Safety First: A Comprehensive Review of Nutritional Supplements for Hair Loss in Breast Cancer Patients
Abstract
:1. Introduction
2. Hair Loss in Breast Cancer Patients
3. Supplements
- Vitamins (such as multivitamins or individual vitamins like vitamin D and biotin);
- Minerals (such as calcium, magnesium, and iron);
- Botanicals or herbs (such as saw palmetto);
- Botanical compounds (such as curcumin);
- Amino acids (such as tryptophan and glutamine);
- Biotherapeutics including live microorganisms (commonly referred to as “postbiotics”) and tyndallized probiotics;
- Oils (such as omega 3) [10].
- Estrogen Mimicking Effects: Some agents, such as phytoestrogens, act through binding with estrogen receptors alpha (Erα) or estrogen receptors beta (ERβ) and may stimulate the growth of ER-positive breast cancers [9,17,18,19]. Similarly, saw palmetto increases estrogen indirectly because 5α-reductase inhibition affects estrogen signaling. These supplements have a particular risk in patients with estrogen-sensitive malignancies.
- Increased Production of Estrogen: It is plausible that, in supplements such as pumpkin seed oil, beta-sitosterol may increase aromatase activity and thus convert androgens into estrogens, raising circulating estrogen levels. This results in the promotion of breast cancer cells through the overexpression of aromatase or estrogen receptors and makes such compounds contraindicated in estrogen-sensitive cancers [9,17,18,19].
- Antioxidant Effects: Antioxidants, such as resveratrol and tocotrienols, can neutralize reactive oxygen species (ROS) induced by chemotherapy or radiotherapy, which might reduce the efficacy of the treatments. Though antioxidants are generally good for health, their use during cancer treatments should be approached with caution, as they could counteract the therapy-induced oxidative stress [20].
- Cellular Proliferation and Tumor Microenvironment Effects: Supplementation with a variety of nutrients, such as folate, vitamin B12, nicotinamide (vitamin B3), iron, and zinc, can inadvertently support the development of tumors by providing substrate for DNA synthesis, cellular proliferation, or modification of the tumor microenvironment. For instance, iron fosters the growth of tumors by promoting the formation of ROS, and disturbances in the levels of zinc are known to take part in breast cancer [21].
4. Safe During Chemotherapy
5. Safe Only After Chemotherapy
6. Debated Use After Chemotherapy
6.1. Debated Use After Chemotherapy Due to Cellular Proliferation and Tumor Microenvironment Effects
6.2. Debated Use After Chemotherapy Due to Limited or Insufficient Evidence
6.3. Regulatory Guidelines for Food Supplements in Cancer Therapy
7. Cautious Use After Chemotherapy
Cautious Use Due to Monitoring Interference
8. Always Hazardous (During and After Chemotherapy)
Hazardous Due to Hormonal Properties in Estrogen-Sensitive Cancers
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanker, A.B.; Sudhan, D.R.; Arteaga, C.L. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020, 37, 496–513. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 31 October 2024).
- Freites-Martinez, A.; Shapiro, J.; van den Hurk, C.; Goldfarb, S.; Jimenez, J.J.; Rossi, A.M.; Paus, R.; Lacouture, M.E. Hair Disorders in Cancer Survivors. J. Am. Acad. Dermatol. 2019, 80, 1199–1213. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Dell’Acqua, G.; Richards, A.; Thornton, M.J. Nutraceuticals Known to Promote Hair Growth Do Not Interfere with the Inhibitory Action of Tamoxifen in MCF7, T47D and BT483 Breast Cancer Cell Lines. PLoS ONE 2024, 19, e0297080. [Google Scholar] [CrossRef] [PubMed]
- Dell’Acqua, G.; Richards, A.; Thornton, M.J. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020, 12, 3537. [Google Scholar] [CrossRef]
- Kanti, V.; Nuwayhid, R.; Lindner, J.; Hillmann, K.; Stroux, A.; Bangemann, N.; Kleine-Tebbe, A.; Blume-Peytavi, U.; Garcia Bartels, N. Analysis of Quantitative Changes in Hair Growth during Treatment with Chemotherapy or Tamoxifen in Patients with Breast Cancer: A Cohort Study. Br. J. Dermatol. 2014, 170, 643–650. [Google Scholar] [CrossRef]
- Rose, L.; Lustberg, M.; Ruddy, K.J.; Cathcart-Rake, E.; Loprinzi, C.; Dulmage, B. Hair Loss during and after Breast Cancer Therapy. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2023, 31, 186. [Google Scholar] [CrossRef]
- Yin, G.O.C.; Siong-See, J.L.; Wang, E.C.E. Telogen Effluvium—A Review of the Science and Current Obstacles. J. Dermatol. Sci. 2021, 101, 156–163. [Google Scholar] [CrossRef]
- Eiger, D.; Wagner, M.; Pondé, N.F.; Nogueira, M.S.; Buisseret, L.; de Azambuja, E. The Impact of Cyclin-Dependent Kinase 4 and 6 Inhibitors (CDK4/6i) on the Incidence of Alopecia in Patients with Metastatic Breast Cancer (BC). Acta Oncol. Stockh. Swed. 2020, 59, 723–725. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/ (accessed on 31 October 2024).
