Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Authors = Fabio Tosti ORCID = 0000-0003-0291-9937

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 5870 KiB  
Proceeding Paper
Classification of Urban Environments Using State-of-the-Art Machine Learning: A Path to Sustainability
by Tesfaye Tessema, Neda Azarmehr, Parisa Saadati, Dale Mortimer and Fabio Tosti
Eng. Proc. 2025, 94(1), 14; https://doi.org/10.3390/engproc2025094014 - 4 Aug 2025
Viewed by 21
Abstract
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires [...] Read more.
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires effective planning, maintenance, and continuous monitoring. To enhance traditional approaches, remote sensing is becoming a vital tool for city-wide observations. Publicly available large-scale data, combined with machine learning models, can improve our understanding. We explore the potential of Sentinel-2 to classify and extract meaningful features from urban landscapes. Using advanced machine learning techniques, we aim to develop a robust and scalable framework for classifying urban environments. The proposed models will assist in monitoring changes in green spaces across diverse urban settings, enabling timely and informed decisions to foster sustainable urban growth. Full article
Show Figures

Figure 1

11 pages, 3507 KiB  
Proceeding Paper
Resilient Cities and Urban Green Infrastructure—Nexus Between Remote Sensing and Sustainable Development
by Suman Kumari, Tesfaye Temtime Tessema, Laden Husamaldin, Sharad Kumar Gupta, Philip Cox, Dale Mortimer, Andrea Benedetto and Fabio Tosti
Eng. Proc. 2025, 94(1), 8; https://doi.org/10.3390/engproc2025094008 - 17 Jul 2025
Viewed by 290
Abstract
Cities are the growth engines responsible for shaping the global economy, major contributors to climate change, and are significantly affected by it. However, the United Nations adopted the Sustainable Development Goals (SDGs) to make these cities and human settlements inclusive, safe, resilient, and [...] Read more.
Cities are the growth engines responsible for shaping the global economy, major contributors to climate change, and are significantly affected by it. However, the United Nations adopted the Sustainable Development Goals (SDGs) to make these cities and human settlements inclusive, safe, resilient, and sustainable. Yet, the rapid and unplanned urban expansion exacerbates various environmental challenges and reduces green cover in urban areas. To address these issues and meet the SDGs, stakeholders need to emphasise and optimise urban spaces. This study investigates the borough-level analysis of green spaces and human exposure to green spaces across London using satellite-derived datasets on vegetation and socio-economic factors to examine the variations in urban vegetation cover and urban population exposure to vegetation cover between 2017 and 2024. This study highlights the spatial disparity in green space coverage and exposure to green space between the inner and outer boroughs of London. The methodology used here suggests an average loss of approximately 11 and 9 percent in green space coverage and green space exposure to population, respectively, between 2017 and 2024 across London boroughs. Full article
Show Figures

Figure 1

31 pages, 13044 KiB  
Review
A Systematic Review into the Application of Ground-Based Interferometric Radar Systems for Bridge Monitoring
by Saeed Sotoudeh, Livia Lantini, Stephen Uzor and Fabio Tosti
Remote Sens. 2025, 17(9), 1541; https://doi.org/10.3390/rs17091541 - 26 Apr 2025
Cited by 1 | Viewed by 1207
Abstract
Ground-based interferometric radar (GBIR) is a powerful remote sensing technique used for infrastructure monitoring, particularly in the field of bridge structural health monitoring (SHM). Despite its high resolution and rapid data acquisition and the availability of various commercial systems, GBIR has not yet [...] Read more.
Ground-based interferometric radar (GBIR) is a powerful remote sensing technique used for infrastructure monitoring, particularly in the field of bridge structural health monitoring (SHM). Despite its high resolution and rapid data acquisition and the availability of various commercial systems, GBIR has not yet been fully recognised or routinely adopted in standard bridge monitoring practices. This study presents a comprehensive review of GBIR technologies and methods historically applied in bridge SHM. A total of 104 peer-reviewed papers were selected through a systematic review process, encompassing 128 monitored bridges assessed using a wide range of GBIR systems. The applications of GBIR across different bridge materials and operational conditions are discussed in detail. The review shows that 76% of GBIR applications focus on roadway and railway bridges. In terms of materials, steel and concrete bridges dominate the dataset, accounting for 95% of the total, while masonry bridges represent only 5%. The GBIR system types examined in this study are categorised into six main groups based on their technical specifications, with their key characteristics and capabilities analysed. The review also investigates bridge feature extraction techniques, revealing a predominant focus on identifying natural frequencies, while fewer studies explore the extraction of damping ratios and structural mode shapes. Furthermore, the integration of GBIR with other sensing technologies—particularly accelerometers—is explored, highlighting opportunities for complementary sensor fusion. Overall, this study provides a comprehensive overview of the current state of practice and identifies key areas for future research and technological development. Full article
Show Figures

