain (MHC) protein of PW surimi gels even under the condition at which proteases could be activated at 60 °C. The whiteness of gels was not negatively affected by the addition of PPI. Comparing all samples, a denser and more ordered microstructure was obtained when PPI was added. A similar trend was found from the fractal dimension (Df) of the PPI-added gel’s microstructure. Therefore, PPI could be an effective and non-allergenic protease inhibitor in PW surimi leading to retaining the integrity of high gel quality. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 1606 KiB  
Review
Effect of Moisture Content on the Grinding Process and Powder Properties in Food: A Review
by Hwabin Jung, Youn Ju Lee and Won Byong Yoon
Processes 2018, 6(6), 69; https://doi.org/10.3390/pr6060069 - 1 Jun 2018
Cited by 111 | Viewed by 30441
Abstract
Grinding is a staple size-reduction process to produce food powders in which the powdered form is chemically and microbiologically stable and convenient to use as end products or intermediate products. The moisture content of food materials before grinding is a particularly important factor, [...] Read more.
Grinding is a staple size-reduction process to produce food powders in which the powdered form is chemically and microbiologically stable and convenient to use as end products or intermediate products. The moisture content of food materials before grinding is a particularly important factor, since it determines the materials’ physical properties and the powder properties, such as flowability after grinding. Generally, the moisture content of food materials is closely related to its energy requirement for grinding, because the energy expenditure required to create new surfaces varies. Grinding models used to analyze and predict the grinding characteristics, including energy, have been developed in many studies. The moisture content also influences powder flow properties. The inter-particle liquid bridges among the particles are due to the moisture in powders; therefore, the flowability of powders is interrupted because of the increase of the cohesiveness of the powder. Understanding the grinding characteristics related to various moisture contents is, theoretically and experimentally, an important cornerstone in optimizing the grinding processes used in food industries. In this review, comprehensive research of the effect of moisture content on the grinding process and powder properties is presented. Full article
Show Figures

Figure 1

Back to TopTop