- Cedirian, S.; Prudkin, L.; Piraccini, B.M.; Santamaria, J.; Piquero-Casals, J.; Saceda-Corralo, D. The Exposome Impact on Hair Health: Etiology, Pathogenesis and Clinical Features—Part I. An. Bras. Dermatol. 2025, 100, 131–140. [Google Scholar] [CrossRef]
- Cedirian, S.; Prudkin, L.; Santana, J.A.; Piquero-Casals, J.; Saceda-Corralo, D.; Piraccini, B.M. The Exposome Impact on Hair Health: Non-Pharmacological Management. Part II⋆. An. Bras. Dermatol. 2025, 100, 322–327. [Google Scholar] [CrossRef]
- Starace, M.; Cedirian, S.; Bruni, F.; Alessandrini, A.M.; Quadrelli, F.; Sechi, A.; Piraccini, B.M. Clinical Study on the Efficacy and Tolerability of an Oral Supplement Based on Arginine, l-Cystine, Zinc and B6 Vitamin (Cystiphane®) in Patients with Telogen Effluvium. Ital. J. Dermatol. Venereol. 2023, 158, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Cedirian, S.; Bruni, F.; Quadrelli, F.; Caro, G.; Fortuna, M.; Rossi, A.; Piraccini, B.M.; Starace, M. Clinical Study on the Efficacy and Tolerability of a Topical Regenerative Treatment in Patients with Telogen Effluvium and Mild Androgenetic Alopecia. J. Cosmet. Dermatol. 2023, 22, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Drake, L.; Reyes-Hadsall, S.; Martinez, J.; Heinrich, C.; Huang, K.; Mostaghimi, A. Evaluation of the Safety and Effectiveness of Nutritional Supplements for Treating Hair Loss: A Systematic Review. JAMA Dermatol. 2023, 159, 79–86. [Google Scholar] [CrossRef]
- Almohanna, H.M.; Ahmed, A.A.; Tsatalis, J.P.; Tosti, A. The Role of Vitamins and Minerals in Hair Loss: A Review. Dermatol. Ther. 2019, 9, 51–70. [Google Scholar] [CrossRef]
- Nesaretnam, K.; Meganathan, P.; Veerasenan, S.D.; Selvaduray, K.R. Tocotrienols and Breast Cancer: The Evidence to Date. Genes Nutr. 2012, 7, 3–9. [Google Scholar] [CrossRef]
- Nesaretnam, K.; Selvaduray, K.R.; Abdul Razak, G.; Veerasenan, S.D.; Gomez, P.A. Effectiveness of Tocotrienol-Rich Fraction Combined with Tamoxifen in the Management of Women with Early Breast Cancer: A Pilot Clinical Trial. Breast Cancer Res. BCR 2010, 12, R81. [Google Scholar] [CrossRef]
- Comitato, R.; Nesaretnam, K.; Leoni, G.; Ambra, R.; Canali, R.; Bolli, A.; Marino, M.; Virgili, F. A Novel Mechanism of Natural Vitamin E Tocotrienol Activity: Involvement of ERbeta Signal Transduction. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E427–E437. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Lei, Y.; Chu, Y.; Yu, X.; Tong, Q.; Zhu, T.; Yu, H.; Fang, S.; Li, G.; et al. NNMT Contributes to High Metastasis of Triple Negative Breast Cancer by Enhancing PP2A/MEK/ERK/c-Jun/ABCA1 Pathway Mediated Membrane Fluidity. Cancer Lett. 2022, 547, 215884. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, Q.; Kong, X.; Wang, X.; Wang, Z.; Wang, J.; Fang, Y. A Systematic Study on Zinc-Related Metabolism in Breast Cancer. Nutrients 2023, 15, 1703. [Google Scholar] [CrossRef]
- Cancer Survivors. WCRF International. Available online: https://www.wcrf.org/research-policy/evidence-for-our-recommendations/after-a-cancer-diagnosis-follow-recommendations/ (accessed on 22 April 2025).