Graphical abstract

15 pages, 283 KiB  
Review
Safety First: A Comprehensive Review of Nutritional Supplements for Hair Loss in Breast Cancer Patients
by Andrea Sechi, Stephano Cedirian, Tullio Brunetti, Federico Quadrelli, Fernanda Torres, Antonella Tosti, Fabio Rinaldi, Daniela Pinto, Rolando Bolognino, Angelo Valerio Marzano and Bianca Maria Piraccini
Nutrients 2025, 17(9), 1451; https://doi.org/10.3390/nu17091451 - 25 Apr 2025
Viewed by 1559
Abstract
Among the distressing side effects of cancer treatments, hair loss is one of the most disturbing for the quality of life and adherence to therapy in breast cancer patients. Many patients take nutritional supplements to prevent hair loss or enhance regrowth. Based on [...] Read more.
Among the distressing side effects of cancer treatments, hair loss is one of the most disturbing for the quality of life and adherence to therapy in breast cancer patients. Many patients take nutritional supplements to prevent hair loss or enhance regrowth. Based on their mechanism and timing of use, nutritional supplements could be divided into safe, cautious, debated, and contraindicated categories. Non-contraindicated supplements generally include safe supplements like vitamin D, which is not known to interfere with cancer treatments. Those that are contraindicated include phytoestrogens and compounds affecting estrogen pathways because of the risk of stimulating tumor growth in cancers sensitive to estrogen. Antioxidants like tocotrienols and resveratrol are given judiciously because of potential interference with cancer therapies dependent on reactive oxygen species. Supplements debated, including nicotinamide, folate, and iron, pose a risk by promoting cellular proliferation or altering the tumor microenvironment. Biotin is nontoxic but interferes with blood test results and is thus difficult in cancer monitoring. Evidence regarding nutritional supplements’ safety and efficacy in this context is conflicting. Management by an oncologist is required along with more studies to clearly establish the safety parameters and efficacy guidelines. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Graphical abstract

3 pages, 289 KiB  
Editorial
Year II—The NDT 2024 Editorial
by Fabio Tosti
NDT 2024, 2(4), 549-551; https://doi.org/10.3390/ndt2040034 - 19 Dec 2024
Viewed by 769
Abstract
After nearly two years of consistent activities, the journal NDT (ISSN 2813-477X) [...] Full article
22 pages, 10747 KiB  
Article
Cross-Gradient Joint Inversion of DC Resistivity and Gravity Gradient Data: A Multi-Disciplinary Approach for Geoscience, Heritage, and the Built Environment
by Hosseinali Ghari, Saeed Parnow, Ramin Varfinezhad, Maurizio Milano, Francois Daniel Fourie and Fabio Tosti
Remote Sens. 2024, 16(23), 4468; https://doi.org/10.3390/rs16234468 - 28 Nov 2024
Cited by 1 | Viewed by 1793
Abstract
Accurate subsurface imaging is crucial for understanding complex geological structures. Traditional approaches often involve separate inversion of different geophysical datasets, which may not fully capture the structural similarities between the models. Joint inversion, integrating multiple datasets, offers a more comprehensive view by enhancing [...] Read more.
Accurate subsurface imaging is crucial for understanding complex geological structures. Traditional approaches often involve separate inversion of different geophysical datasets, which may not fully capture the structural similarities between the models. Joint inversion, integrating multiple datasets, offers a more comprehensive view by enhancing the resolution and the accuracy of subsurface models. In this study, we propose a joint inversion technique for DC resistivity and vertical gravity gradient data, leveraging the cross-gradient constraint to enforce structural similarities between the resulting models. This method is applied to both synthetic and real datasets, including case studies involving qanats in Iran and a dolerite dyke in South Africa. The results demonstrate that joint inversion significantly improves the accuracy of resistivity and density models compared to independent inversion, particularly in resolving intricate geological features. This approach has proven effective in enhancing subsurface mapping for multi-disciplinary purposes, including resource exploration, heritage conservation, and risk mitigation for the built environment. Full article
Show Figures

