Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Davor Juretić

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3487 KiB  
Article
Optimized Solar-Simulated Photocatalysis of Congo Red Dye Using TiO2: Toward a Sustainable Water Treatment Approach
by Davor Ljubas, Ante Vučemilović, Debora Briševac, Hrvoje Cajner and Hrvoje Juretić
Molecules 2025, 30(11), 2388; https://doi.org/10.3390/molecules30112388 - 29 May 2025
Viewed by 527
Abstract
This study investigates a sustainable approach to the photocatalytic degradation of Congo red (CR) dye using titanium dioxide (TiO2) under simulated solar radiation, with a specific focus on the UV-A component of the radiation. The aim was to optimize reaction conditions [...] Read more.
This study investigates a sustainable approach to the photocatalytic degradation of Congo red (CR) dye using titanium dioxide (TiO2) under simulated solar radiation, with a specific focus on the UV-A component of the radiation. The aim was to optimize reaction conditions to maximize dye removal efficiency while promoting environmentally friendly wastewater treatment practices. A central composite design (CCD) was implemented, and results were analyzed using analysis of variance (ANOVA). The key factors examined included TiO2 concentration, UV-A radiation intensity, CR dye concentration, and suspension depth. The optimal conditions determined were 222.37 mg/L TiO2, 20 W/m2 UV-A irradiation, 25 µmol/L CR dye concentration, and a suspension depth of 29 mm. Under these conditions, decolorization was achieved with the lowest absorbance (0.367 at 498 nm) and total organic carbon (0.805 mg/L) values, indicating effective dye degradation. The findings confirm that TiO2-assisted photocatalysis is a green and promising method for wastewater treatment. The potential use of natural solar radiation could reduce operational costs, making the process more sustainable. However, challenges such as photocatalyst recovery, aggregation, and the impact of the real wastewater matrices need further investigation. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

33 pages, 2471 KiB  
Article
Exploring the Evolution-Coupling Hypothesis: Do Enzymes’ Performance Gains Correlate with Increased Dissipation?
by Davor Juretić
Entropy 2025, 27(4), 365; https://doi.org/10.3390/e27040365 - 29 Mar 2025
Viewed by 542
Abstract
The research literature presents divergent opinions regarding the role of dissipation in living systems, with views ranging from it being useless to it being essential for driving life. The implications of universal thermodynamic evolution are often overlooked or considered controversial. A higher rate [...] Read more.
The research literature presents divergent opinions regarding the role of dissipation in living systems, with views ranging from it being useless to it being essential for driving life. The implications of universal thermodynamic evolution are often overlooked or considered controversial. A higher rate of entropy production indicates faster thermodynamic evolution. We calculated enzyme-associated dissipation under steady-state conditions using minimalistic models of enzyme kinetics when all microscopic rate constants are known. We found that dissipation is roughly proportional to the turnover number, and a log-log power-law relationship exists between dissipation and the catalytic efficiency of enzymes. “Perfect” specialized enzymes exhibit the highest dissipation levels and represent the pinnacle of biological evolution. The examples that we analyzed suggested two key points: (a) more evolved enzymes excel in free-energy dissipation, and (b) the proposed evolutionary trajectory from generalist to specialized enzymes should involve increased dissipation for the latter. Introducing stochastic noise in the kinetics of individual enzymes may lead to optimal performance parameters that exceed the observed values. Our findings indicate that biological evolution has opened new channels for dissipation through specialized enzymes. We also discuss the implications of our results concerning scaling laws and the seamless coupling between thermodynamic and biological evolution in living systems immersed in out-of-equilibrium environments. Full article
Show Figures