- Ooi, L.L.; Zhou, H.; Kalak, R.; Zheng, Y.; Conigrave, A.D.; Seibel, M.J.; Dunstan, C.R. Vitamin D Deficiency Promotes Human Breast Cancer Growth in a Murine Model of Bone Metastasis. Cancer Res. 2010, 70, 1835–1844. [Google Scholar] [CrossRef]
- Ying, H.; Gao, L.; Liao, N.; Xu, X.; Yu, W.; Hong, W. Association between Niacin and Mortality among Patients with Cancer in the NHANES Retrospective Cohort. BMC Cancer 2022, 22, 1173. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Zuchniak, A.; Sohn, K.-J.; Lubinski, J.; Demsky, R.; Eisen, A.; Akbari, M.R.; Kim, Y.-I.; Narod, S.A.; Kotsopoulos, J. Plasma Folate, Vitamin B-6, and Vitamin B-12 and Breast Cancer Risk in BRCA1- and BRCA2-Mutation Carriers: A Prospective Study. Am. J. Clin. Nutr. 2016, 104, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Ambrosone, C.B.; Zirpoli, G.R.; Hutson, A.D.; McCann, W.E.; McCann, S.E.; Barlow, W.E.; Kelly, K.M.; Cannioto, R.; Sucheston-Campbell, L.E.; Hershman, D.L.; et al. Dietary Supplement Use During Chemotherapy and Survival Outcomes of Patients With Breast Cancer Enrolled in a Cooperative Group Clinical Trial (SWOG S0221). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.V.; Moore, R.E.T.; Capper, M.S.; Schilling, K.; Goddard, K.; Ion, C.; Layton-Matthews, D.; Leybourne, M.I.; Coles, B.; Kreissig, K.; et al. Zinc Stable Isotope Analysis Reveals Zn Dyshomeostasis in Benign Tumours, Breast Cancer, and Adjacent Histologically Normal Tissue. Met. Integr. Biometal Sci. 2021, 13, mfab027. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Z.; Yan, H.; Wang, W.; Wu, Z.; Zhang, F.; Zhang, Q.; Shi, G.; Du, J.; Cai, H.; et al. Creatine Promotes Cancer Metastasis through Activation of Smad2/3. Cell Metab. 2021, 33, 1111–1123.e4. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kolonel, L.N.; Henderson, B.E.; Wilkens, L.R. Dietary Fat and Breast Cancer in Postmenopausal Women According to Ethnicity and Hormone Receptor Status: The Multiethnic Cohort Study. Cancer Prev. Res. 2012, 5, 216–228. [Google Scholar] [CrossRef]
- Engeset, D.; Alsaker, E.; Lund, E.; Welch, A.; Khaw, K.-T.; Clavel-Chapelon, F.; Thiébaut, A.; Chajès, V.; Key, T.J.; Allen, N.E.; et al. Fish Consumption and Breast Cancer Risk. The European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 2006, 119, 175–182. [Google Scholar] [CrossRef]
- Vundru, S.S.; Kale, R.K.; Singh, R.P. β-Sitosterol Induces G1 Arrest and Causes Depolarization of Mitochondrial Membrane Potential in Breast Carcinoma MDA-MB-231 Cells. BMC Complement. Altern. Med. 2013, 13, 280. [Google Scholar] [CrossRef]
- Fraser, G.E.; Jaceldo-Siegl, K.; Orlich, M.; Mashchak, A.; Sirirat, R.; Knutsen, S. Dairy, Soy, and Risk of Breast Cancer: Those Confounded Milks. Int. J. Epidemiol. 2020, 49, 1526–1537. [Google Scholar] [CrossRef]
- Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; et al. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018, 23, 1578. [Google Scholar] [CrossRef]
- Linn, Y.H.; Thu, K.K.; Win, N.H.H. Effect of Probiotics for the Prevention of Acute Radiation-Induced Diarrhoea Among Cervical Cancer Patients: A Randomized Double-Blind Placebo-Controlled Study. Probiotics Antimicrob. Proteins 2019, 11, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, P.; Weiskirchen, R.; van Helden, J. The Biotin Interference within Interference Suppressed Immunoassays. J. Clin. Lab. Anal. 2021, 35, e23940. [Google Scholar] [CrossRef] [PubMed]
- Hostanska, K.; Suter, A.; Melzer, J.; Saller, R. Evaluation of Cell Death Caused by an Ethanolic Extract of Serenoae Repentis Fructus (Prostasan) on Human Carcinoma Cell Lines. Anticancer Res. 2007, 27, 873–881. [Google Scholar]