Figure 1

2 pages, 433 KiB  
Editorial
Year I—Introducing NDT: A New Journal on Non-Destructive Testing Science, Technology and Their Applications
by Fabio Tosti
NDT 2023, 1(1), 1-2; https://doi.org/10.3390/ndt1010001 - 20 Mar 2023
Viewed by 3222
Abstract
It is with great pleasure that the journal NDT (ISSN 2813-477X) [...] Full article
12 pages, 2294 KiB  
Article
Tips and Tricks for Early Diagnosis of Cervico-Vaginal Involvement from Extramammary Paget’s Disease of the Vulva: A Referral Center Experience
by Anna Daniela Iacobone, Maria Elena Guerrieri, Eleonora Petra Preti, Noemi Spolti, Gianluigi Radici, Giulia Peveri, Vincenzo Bagnardi, Giulio Tosti, Angelo Maggioni, Fabio Bottari, Chiara Scacchi and Mariacristina Ghioni
Diagnostics 2023, 13(3), 464; https://doi.org/10.3390/diagnostics13030464 - 27 Jan 2023
Cited by 1 | Viewed by 2277
Abstract
Cervico-vaginal (CV) localization of extra-mammary Paget’s disease (EMPD) of the vulva is extremely rare. In order to investigate the incidence risk and the pathognomonic clinical and pathological features of this condition, a retrospective analysis was conducted including 94 women treated for vulvar EMPD [...] Read more.
Cervico-vaginal (CV) localization of extra-mammary Paget’s disease (EMPD) of the vulva is extremely rare. In order to investigate the incidence risk and the pathognomonic clinical and pathological features of this condition, a retrospective analysis was conducted including 94 women treated for vulvar EMPD at the European Institute of Oncology, Milan, Italy, from October 1997 to May 2020. Overall nine patients developed CV involvement from EMPD, with a cumulative incidence of 2.5% (95% CI: 0.5–8.0%) at 5 years, 6.5% (95% CI: 1.9–15.1%) at 10 years and 14.0% (95% CI: 4.8–27.8%) at 15 years, respectively. All cases except one were firstly detected by abnormal glandular cytology. None reported vaginal bleeding or other suspicious symptoms. The colposcopic findings were heterogeneous and could sometimes be misdiagnosed. Cervical and/or vaginal biopsies were always performed for histopathological diagnosis by identification of Paget cells in the epithelium or stroma. Most patients developed invasive EMPD (5/9) of the cervix and/or vagina and underwent hysterectomy with partial or total colpectomy. CV involvement from EMPD should not be underestimated in women with a long-standing history of vulvar Paget’s disease. Liquid-based cytology with immunocytochemistry represents a valuable tool for early diagnosis and should be routinely performed during the required lifelong follow-up. Full article
(This article belongs to the Special Issue Diagnosis of Lower Genital Tract Disease)
Show Figures

Figure 1

29 pages, 7286 KiB  
Review
Satellite Remote Sensing and Non-Destructive Testing Methods for Transport Infrastructure Monitoring: Advances, Challenges and Perspectives
by Valerio Gagliardi, Fabio Tosti, Luca Bianchini Ciampoli, Maria Libera Battagliere, Luigi D’Amato, Amir M. Alani and Andrea Benedetto
Remote Sens. 2023, 15(2), 418; https://doi.org/10.3390/rs15020418 - 10 Jan 2023
Cited by 74 | Viewed by 10928
Abstract
High-temporal-frequency monitoring of transport infrastructure is crucial to facilitate maintenance and prevent major service disruption or structural failures. Ground-based non-destructive testing (NDT) methods have been successfully applied for decades, reaching very high standards for data quality and accuracy. However, routine campaigns and long [...] Read more.
High-temporal-frequency monitoring of transport infrastructure is crucial to facilitate maintenance and prevent major service disruption or structural failures. Ground-based non-destructive testing (NDT) methods have been successfully applied for decades, reaching very high standards for data quality and accuracy. However, routine campaigns and long inspection times are required for data collection and their implementation into reliable infrastructure management systems (IMSs). On the other hand, satellite remote sensing techniques, such as the Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) method, have proven effective in monitoring ground displacements of transport infrastructure (roads, railways and airfields) with a much higher temporal frequency of investigation and the capability to cover wider areas. Nevertheless, the integration of information from (i) satellite remote sensing and (ii) ground-based NDT methods is a subject that is still to be fully explored in civil engineering. This paper aims to review significant stand-alone and combined applications in these two areas of endeavour for transport infrastructure monitoring. The recent advances, main challenges and future perspectives arising from their mutual integration are also discussed. Full article
(This article belongs to the Special Issue Remote Sensing in Civil and Environmental Engineering)
Show Figures