Figure 1

21 pages, 2912 KiB  
Article
Role of Peptide Associations in Enhancing the Antimicrobial Activity of Adepantins: Comparative Molecular Dynamics Simulations and Design Assessments
by Matko Maleš, Davor Juretić and Larisa Zoranić
Int. J. Mol. Sci. 2024, 25(22), 12009; https://doi.org/10.3390/ijms252212009 - 8 Nov 2024
Viewed by 1309
Abstract
Adepantins are peptides designed to optimize antimicrobial biological activity through the choice of specific amino acid residues, resulting in helical and amphipathic structures. This paper focuses on revealing the atomistic details of the mechanism of action of Adepantins and aligning design concepts with [...] Read more.
Adepantins are peptides designed to optimize antimicrobial biological activity through the choice of specific amino acid residues, resulting in helical and amphipathic structures. This paper focuses on revealing the atomistic details of the mechanism of action of Adepantins and aligning design concepts with peptide behavior through simulation results. Notably, Adepantin-1a exhibits a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, while Adepantin-1 has a narrow spectrum of activity against Gram-negative bacteria. The simulation results showed that one of the main differences is the extent of aggregation. Both peptides exhibit a strong tendency to cluster due to the amphipathicity embedded during design process. However, the more potent Adepantin-1a forms smaller aggregates than Adepantin-1, confirming the idea that the optimal aggregations, not the strongest aggregations, favor activity. Additionally, we show that incorporation of the cell penetration region affects the mechanisms of action of Adepantin-1a and promotes stronger binding to anionic and neutral membranes. Full article
Show Figures

Graphical abstract

52 pages, 9198 KiB  
Article
Theoretical Improvements in Enzyme Efficiency Associated with Noisy Rate Constants and Increased Dissipation
by Davor Juretić and Željana Bonačić Lošić
Entropy 2024, 26(2), 151; https://doi.org/10.3390/e26020151 - 9 Feb 2024
Cited by 2 | Viewed by 2389
Abstract
Previous studies have revealed the extraordinarily large catalytic efficiency of some enzymes. High catalytic proficiency is an essential accomplishment of biological evolution. Natural selection led to the increased turnover number, kcat, and enzyme efficiency, kcat/KM, of uni–uni [...] Read more.
Previous studies have revealed the extraordinarily large catalytic efficiency of some enzymes. High catalytic proficiency is an essential accomplishment of biological evolution. Natural selection led to the increased turnover number, kcat, and enzyme efficiency, kcat/KM, of uni–uni enzymes, which convert a single substrate into a single product. We added or multiplied random noise with chosen rate constants to explore the correlation between dissipation and catalytic efficiency for ten enzymes: beta-galactosidase, glucose isomerase, β-lactamases from three bacterial strains, ketosteroid isomerase, triosephosphate isomerase, and carbonic anhydrase I, II, and T200H. Our results highlight the role of biological evolution in accelerating thermodynamic evolution. The catalytic performance of these enzymes is proportional to overall entropy production—the main parameter from irreversible thermodynamics. That parameter is also proportional to the evolutionary distance of β-lactamases PC1, RTEM, and Lac-1 when natural or artificial evolution produces the optimal or maximal possible catalytic efficiency. De novo enzyme design and attempts to speed up the rate-limiting catalytic steps may profit from the described connection between kinetics and thermodynamics. Full article
(This article belongs to the Special Issue Entropy, Time and Evolution II)
Show Figures

Figure 1

15 pages, 8503 KiB  
Article
Photocatalytic Degradation of Pharmaceutical Trimethoprim in Aqueous Solution over Nanostructured TiO2 Film Irradiated with Simulated Solar Radiation
by Davor Ljubas, Hrvoje Juretić, Alan Badrov, Martina Biošić and Sandra Babić
Appl. Sci. 2023, 13(9), 5681; https://doi.org/10.3390/app13095681 - 5 May 2023
Cited by 11 | Viewed by 3037
Abstract
Pharmaceuticals are characterized by a wide range of physical, chemical, and biological properties and functionalities that contribute to their inherent complexity as compounds. Unfortunately, human carelessness during the production, use, and disposal of these compounds results in their presence in the environment. This [...] Read more.
Pharmaceuticals are characterized by a wide range of physical, chemical, and biological properties and functionalities that contribute to their inherent complexity as compounds. Unfortunately, human carelessness during the production, use, and disposal of these compounds results in their presence in the environment. This study utilized a nanostructured TiO2 film on a glass ring at the bottom of a reactor and simulated a solar radiation lamp as the radiation source for both photocatalytic and photolytic experiments, with the aim of unraveling the mechanism behind the degradation of trimethoprim (TMP), a pharmaceutical compound. This approach provides a novel perspective on the role of TiO2 in the degradation of pharmaceuticals and could pave the way for more efficient and sustainable wastewater treatment methods. Scavenger studies were carried out using isopropanol, ammonium oxalate, and triethanolamine to examine the photocatalytic mechanism. Isopropanol and triethanolamine were found to impede the photocatalytic degradation of TMP, highlighting the significance of hydroxyl radicals and positive holes in the degradation process, while no inhibition was observed in the presence of ammonium oxalate. The complete degradation of TMP through photocatalysis under simulated solar radiation was observed in ultra-pure water in fewer than 3 h, as indicated by the results. Our findings suggest that utilizing natural solar radiation as a source of UV-A radiation in reactor configurations based on this approach holds promise for cost-effective pharmaceutical degradation treatment in wastewater treatment plants. The practical potential of this approach is supported by the results obtained under simulated solar radiation with an irradiation intensity in the UV-A region of 33 ± 2 W/m2. Full article
Show Figures