- Baron, A.; Mancini, M.; Caldwell, E.; Cabrelle, A.; Bernardi, P.; Pagano, F. Serenoa Repens Extract Targets Mitochondria and Activates the Intrinsic Apoptotic Pathway in Human Prostate Cancer Cells. BJU Int. 2009, 103, 1275–1283. [Google Scholar] [CrossRef]
- Alnefaie, S.M.; Alwagdani, N.M.; Althobaiti, R.A.; Almansori, K.M.; Alalawi, Y.; Al-Kharashi, E.I.; Al-Ameer, A.; Hadi, M.A. The Relationship between Phytoestrogen-Rich Supplements and Breast Cancer: A Multicenter Case-Control Study in Saudi Arabia. Int. J. Health Sci. 2024, 18, 35–42. [Google Scholar]
- Huang, S.; Qi, B.; Yang, L.; Wang, X.; Huang, J.; Zhao, Y.; Hu, Y.; Xiao, W. Phytoestrogens, Novel Dietary Supplements for Breast Cancer. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 160, 114341. [Google Scholar] [CrossRef]
- Torres, A.; Cameselle, C.; Otero, P.; Simal-Gandara, J. The Impact of Vitamin D and Its Dietary Supplementation in Breast Cancer Prevention: An Integrative Review. Nutrients 2024, 16, 573. [Google Scholar] [CrossRef]
- Kang, D.; Kim, I.-R.; Choi, E.-K.; Im, Y.H.; Park, Y.H.; Ahn, J.S.; Lee, J.E.; Nam, S.J.; Lee, H.K.; Park, J.-H.; et al. Permanent Chemotherapy-Induced Alopecia in Patients with Breast Cancer: A 3-Year Prospective Cohort Study. Oncologist 2019, 24, 414–420. [Google Scholar] [CrossRef]
- Trüeb, R.M. Chemotherapy-Induced Alopecia. Curr. Opin. Support. Palliat. Care 2010, 4, 281–284. [Google Scholar] [CrossRef]
- Brzezińska-Wcisło, L. Evaluation of vitamin B6 and calcium pantothenate effectiveness on hair growth from clinical and trichographic aspects for treatment of diffuse alopecia in women. Wiadomosci Lek. Wars. Pol. 1960 2001, 54, 11–18. [Google Scholar]
- D’Agostini, F.; Fiallo, P.; Pennisi, T.M.; De Flora, S. Chemoprevention of Smoke-Induced Alopecia in Mice by Oral Administration of L-Cystine and Vitamin B6. J. Dermatol. Sci. 2007, 46, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Coerdt, K.M.; Goggins, C.A.; Khachemoune, A. Vitamins A, B, C, and D: A Short Review for the Dermatologist. Altern. Ther. Health Med. 2021, 27, 41–49. [Google Scholar] [PubMed]
- Van de Roovaart, H.J.; Stevens, M.M.; Goodridge, A.E.; Baden, K.R.; Sibbitt, B.G.; Delaney, E.; Haluschak, J.; Kathula, S.; Chen, A.M.H. Safety and Efficacy of Vitamin B in Cancer Treatments: A Systematic Review. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2024, 30, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Zhang, C.X.W.; Demsky, R.; Armel, S.; Kim, Y.-I.; Narod, S.A.; Kotsopoulos, J. Folic Acid Supplement Use and Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers: A Case-Control Study. Breast Cancer Res. Treat. 2019, 174, 741–748. [Google Scholar] [CrossRef]
- Trost, L.B.; Bergfeld, W.F.; Calogeras, E. The Diagnosis and Treatment of Iron Deficiency and Its Potential Relationship to Hair Loss. J. Am. Acad. Dermatol. 2006, 54, 824–844. [Google Scholar] [CrossRef]
- Le Floc’h, C.; Cheniti, A.; Connétable, S.; Piccardi, N.; Vincenzi, C.; Tosti, A. Effect of a Nutritional Supplement on Hair Loss in Women. J. Cosmet. Dermatol. 2015, 14, 76–82. [Google Scholar] [CrossRef]
- Nindrea, R.D.; Aryandono, T.; Lazuardi, L.; Dwiprahasto, I. Protective Effect of Omega-3 Fatty Acids in Fish Consumption Against Breast Cancer in Asian Patients: A Meta-Analysis. Asian Pac. J. Cancer Prev. APJCP 2019, 20, 327–332. [Google Scholar] [CrossRef]