Figure 1

13 pages, 1519 KiB  
Article
Preliminary Assessment of Radiolysis for the Cooling Water System in the Rotating Target of SORGENTINA-RF
by Camillo Sartorio, Massimo Angiolini, Davide Flammini, Antonino Pietropaolo, Pietro Agostini, Ciro Alberghi, Luigi Candido, Marco Capogni, Mauro Capone, Sebastiano Cataldo, Gian Marco Contessa, Marco D’Arienzo, Alessio Del Dotto, Dario Diamanti, Danilo Dongiovanni, Mirko Farini, Paolo Ferrari, Angela Fiore, Nicola Fonnesu, Manuela Frisoni, Gianni Gadani, Angelo Gentili, Giacomo Grasso, Manuela Guardati, David Guidoni, Marco Lamberti, Luigi Lepore, Andrea Mancini, Andrea Mariani, Ranieri Marinari, Giuseppe A. Marzo, Bruno Mastroianni, Fabio Moro, Agostina Orefice, Valerio Orsetti, Tonio Pinna, Antonietta Rizzo, Alexander Rydzy, Stefano Salvi, Demis Santoli, Alessia Santucci, Luca Saraceno, Salvatore Scaglione, Valerio Sermenghi, Emanuele Serra, Andrea Simonetti, Ivan Panov Spassovsky, Nicholas Terranova, Silvano Tosti, Alberto Ubaldini, Marco Utili, Pietro Zito, Danilo Zola, Konstantina Voukelatou and Giuseppe Zummoadd Show full author list remove Hide full author list
Environments 2022, 9(8), 106; https://doi.org/10.3390/environments9080106 - 18 Aug 2022
Cited by 7 | Viewed by 4814
Abstract
The SORGENTINA-RF project aims at developing a 14 MeV fusion neutron source featuring an emission rate in the order of 5–7 × 1013 s1. The plant relies on a metallic water-cooled rotating target and a deuterium (50%) and tritium [...] Read more.
The SORGENTINA-RF project aims at developing a 14 MeV fusion neutron source featuring an emission rate in the order of 5–7 × 1013 s1. The plant relies on a metallic water-cooled rotating target and a deuterium (50%) and tritium (50%) ion beam. Beyond the main focus of medical radioisotope production, the source may represent a multi-purpose neutron facility by implementing a series of neutron-based techniques. Among the different engineering and technological issues to be addressed, the production of incondensable gases and corrosion product into the rotating target deserves a dedicated investigation. In this study, a preliminary analysis is carried out, considering the general layout of the target and the present choice of the target material. Full article
Show Figures