Figure 1

59 pages, 1324 KiB  
Review
Designed Multifunctional Peptides for Intracellular Targets
by Davor Juretić
Antibiotics 2022, 11(9), 1196; https://doi.org/10.3390/antibiotics11091196 - 3 Sep 2022
Cited by 15 | Viewed by 3507
Abstract
Nature’s way for bioactive peptides is to provide them with several related functions and the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses on known [...] Read more.
Nature’s way for bioactive peptides is to provide them with several related functions and the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses on known and novel peptides that can easily reach intracellular targets with little or no toxicity to mammalian cells. All peptide candidates were evaluated and ranked according to the predictions of low toxicity to mammalian cells and broad-spectrum activity. The final set of the 20 best peptide candidates contains the peptides optimized for cell-penetrating, antimicrobial, anticancer, antiviral, antifungal, and anti-inflammatory activity. Their predicted features are intrinsic disorder and the ability to acquire an amphipathic structure upon contact with membranes or nucleic acids. In conclusion, the review argues for exploring wide-spectrum multifunctionality for novel nontoxic hybrids with cell-penetrating peptides. Full article
Show Figures

Figure 1

21 pages, 1722 KiB  
Article
The Spectrum of Design Solutions for Improving the Activity-Selectivity Product of Peptide Antibiotics against Multidrug-Resistant Bacteria and Prostate Cancer PC-3 Cells
by Davor Juretić, Anja Golemac, Denise E. Strand, Keshi Chung, Nada Ilić, Ivana Goić-Barišić and François-Xavier Pellay
Molecules 2020, 25(15), 3526; https://doi.org/10.3390/molecules25153526 - 1 Aug 2020
Cited by 10 | Viewed by 4317
Abstract
The link between the antimicrobial and anticancer activity of peptides has long been studied, and the number of peptides identified with both activities has recently increased considerably. In this work, we hypothesized that designed peptides with a wide spectrum of selective antimicrobial activity [...] Read more.
The link between the antimicrobial and anticancer activity of peptides has long been studied, and the number of peptides identified with both activities has recently increased considerably. In this work, we hypothesized that designed peptides with a wide spectrum of selective antimicrobial activity will also have anticancer activity, and tested this hypothesis with newly designed peptides. The spectrum of peptides, used as partial or full design templates, ranged from cell-penetrating peptides and putative bacteriocin to those from the simplest animals (placozoans) and the Chordata phylum (anurans). We applied custom computational tools to predict amino acid substitutions, conferring the increased product of bacteriostatic activity and selectivity. Experiments confirmed that better overall performance was achieved with respect to that of initial templates. Nine of our synthesized helical peptides had excellent bactericidal activity against both standard and multidrug-resistant bacteria. These peptides were then compared to a known anticancer peptide polybia-MP1, for their ability to kill prostate cancer cells and dermal primary fibroblasts. The therapeutic index was higher for seven of our peptides, and anticancer activity stronger for all of them. In conclusion, the peptides that we designed for selective antimicrobial activity also have promising potential for anticancer applications. Full article
Show Figures