- Hanson, S.; Thorpe, G.; Winstanley, L.; Abdelhamid, A.S.; Hooper, L. PUFAH group Omega-3, Omega-6 and Total Dietary Polyunsaturated Fat on Cancer Incidence: Systematic Review and Meta-Analysis of Randomised Trials. Br. J. Cancer 2020, 122, 1260–1270. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Hasan, M.S.; Elsabaa, K.I.; Elsaie, M.L. Pumpkin Seed Oil vs. Minoxidil 5% Topical Foam for the Treatment of Female Pattern Hair Loss: A Randomized Comparative Trial. J. Cosmet. Dermatol. 2021, 20, 2867–2873. [Google Scholar] [CrossRef]
- Khan, Z.; Nath, N.; Rauf, A.; Emran, T.B.; Mitra, S.; Islam, F.; Chandran, D.; Barua, J.; Khandaker, M.U.; Idris, A.M.; et al. Multifunctional Roles and Pharmacological Potential of β-Sitosterol: Emerging Evidence toward Clinical Applications. Chem. Biol. Interact. 2022, 365, 110117. [Google Scholar] [CrossRef]
- Miller, P.E.; Snyder, D.C. Phytochemicals and Cancer Risk: A Review of the Epidemiological Evidence. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2012, 27, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, Q.; Wu, Z.; Xu, Y.; Jiang, R. Curcumin for Treating Breast Cancer: A Review of Molecular Mechanisms, Combinations with Anticancer Drugs, and Nanosystems. Pharmaceutics 2024, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-C.; Ku, S.-K.; Bae, J.-S. Anticoagulant Activities of Curcumin and Its Derivative. BMB Rep. 2012, 45, 221–226. [Google Scholar] [CrossRef]
- Rodriguez-Arrastia, M.; Martinez-Ortigosa, A.; Rueda-Ruzafa, L.; Folch Ayora, A.; Ropero-Padilla, C. Probiotic Supplements on Oncology Patients’ Treatment-Related Side Effects: A Systematic Review of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18, 4265. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, Z.; Jamil, A.; Altaf, F.; Siddique, R. Efficacy and Safety of Probiotics as Adjunctive Therapy in Cancer Treatment: A Comprehensive Systematic Review and Meta-Analysis. Am. J. Clin. Oncol. 2025, 48, 148–161. [Google Scholar] [CrossRef]
- Authority, E.F.S.; Committee, E.S. Guidance on Safety Assessment of Botanicals and Botanical Preparations Intended for Use as Ingredients in Food Supplements. EFSA J. 2009, 7, 1249. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Statement on Safety of Cannabidiol as a Novel Food: Data Gaps and Uncertainties. EFSA J. Eur. Food Saf. Auth. 2022, 20, e07322. [Google Scholar] [CrossRef]
- Volpato, M.; Hull, M.A. Omega-3 Polyunsaturated Fatty Acids as Adjuvant Therapy of Colorectal Cancer. Cancer Metastasis Rev. 2018, 37, 545–555. [Google Scholar] [CrossRef]
- Patel, D.P.; Swink, S.M.; Castelo-Soccio, L. A Review of the Use of Biotin for Hair Loss. Ski. Appendage Disord. 2017, 3, 166–169. [Google Scholar] [CrossRef]
- Luong, J.H.T.; Male, K.B.; Glennon, J.D. Biotin Interference in Immunoassays Based on Biotin-Strept(Avidin) Chemistry: An Emerging Threat. Biotechnol. Adv. 2019, 37, 634–641. [Google Scholar] [CrossRef]
- Holmes, E.W.; Samarasinghe, S.; Emanuele, M.A.; Meah, F. Biotin Interference in Clinical Immunoassays: A Cause for Concern. Arch. Pathol. Lab. Med. 2017, 141, 1459–1460. [Google Scholar] [CrossRef] [PubMed]
- Hosking, A.-M.; Juhasz, M.; Atanaskova Mesinkovska, N. Complementary and Alternative Treatments for Alopecia: A Comprehensive Review. Ski. Appendage Disord. 2019, 5, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Ward, H.; Chapelais, G.; Kuhnle, G.G.C.; Luben, R.; Khaw, K.-T.; Bingham, S. European Prospective into Cancer-Norfolk cohort Breast Cancer Risk in Relation to Urinary and Serum Biomarkers of Phytoestrogen Exposure in the European Prospective into Cancer-Norfolk Cohort Study. Breast Cancer Res. BCR 2008, 10, R32. [Google Scholar] [CrossRef] [PubMed]
- Saeed, I.A.; Ali, L.; Jabeen, A.; Khasawneh, M.; Rizvi, T.A.; Ashraf, S.S. Estrogenic Activities of Ten Medicinal Herbs from the Middle East. J. Chromatogr. Sci. 2013, 51, 33–39. [Google Scholar] [CrossRef]