Graphical abstract

20 pages, 2400 KiB  
Article
Effect of Wheat Crop Nitrogen Fertilization Schedule on the Phenolic Content and Antioxidant Activity of Sprouts and Wheatgrass Obtained from Offspring Grains
by Beatrice Falcinelli, Angelica Galieni, Giacomo Tosti, Fabio Stagnari, Flaviano Trasmundi, Eleonora Oliva, Annalisa Scroccarello, Manuel Sergi, Michele Del Carlo and Paolo Benincasa
Plants 2022, 11(15), 2042; https://doi.org/10.3390/plants11152042 - 4 Aug 2022
Cited by 7 | Viewed by 2452
Abstract
This work was aimed at investigating the effects of rate and timing of nitrogen fertilization applied to a maternal wheat crop on phytochemical content and antioxidant activity of edible sprouts and wheatgrass obtained from offspring grains. We hypothesized that imbalance in N nutrition [...] Read more.
This work was aimed at investigating the effects of rate and timing of nitrogen fertilization applied to a maternal wheat crop on phytochemical content and antioxidant activity of edible sprouts and wheatgrass obtained from offspring grains. We hypothesized that imbalance in N nutrition experienced by the mother plants translates into transgenerational responses on seedlings obtained from the offspring seeds. To this purpose, we sprouted grains of two bread wheat cultivars (Bologna and Bora) grown in the field under four N fertilization schedules: constantly well N fed with a total of 300 kg N ha−1; N fed only very early, i.e., one month after sowing, with 60 kg N ha−1; N fed only late, i.e., at initial shoot elongation, with 120 kg N ha−1; and unfertilized control. We measured percent germination, seedling growth, vegetation indices (by reflectance spectroscopy), the phytochemical content (total phenols, phenolic acids, carotenoids, chlorophylls), and the antioxidant activity (by gold nanoparticles photometric assay) of extracts in sprout and wheatgrass obtained from the harvested seeds. Our main finding is that grains obtained from crops subjected to late N deficiency produced wheatgrass with much higher phenolic content (as compared to the other N treatments), and this was observed in both cultivars. Thus, we conclude that late N deficiency is a stressing condition which elicits the production of phenols. This may help counterbalance the loss of income related to lower grain yield in crops subjected to such an imbalance in N nutrition. Full article
Show Figures

Figure 1

5 pages, 171 KiB  
Editorial
Sensing Advancement and Health Monitoring of Transport Structures
by Andrea Benedetto, Imad L. Al-Qadi, Amir M. Alani, Andreas Loizos and Fabio Tosti
Sensors 2021, 21(22), 7621; https://doi.org/10.3390/s21227621 - 16 Nov 2021
Viewed by 2138
Abstract
Planning, design, construction, maintenance and management of transport infrastructure demand new methods and approaches to optimise utilisation of materials, energy and workforce [...] Full article
(This article belongs to the Special Issue Sensing Advancement and Health Monitoring of Transport Structures)
28 pages, 8343 KiB  
Article
Testing Sentinel-1 SAR Interferometry Data for Airport Runway Monitoring: A Geostatistical Analysis
by Valerio Gagliardi, Luca Bianchini Ciampoli, Sebastiano Trevisani, Fabrizio D’Amico, Amir M. Alani, Andrea Benedetto and Fabio Tosti
Sensors 2021, 21(17), 5769; https://doi.org/10.3390/s21175769 - 27 Aug 2021
Cited by 38 | Viewed by 6327
Abstract
Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques are gaining momentum in the assessment and health monitoring of infrastructure assets. Amongst others, the Persistent Scatterers Interferometry (PSI) technique has proven to be viable for the long-term evaluation of ground scatterers. However, its effectiveness as [...] Read more.
Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques are gaining momentum in the assessment and health monitoring of infrastructure assets. Amongst others, the Persistent Scatterers Interferometry (PSI) technique has proven to be viable for the long-term evaluation of ground scatterers. However, its effectiveness as a routine tool for certain critical application areas, such as the assessment of millimetre-scale differential displacements in airport runways, is still debated. This research aims to demonstrate the viability of using medium-resolution Copernicus ESA Sentinel-1A (C-Band) SAR products and their contribution to improve current maintenance strategies in case of localised foundation settlements in airport runways. To this purpose, “Runway n.3” of the “Leonardo Da Vinci International Airport” in Fiumicino, Rome, Italy was investigated as an explanatory case study, in view of historical geotechnical settlements affecting the runway area. In this context, a geostatistical study is developed for the exploratory spatial data analysis and the interpolation of the Sentinel-1A SAR data. The geostatistical analysis provided ample information on the spatial continuity of the Sentinel 1 data in comparison with the high-resolution COSMO-SkyMed data and the ground-based topographic levelling data. Furthermore, a comparison between the PSI outcomes from the Sentinel-1A SAR data—interpolated through Ordinary Kriging—and the ground-truth topographic levelling data demonstrated the high accuracy of the Sentinel 1 data. This is proven by the high values of the correlation coefficient (r = 0.94), the multiple R-squared coefficient (R2 = 0.88) and the Slope value (0.96). The results of this study clearly support the effectiveness of using Sentinel-1A SAR data as a continuous and long-term routine monitoring tool for millimetre-scale displacements in airport runways, paving the way for the development of more efficient and sustainable maintenance strategies for inclusion in next generation Airport Pavement Management Systems (APMSs). Full article
(This article belongs to the Special Issue Sensing Advancement and Health Monitoring of Transport Structures)
Show Figures