Figure 1

20 pages, 2417 KiB  
Review
Maximum Entropy Production Theorem for Transitions between Enzyme Functional States and Its Applications
by Davor Juretić, Juraj Simunić and Željana Bonačić Lošić
Entropy 2019, 21(8), 743; https://doi.org/10.3390/e21080743 - 29 Jul 2019
Cited by 12 | Viewed by 4309
Abstract
Transitions between enzyme functional states are often connected to conformational changes involving electron or proton transport and directional movements of a group of atoms. These microscopic fluxes, resulting in entropy production, are driven by non-equilibrium concentrations of substrates and products. Maximal entropy production [...] Read more.
Transitions between enzyme functional states are often connected to conformational changes involving electron or proton transport and directional movements of a group of atoms. These microscopic fluxes, resulting in entropy production, are driven by non-equilibrium concentrations of substrates and products. Maximal entropy production exists for any chosen transition, but such a maximal transitional entropy production (MTEP) requirement does not ensure an increase of total entropy production, nor an increase in catalytic performance. We examine when total entropy production increases, together with an increase in the performance of an enzyme or bioenergetic system. The applications of the MTEP theorem for transitions between functional states are described for the triosephosphate isomerase, ATP synthase, for β-lactamases, and for the photochemical cycle of bacteriorhodopsin. The rate-limiting steps can be easily identified as those which are the most efficient in dissipating free-energy gradients and in performing catalysis. The last step in the catalytic cycle is usually associated with the highest free-energy dissipation involving proton nanocurents. This recovery rate-limiting step can be optimized for higher efficiency by using corresponding MTEP requirements. We conclude that biological evolution, leading to increased optimal catalytic efficiency, also accelerated the thermodynamic evolution, the synergistic relationship we named the evolution-coupling hypothesis. Full article
(This article belongs to the Special Issue Entropy Production and Its Applications: From Cosmology to Biology)
Show Figures

Figure 1

10 pages, 107 KiB  
Article
The Maximum Entropy Production Principle and Linear Irreversible Processes
by Paško Županović, Domagoj Kuić, Željana Bonačić Lošić, Dražen Petrov, Davor Juretić and Milan Brumen
Entropy 2010, 12(5), 996-1005; https://doi.org/10.3390/e12050996 - 27 Apr 2010
Cited by 21 | Viewed by 9753
Abstract
It is shown that Onsager’s principle of the least dissipation of energy is equivalent to the maximum entropy production principle. It is known that solutions of the linearized Boltzmann equation make extrema of entropy production. It is argued, in the case of stationary [...] Read more.
It is shown that Onsager’s principle of the least dissipation of energy is equivalent to the maximum entropy production principle. It is known that solutions of the linearized Boltzmann equation make extrema of entropy production. It is argued, in the case of stationary processes, that this extremum is a maximum rather than a minimum. Full article
(This article belongs to the Special Issue What Is Maximum Entropy Production and How Should We Apply It?)
6 pages, 73 KiB  
Article
On the Problem of Formulating Principles in Nonequilibrium Thermodynamics
by Paško Županović, Domagoj Kuić, Davor Juretić and Andrej Dobovišek
Entropy 2010, 12(4), 926-931; https://doi.org/10.3390/e12040926 - 14 Apr 2010
Cited by 7 | Viewed by 7997
Abstract
In this work, we consider the choice of a system suitable for the formulation of principles in nonequilibrium thermodynamics. It is argued that an isolated system is a much better candidate than a system in contact with a bath. In other words, relaxation [...] Read more.
In this work, we consider the choice of a system suitable for the formulation of principles in nonequilibrium thermodynamics. It is argued that an isolated system is a much better candidate than a system in contact with a bath. In other words, relaxation processes rather than stationary processes are more appropriate for the formulation of principles in nonequilibrium thermodynamics. Arguing that slow varying relaxation can be described with quasi-stationary process, it is shown for two special cases, linear nonequilibrium thermodynamics and linearized Boltzmann equation, that solutions of these problems are in accordance with the maximum entropy production principle. Full article
(This article belongs to the Special Issue What Is Maximum Entropy Production and How Should We Apply It?)
7 pages, 93 KiB  
Article
Relaxation Processes and the Maximum Entropy Production Principle
by Paško Županović, Srećko Botrić, Davor Juretić and Domagoj Kuić
Entropy 2010, 12(3), 473-479; https://doi.org/10.3390/e12030473 - 11 Mar 2010
Cited by 9 | Viewed by 7308
Abstract
Spontaneous transitions of an isolated system from one macroscopic state to another (relaxation processes) are accompanied by a change of entropy. Following Jaynes’ MaxEnt formalism, it is shown that practically all the possible microscopic developments of a system, within a fixed time interval, [...] Read more.
Spontaneous transitions of an isolated system from one macroscopic state to another (relaxation processes) are accompanied by a change of entropy. Following Jaynes’ MaxEnt formalism, it is shown that practically all the possible microscopic developments of a system, within a fixed time interval, are accompanied by the maximum possible entropy change. In other words relaxation processes are accompanied by maximum entropy production. Full article
(This article belongs to the Special Issue What Is Maximum Entropy Production and How Should We Apply It?)
Back to TopTop