- Chen, F.-P.; Chien, M.-H. Effects of Phytoestrogens on the Activity and Growth of Primary Breast Cancer Cells Ex Vivo. J. Obstet. Gynaecol. Res. 2019, 45, 1352–1362. [Google Scholar] [CrossRef]
- Gehm, B.D.; McAndrews, J.M.; Chien, P.Y.; Jameson, J.L. Resveratrol, a Polyphenolic Compound Found in Grapes and Wine, Is an Agonist for the Estrogen Receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 14138–14143. [Google Scholar] [CrossRef]
- Singh, B.; Shoulson, R.; Chatterjee, A.; Ronghe, A.; Bhat, N.K.; Dim, D.C.; Bhat, H.K. Resveratrol Inhibits Estrogen-Induced Breast Carcinogenesis through Induction of NRF2-Mediated Protective Pathways. Carcinogenesis 2014, 35, 1872–1880. [Google Scholar] [CrossRef]
Supplement | At the Diagnosis | During Chemotherapy | During Endocrine Therapy | During Post-Therapy Follow-Up |
---|---|---|---|---|
Vitamin D | S | S | S | S |
Tocotrienols | S | H | S | S |
Niacinamide (B3) | D | D | D | D |
Folate (B9) | D | D | D | D |
Vitamin B12 | D | H | H | H |
Iron | D | H | H | H |
Zinc | D | D | D | D |
Creatine | D | D | D | D |
Omega-3 | D | D | D | D |
Omega-6 | D | D | D | D |
Pumpkin Seed Oil | D | D | D | D |
Whey Protein | D | D | D | D |
Curcumin | D | D | D | D |
Probiotics | D | D | D | D |
Biotin (B7) | C | C | C | C |
Saw Palmetto | H | H | H | H |
Phytoestrogens | H | H | H | H |
Supplement | First Author/Year | Study Type | Outcome of the Study |
---|---|---|---|
Vitamin D | Ooi et al. (2010) [23] | Original article | An association between vitamin D deficiency and both an increased risk of developing breast cancer and a tendency toward more aggressive disease phenotypes. |
Tocotrienols | Nesaretnam et al. (2010) [18] | Original article: double-blind, placebo-controlled pilot trial | Combining tocotrienols with tamoxifen may improve breast-cancer-specific survival due to their growth-inhibitory effects. |
Nicotinamide (Vitamin B3) | Ying et al. (2022) [24] | Original article: retrospective cohort study | The study found a significant link between higher niacin intake and reduced mortality among cancer patients, particularly in terms of cancer-specific survival. |
Folate (Vitamin B9) | Kim et al. (2016) [25] | Original article: prospective study | High plasma folate concentrations (>24.4 ng/mL) might be associated with an increased risk of breast cancer. |
Vitamin B12 | Ambrosone et al. (2020) [26] | Original article: observational study | The use of vitamin B12 both before and during chemotherapy is significantly correlated with worse disease-free survival and overall survival. |
Iron | Ambrosone et al. (2020) [26] | Original article: observational study | Supplementation with iron during and before various treatment schedules highly associates, in fact, with an increased risk of recurrence of breast cancer. |
Zinc | Sullivan et al. (2021) [27] | Original article | Alterations in zinc homeostasis can contribute to onset and development of breast cancer. |
Creatine | Zhang et al. (2021) [28] | Original research article | Creatine may promote the metastasis of breast and colorectal cancer through enhancing GATM activity and upregulating Snail and Slug that foster cell migration in orthotopic mouse models. |
Omega-3 and Omega-6 Fatty Acids | Park et al. (2012) [29] | Original research article | The study provided evidence supporting the potential of omega-3 fatty acids to reduce the risk of breast cancer in Asian populations. |
Engeset et al. (2006) [30] | Original article | The study found no association between fish consumption or marine omega-3 fatty acid intake and the risk of breast cancer. | |
