Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Guanghua Guan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3012 KiB  
Article
Accurate Traceability of Stable C, H, O, N Isotope Ratios and Multi-Element Analysis Combined with Chemometrics for Chrysanthemi Flos ‘Hangbaiju’ from Different Origins
by Xiuyun Bai, Hengye Chen, Wanjun Long, Wei Lan, Siyu Wang, Guanghua Lei, Yuting Guan, Jian Yang and Haiyan Fu
Chemosensors 2022, 10(12), 529; https://doi.org/10.3390/chemosensors10120529 - 12 Dec 2022
Cited by 4 | Viewed by 2575
Abstract
Chrysanthemi Flos ‘Hangbaiju’ (HBJ) is a common Chinese medicinal material with the same origin as the medicinal and edible cognate plant in China, whose quality is seriously affected by the place of origin. In this study, four stable isotope ratios (δ15N, [...] Read more.
Chrysanthemi Flos ‘Hangbaiju’ (HBJ) is a common Chinese medicinal material with the same origin as the medicinal and edible cognate plant in China, whose quality is seriously affected by the place of origin. In this study, four stable isotope ratios (δ15N, δ2H, δ13C, and δ18O) and 44 elements were detected and analyzed in 191 HBJ flower samples from six locations in China to trace the origin of HBJ. An ANOVA analysis of δ15N, δ2H, δ13C, and δ18O values, as well as milti-elements, showed that there were significant differences among the six places of origin. Partial least squares discriminant analysis (PLSDA) and one-class partial least squares discriminant analysis (OPLS-DA) models were established to trace the origin of HBJ from these six locations. The results showed that the classification effect of the PLSDA model is poor; however, the established OPLS-DA model can distinguish between products of national geographic origin (Tongxiang City, Zhejiang Province, China) and samples from other origins, among which Ni, Mo, δ13C, Cu, and Ce elements (VIP > 1) contribute the most to this classification. Therefore, this study provides a new method for tracing the origins of HBJ, which is of great significance for the protection of origin labeling of products. Full article
(This article belongs to the Special Issue Chemometrics for Analytical Chemistry)
Show Figures

Figure 1

19 pages, 4473 KiB  
Article
Application of Model Predictive Control for Large-Scale Inverted Siphon in Water Distribution System in the Case of Emergency Operation
by Zheli Zhu, Guanghua Guan, Zhonghao Mao, Kang Wang, Shixiang Gu and Gang Chen
Water 2020, 12(10), 2733; https://doi.org/10.3390/w12102733 - 30 Sep 2020
Cited by 8 | Viewed by 2938
Abstract
The emergency control of Menglou~Qifang inverted siphon, which is about 72 km long, is the key to the safety of the Northern Hubei Water Transfer Project. Given the complicated layout of this project, traditional emergency control method has been challenged with the fast [...] Read more.
The emergency control of Menglou~Qifang inverted siphon, which is about 72 km long, is the key to the safety of the Northern Hubei Water Transfer Project. Given the complicated layout of this project, traditional emergency control method has been challenged with the fast hydraulic transient characteristics of pressurized flow. This paper describes the application of model predictive control (MPC), a popular automatic control algorithm advanced in explicitly accounting for various constraints and optimizing control operation, in emergency condition. For the fast prediction to the pipe-canal combination system, a linear model for large-scale inverted siphon proposed by the latest research and the integrator-delay (ID) model for open canals are used. Simulation results show that the proposed MPC algorithm has promising performance on guaranteeing the safety of the project when there are sudden flow obstruction incidents of varying degrees downstream. Compared with control groups, the peak pressure can be reduced by 17.2 m by MPC under the most critical scenario, albeit with more complicated gates operations and more water release (up to 9.75 × 104 m3). Based on the linear model for long inverted siphon, this work highlights the applicability of MPC in the emergency control of large-scale pipe-canal combination system. Full article
(This article belongs to the Special Issue Failure Risk Assessment in Water Supply System)
Show Figures