Graphical abstract

14 pages, 3957 KiB  
Technical Note
Displacement Monitoring in Airport Runways by Persistent Scatterers SAR Interferometry
by Luca Bianchini Ciampoli, Valerio Gagliardi, Chiara Ferrante, Alessandro Calvi, Fabrizio D’Amico and Fabio Tosti
Remote Sens. 2020, 12(21), 3564; https://doi.org/10.3390/rs12213564 - 30 Oct 2020
Cited by 52 | Viewed by 5825
Abstract
Deformations monitoring in airport runways and the surrounding areas is crucial, especially in cases of low-bearing capacity subgrades, such as the clayey subgrade soils. An effective monitoring of the infrastructure asset allows to secure the highest necessary standards in terms of the operational [...] Read more.
Deformations monitoring in airport runways and the surrounding areas is crucial, especially in cases of low-bearing capacity subgrades, such as the clayey subgrade soils. An effective monitoring of the infrastructure asset allows to secure the highest necessary standards in terms of the operational and safety requirements. Amongst the emerging remote sensing techniques for transport infrastructures monitoring, the Persistent Scatterers Interferometry (PSI) technique has proven effective for the evaluation of the ground deformations. However, its use for certain demanding applications, such as the assessment of millimetric differential deformations in airport runways, is still considered as an open issue for future developments. In this study, a time-series analysis of COSMO–SkyMed satellite images acquired from January 2015 to April 2019 is carried out by employing the PSI technique. The aim is to retrieve the mean deformation velocity and time series of the surface deformations occurring in airport runways. The technique is applied to Runway 3 at the “Leonardo da Vinci” International Airport in Rome, Italy. The proposed PSI technique is then validated by way of comparison with the deformation outcomes obtained on the runway by traditional topographic levelling over the same time span. The results of this study clearly demonstrate the efficiency and the accuracy of the applied PSI technique for the assessment of deformations in airport runways. Full article
(This article belongs to the Special Issue Trends in GPR and Other NDTs for Transport Infrastructure Assessment)
Show Figures

Graphical abstract

34 pages, 16096 KiB  
Article
An Enhanced Data Processing Framework for Mapping Tree Root Systems Using Ground Penetrating Radar
by Livia Lantini, Fabio Tosti, Iraklis Giannakis, Lilong Zou, Andrea Benedetto and Amir M. Alani
Remote Sens. 2020, 12(20), 3417; https://doi.org/10.3390/rs12203417 - 18 Oct 2020
Cited by 25 | Viewed by 5322
Abstract
The preservation of natural assets is nowadays an essential commitment. In this regard, root systems are endangered by fungal diseases which can undermine the health and stability of trees. Within this framework, ground penetrating radar (GPR) is emerging as a reliable non-destructive method [...] Read more.
The preservation of natural assets is nowadays an essential commitment. In this regard, root systems are endangered by fungal diseases which can undermine the health and stability of trees. Within this framework, ground penetrating radar (GPR) is emerging as a reliable non-destructive method for root investigation. A coherent GPR-based root-detection framework is presented in this paper. The proposed methodology is a multi-stage data analysis system that is applied to semi-circular measurements collected around the investigated tree. In the first step, the raw data are processed by applying several standard and advanced signal processing techniques in order to reduce noise-related information. In the second stage, the presence of any discontinuity element within the survey area is investigated by analysing the signal reflectivity. Then, a tracking algorithm aimed at identifying patterns compatible with tree roots is implemented. Finally, the mass density of roots is estimated by means of continuous functions in order to achieve a more realistic representation of the root paths and to identify their length in a continuous and more realistic domain. The method was validated in a case study in London (UK), where the root system of a real tree was surveyed using GPR and a soil test pit was excavated for validation purposes. Results support the feasibility of the data processing framework implemented in this study. Full article
Show Figures

Graphical abstract

Back to TopTop