Pumpkin Seed Oil | Vundru et al. (2013) [31] | Original article; In vitro study | This study has shown its anticancer properties, including inducing apoptosis, inhibiting the proliferation of cancer cells, and modulating immune responses in breast cancer. |
Whey Protein | Fraser et al. (2020) [32] | Original article: cohort studies | The study suggests the incidence of human breast cancer, which is more likely due to natural steroid hormones promoting mammary cell growth. |
Curcumin | Wang et al. (2018) [33] | Original article; in vitro study | Curcumin-loaded solid lipid nanoparticles arrest the cell cycle at G1/S and reduce the expression of cyclin D1 and CDK4, leading to the strong induction of apoptosis and ROS production in vitro; specifically, they induce apoptosis by activating P53 and P21 proteins, which regulate the PI3K-AKT and NF-kB signaling pathways. |
Probiotics | Linn et al. (2019) [34] | Randomized controlled trial | Supplementation of probiotics is an easy and effective way to reduce the incidence and severity of radiation-induced diarrhea. |
Biotin (Vitamin B7) | Kabiri et al. (2021) [35] | Original article | Biotin interferences have been observed in immunoassays used to measure cancer markers, which could pose a significant obstacle for monitoring and follow-up in these patients. |
Saw Palmetto | Hostanska et al. (2007) [36] | Original article; in vitro study | Saw palmetto demonstrates a dose-dependent inhibition of proliferation ER-positive breast cancer cell lines because it induces apoptosis. |
Baron et al. (2009) [37] | Original article: in vitro study | This study has shown that such effects of saw palmetto are more specific to prostate-lines cells, making the safety debated and to be explored in breast cancer patients. | |
Phytoestrogens | Alnefaie et al. (2024) [38] | Case–control study | In ER-positive breast cancers, phytoestrogens may exert a promoting action on the proliferation of cancer cells through either ERα or GPER signaling pathways. |
Resveratrol | Huang et al. (2023) [39] | Review | Resveratrol interacts effectively with GPER, thereby providing possible therapeutic effects in the case of breast cancer. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sechi, A.; Cedirian, S.; Brunetti, T.; Quadrelli, F.; Torres, F.; Tosti, A.; Rinaldi, F.; Pinto, D.; Bolognino, R.; Marzano, A.V.; et al. Safety First: A Comprehensive Review of Nutritional Supplements for Hair Loss in Breast Cancer Patients. Nutrients 2025, 17, 1451. https://doi.org/10.3390/nu17091451
Sechi A, Cedirian S, Brunetti T, Quadrelli F, Torres F, Tosti A, Rinaldi F, Pinto D, Bolognino R, Marzano AV, et al. Safety First: A Comprehensive Review of Nutritional Supplements for Hair Loss in Breast Cancer Patients. Nutrients. 2025; 17(9):1451. https://doi.org/10.3390/nu17091451
Chicago/Turabian StyleSechi, Andrea, Stephano Cedirian, Tullio Brunetti, Federico Quadrelli, Fernanda Torres, Antonella Tosti, Fabio Rinaldi, Daniela Pinto, Rolando Bolognino, Angelo Valerio Marzano, and et al. 2025. "Safety First: A Comprehensive Review of Nutritional Supplements for Hair Loss in Breast Cancer Patients" Nutrients 17, no. 9: 1451. https://doi.org/10.3390/nu17091451
APA StyleSechi, A., Cedirian, S., Brunetti, T., Quadrelli, F., Torres, F., Tosti, A., Rinaldi, F., Pinto, D., Bolognino, R., Marzano, A. V., & Piraccini, B. M. (2025). Safety First: A Comprehensive Review of Nutritional Supplements for Hair Loss in Breast Cancer Patients. Nutrients, 17(9), 1451. https://doi.org/10.3390/nu17091451