Figure 1

19 pages, 7072 KiB  
Article
Suppress Numerical Oscillations in Transient Mixed Flow Simulations with a Modified HLL Solver
by Zhonghao Mao, Guanghua Guan and Zhonghua Yang
Water 2020, 12(5), 1245; https://doi.org/10.3390/w12051245 - 27 Apr 2020
Cited by 7 | Viewed by 3715
Abstract
Transition between free-surface and pressurized flows is a crucial phenomenon in many hydraulic systems. During simulation of such phenomenon, severe numerical oscillations may appear behind filling-bores, causing unphysical pressure variations and computation failure. This paper reviews existing oscillation-suppressing methods, while only one of [...] Read more.
Transition between free-surface and pressurized flows is a crucial phenomenon in many hydraulic systems. During simulation of such phenomenon, severe numerical oscillations may appear behind filling-bores, causing unphysical pressure variations and computation failure. This paper reviews existing oscillation-suppressing methods, while only one of them can obtain a stable result under a realistic acoustic wave speed. We derive a new oscillation-suppressing method with first-order accuracy. This simple method contains two parameters, Pa and Pb, and their values can be determined easily. It can sufficiently suppress numerical oscillations under an acoustic wave speed of 1000 ms−1. Good agreement is found between simulation results and analytical results or experimental data. This paper can help readers to choose an appropriate oscillation-suppressing method for numerical simulations of flow regime transition under a realistic acoustic wave speed. Full article
(This article belongs to the Special Issue Advances in Modeling and Management of Urban Water Networks)
Show Figures

Figure 1

17 pages, 636 KiB  
Article
Design of PI Controllers for Irrigation Canals Based on Linear Matrix Inequalities
by Teresa Arauz, José M. Maestre, Xin Tian and Guanghua Guan
Water 2020, 12(3), 855; https://doi.org/10.3390/w12030855 - 18 Mar 2020
Cited by 26 | Viewed by 4431
Abstract
A new Proportional-Integral (PI) tuning method based on Linear Matrix Inequalities (LMIs) is presented. In particular, an LMI-based optimal control problem is solved to obtain a sparse feedback that provides the PI tuning. The ASCE Test Canal 1 is used as a case [...] Read more.
A new Proportional-Integral (PI) tuning method based on Linear Matrix Inequalities (LMIs) is presented. In particular, an LMI-based optimal control problem is solved to obtain a sparse feedback that provides the PI tuning. The ASCE Test Canal 1 is used as a case study. Using a linearised model of the canal, different tunings for the design of the PI controller are developed and tested using the software Sobek. Furthermore, the proposed method is also compared with other tunings proposed for the same canal available in the literature. Our results show that the proposed method reduces by half the maximum errors with respect to other assessed alternatives and minimizes undesired mutual interactions between canal pools. Also, our method improves the optimality degree of the PI tuning by 30%. Therefore, it is concluded that the LMI based PI controllers lead to satisfactory performance in regulating water levels and canal flows/structure outflows, outperforming other tested alternatives, thus becoming a useful tool for irrigation canal control. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

12 pages, 1772 KiB  
Article
Exploring Explicit Delay Time for Volume Compensation in Feedforward Control of Canal Systems
by Wenjun Liao, Guanghua Guan and Xin Tian
Water 2019, 11(5), 1080; https://doi.org/10.3390/w11051080 - 23 May 2019
Cited by 7 | Viewed by 3183
Abstract
In the open channel control algorithm, good feed-forward controllers will reduce the transition time of the canal and improve performance. Feedforward control algorithms based on active storage compensation are greatly affected by delay time. However, there is no literature comparing the three most [...] Read more.
In the open channel control algorithm, good feed-forward controllers will reduce the transition time of the canal and improve performance. Feedforward control algorithms based on active storage compensation are greatly affected by delay time. However, there is no literature comparing the three most commonly used algorithms, namely volume step compensation, dynamic wave principle and water balance models, under the operation mode of constant water level downstream. In order to compare the existing three algorithms, and to avoid storage calculation by calculating the constant non-uniform water surface line or identification of relevant parameters, combined with the open channel constant gradient flow theory with the storage compensation algorithm, a delay time explicit algorithm is proposed in this study. Tested on the first canal pool of the American Society of Civil Engineers (ASCE) Test Canal 2, the performance of the delay time explicit algorithm is assessed and compared to that of the three conventional algorithms. In the current water intake plan, i.e., in the second hour, the intake begins to take 1.2 m3/s, and the upstream flow of the canal pool changes from 6 m3/s to 7.2 m3/s, among the three existing algorithms, the volume step compensation algorithm has better performance in terms of time to achieve stability, i.e., 1.25 h. The actual adjusted storage accounts for 99.6% of the target adjusted storage, which can basically meet the requirement of compensated storage of the canal pool. The delay time explicit algorithm only needs 1.47 h to stabilize the regulation system. The fluctuation of water level and discharge in the regulation process is small. The actual adjusted storage accounts for 99.6% of the target adjusted storage, which can basically meet the requirement of compensated storage for the canal pool. The delay time calculated by explicit algorithm can provide references for the determination of delay time in feedforward control. Full article
(This article belongs to the Special Issue Environmental Hydraulics Research)
Show Figures

Figure 1

21 pages, 7569 KiB  
Article
Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method
by Yuting Yang, Huade Guan, Di Long, Bing Liu, Guanghua Qin, Jun Qin and Okke Batelaan
Remote Sens. 2015, 7(7), 8250-8270; https://doi.org/10.3390/rs70708250 - 24 Jun 2015
Cited by 55 | Viewed by 10201
Abstract
Surface soil moisture (SM) plays a fundamental role in energy and water partitioning in the soil–plant–atmosphere continuum. A reliable and operational algorithm is much needed to retrieve regional surface SM at high spatial and temporal resolutions. Here, we provide an operational framework of [...] Read more.
Surface soil moisture (SM) plays a fundamental role in energy and water partitioning in the soil–plant–atmosphere continuum. A reliable and operational algorithm is much needed to retrieve regional surface SM at high spatial and temporal resolutions. Here, we provide an operational framework of estimating surface SM at fine spatial resolutions (using visible/thermal infrared images and concurrent meteorological data) based on a trapezoidal space defined by remotely sensed vegetation cover (Fc) and land surface temperature (LST). Theoretical solutions of the wet and dry edges were derived to achieve a more accurate and effective determination of the Fc/LST space. Subjectivity and uncertainty arising from visual examination of extreme boundaries can consequently be largely reduced. In addition, theoretical derivation of the extreme boundaries allows a per-pixel determination of the VI/LST space such that the assumption of uniform atmospheric forcing over the entire domain is no longer required. The developed approach was tested at the Tibetan Plateau Soil Moisture/Temperature Monitoring Network (SMTMN) site in central Tibet, China, from August 2010 to August 2011 using Moderate Resolution Imaging Spectroradiometer (MODIS) Terra images. Results indicate that the developed trapezoid model reproduced the spatial and temporal patterns of observed surface SM reasonably well, with showing a root-mean-square error of 0.06 m3·m−3 at the site level and 0.03 m3·m−3 at the regional scale. In addition, a case study on 2 September 2010 highlighted the importance of the theoretically calculated wet and dry edges, as they can effectively obviate subjectivity and uncertainties in determining the Fc/LST space arising from visual interpretation of satellite images. Compared with Land Surface Models (LSMs) in Global Land Data Assimilation System-1, the remote sensing-based trapezoid approach gave generally better surface SM estimates, whereas the LSMs showed systematic underestimation. Sensitivity analyses suggested that the trapezoid method is most sensitive to field capacity and temperature but less sensitive to other meteorological observations and parameters. Full article
Show Figures

Graphical abstract

Back to TopTop